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Abstract

Recent years have seen growing interest in the problem of super-resolution restoration of
video sequences. Whereas in the traditional single image restoration problem only a single
input image is available for processing, the task of reconstructing super-resolution images
from multiple undersampled and degraded images can take advantage of the additional spatio-
temporal data available in the image sequence. In particular, camera and scene motion lead
to frames in the source video sequence containing similar, but not identical information. The
additional information available in these frames make possible reconstruction of visually su-
perior frames at higher resolution than that of the original data. In this paper we review the
current state of the art and identify promising directions for future research.

�The authors are with the Laboratory for Image and Signal Analysis (LISA), University of Notre Dame, Notre
Dame, IN 46556. E-mail: rls@nd.edu .



Executive Summary

This document presents a detailed review of existing techniques which address the problem of
super-resolution video restoration. By “super-resolution,” we refer to removal of blur caused by
the imaging system (out of focus blur, motion blur, non-ideal sampling, etc.) as well as recovery
of spatial frequency information beyond the diffraction limit of the optical system.

Super-resolution restoration from a still image is a well recognized example of anill-posedin-
verse problem. Such problems may be approached usingregularizationmethods whichconstrain
the feasible solution spaceby employinga-priori knowledge. This may be achieved in two compli-
mentary ways; (1) obtain additional novel observation data and (2) constrain the feasible solution
space witha-priori assumptions on the form of the solution. Both techniques feature in modern
super-resolution restoration methods which utilize (1) imagesequenceswhich provide additional
spatio-temporal observation constraints (typically in the form of novel data arising fromsub-pixel
motion) and (2) variousa-priori constraints on the super-resolution image (e.g. local smoothness,
edge preservation, positivity, energy boundedness, etc.). The use of non-lineara-priori constraints
provides the potential forbandwidth extensionbeyond the diffraction limit of the optical system.

Super-resolution techniques may be divided into two main classes; frequency domain and spa-
tial domain. All frequency domain approaches are, to a greater or lesser extent, unable to accom-
modate general scene observation models including spatially varying degradations, non-global rel-
ative camera/scene motion, generala-priori constraints or general noise models. Spatial domain
formulations can accommodate all these and provide enormous flexibility in the range of degrada-
tions and observation models which may be represented and are thus the methods of choice. Spatial
domain observation models facilitate inclusion of additional data in the observation equation with
the effect of reducing the feasible solution space.

It remains however to compute the solution to the ill-posed super-resolution inverse problem.
Amongst the numerous solution techniques featuring in the literature, the BayesianMaximum A-
Posteriori (MAP) estimation method, and the method ofProjection Onto Convex Sets(POCS)
are most promising. MAP estimation provides a rigorous theoretical framework, several desir-
able mathematical properties and makes explicit use ofa-priori information in the form of a prior
probability density on the solution image. POCS defines the feasible solution space as the inter-
section of convex constraint sets and provides a convenient method for the inclusion ofa-priori
constraints. MAP estimation and POCS are complimentary, with initial work already presented on
promising hybrid MAP/POCS solution methods.

We identify three critical factors affecting super-resolution restoration. Firstly,reliable sub-
pixel motion information is essential. Poor motion estimates are more detrimental to restoration
than a lack of motion information. Secondly,observation models must accurately describe the
imaging system and its degradations. Thirdly, restoration methods must provide the maximum po-
tential for inclusion ofa-priori information. These observations, and the discussion of constraints
on the solution space suggest the following approaches and actions:

Motion estimation: Existing sub-pixel motion estimation methods should be studied and ex-
tended with emphasis on providing robust performance and reliability measures on motion esti-
mates. Regularized motion estimation methods, as well as simultaneous motion estimation and
restoration methods should be considered. Feature based techniques which provide sparse motion
maps but reliable “edge based” motion estimates provide useful high frequency data constraints.
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Motion models: Motion models and estimation methods should be chosen according to a-
priori knowledge of scene/camera motion. Model based motion estimators should be considered
for multiple independent motion. As motion is estimated fromdegradedobservation data, a study
of the reliability of these estimates should be made. Motion constraints should be applied to the
restored super-resolution image sequence. The last two points appear to have been overlooked in
the literature.

Observation models: Observation models which accurately account for degradations oc-
curring in the imaging system (and thus accurately describe the relationship between the super-
resolution image and the observed data) constrain the image solution space. Little attention has
been paid to modeling CCD image sensor geometry, spatio-temporal integration, noise and readout
characteristics. Better modeling of the observation process promises improved restoration.

Restoration Algorithms: Hybrid MAP/POCS approaches combine mathematical rigor and
uniqueness of solution with convenient description ofa-priori constraints. Restoration algorithms
should be capable of including reliability measures on individual motion estimates as well as ac-
commodate model based motion estimators. Simultaneous multi-frame super-resolution restora-
tion which has not been addressed in the literature, will provide a powerful opportunity for further
solution space constraints.
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Nomenclature

In this section we describe the conventions which will be adopted throughout this document.

These are general notational conventions followed in the document.

General Notational Conventions
f Scene
y Observation
n Noise
z SR reconstruction

The following typographical conventions apply to all mathematical objects in this document.

Typographical Conventions
f Lowercase italic Scalar
f Lowercase boldface Vector
F Uppercase boldfaceStacked vector or matrix

Conventions used to describe the image formed at the image plane are listed below:

Illumination at Focal Plane (Desired Imagef )
Spatial coordinates

(x1; x2) Location in image plane coordinate system
Time invariant imagery (Single image)

f(x1; x2) Projection of optical system at image plane
Time varying imagery (Multiple images)

t Continuous time variable
f(x1; x2; t) Time varying projection of optical system at image plane
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Assuming no noise is present, the image sensor array will record the incident illumination to
yield the following (ideal) measurements:

Noiseless Image (f )
Detector array coordinates

(x1; x2) Location in image plane coordinate system
[m1; m2] Pixel location in detector array

Time invariant imagery (Single image)
Ta Aperture time (reciprocal of shutter speed) at image acquisition
f(x1; x2) Continuous scene
f [m1; m2] Image incident at detector array

m12f1; 2; : : : ;M1g ; m22f1; 2; : : : ;M2g
f Lexicographic ordering off [m1; m2] (column vector)
fi ith element of column vectorf and,

ith pixel in the lexicographic ordering of imagefr[m1; m2]
Time varying imagery (Multiple images)

R Total number of acquired images
r Acquired image numberr2f1; 2; : : : ; Rg
Tar Aperture time forrth image acquisition
t Continuous time variable
tr Time instant of the beginning of therth image acquisition
f(x1; x2; t) Time varying projection of optical system at image plane
f [m1; m2; r] rth image recorded by detector array. In general,

m12f1; 2; : : : ;M1rg ; m22f1; 2; : : : ;M2rg
fr Lexicographic ordering off [m1; m2; r] (column vector)
fri ith element of column vectorfr and,

ith pixel in the lexicographic ordering of imagefr[m1; m2; r]

F F =
�
fT1 fT2 fT3 � � � fTR

�T
Column vector containingR lexicographically ordered images
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In the presence of observation noise however, we are unable to acquiref but instead measure
y as tabulated below:

Recorded Imagery (Noisy Measured Datay )
Detector array coordinates

[m1; m2] Pixel location in detector array
Time invariant imagery (Single image)

Ta Aperture time (reciprocal of shutter speed) at image acquisition
y[m1; m2] Image recorded by detector array (typically discrete valued)

m12f1; 2; : : : ;M1g ; m22f1; 2; : : : ;M2g
y Lexicographic ordering ofy[m1; m2] (column vector)
yi ith element of column vectory and,

ith pixel in the lexicographic ordering of imageyr[m1; m2]
Time varying imagery (Multiple images)

R Number of recorded images
r Acquired image numberr2f1; 2; : : : ; Rg
t Continuous time variable
tr Time instant of the beginning of therth image acquisition
Tar Aperture time forrth image acquisition
y[m1; m2; tr] Image acquired by detector array at timet = tr

m12f1; 2; : : : ;M1rg ; m22f1; 2; : : : ;M2rg
ytr Lexicographic ordering ofy[m1; m2; tr] (column vector)
ytri ith element of column vectorytr
y[m1; m2; r] rth image recorded by detector array (same asy[m1; m2; tr])
yr Lexicographic ordering ofy[m1; m2; r] (column vector)
yri ith element of column vectoryr and,

ith pixel in the lexicographic ordering of imageyr[m1; m2; r]

Y Y =
�
yT1 yT2 yT3 � � � yTR

�T
Column vector containingR lexicographically ordered images
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Where noise is included the observation model, the following notation will be utilized.

Noise Model (n )
Detector array coordinates

[m1; m2] Pixel location in detector array
Time invariant imagery (Single image)

Ta Aperture time (reciprocal of shutter speed) at image acquisition
n[m1; m2] Noise component of measurement from pixel[m1; m2] in detector array

m12f1; 2; : : : ;M1g ; m22f1; 2; : : : ;M2g
n Lexicographic ordering ofn[m1; m2] (column vector)
ni ith element of column vectorn

Time varying imagery (Multiple images)
R Number of recorded images
r Acquired image numberr2f1; 2; : : : ; Rg
Tar Aperture time forrth image acquisition
t Continuous time variable
tr Time instant of the beginning of therth image acquisition
n[m1; m2; r] Noise component inrth image acquisition by detector array
nr Lexicographic ordering ofn[m1; m2; r] (column vector)
nri ith element of column vectornr
N N =

�
nT1 nT2 nT3 � � � nTR

�T
Stacked column vector containing noise component in thep image acquisitions
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The notation for the computed super-resolution image is described below:

Super-resolution Images (Reconstructed Imagesz)
Super-resolution image coordinates

[n1; n2] Pixel location in super-resolution image
Super-resolution still image (Single image)

z[n1; n2] SR still image
n12f1; 2; : : : ; N1g ; n22f1; 2; : : : ; N2g
TypicallyN1>M1r ; N2>M2r ; 1�r�R

z Lexicographic ordering of SR imagez[n1; n2]
zi ith element ofz and,

ith pixel in the lexicographically ordered SR imagez
ẑ(j) j th iterative approximation to solution for SR imagez

Spatial resolution enhanced video (frame rate same as LR sequence)
z[n1; n2; r] SR image coincident withrth LR frame
zr Lexicographic ordering of SR imagez[n1; n2; r]
zri ith element of column vectorzr

Spatio-temporal resolution enhanced video (frame rate may differ from LR video)
s Index of the reconstructed super-resolution image1�s�S
ts sth time instant of SR restoration.

ts 2 R; tj > ti for j > i
z[n1; n2; ts] SR image computed for timet = ts
zts Lexicographic ordering of SR imagez[n1; n2; ts]
ztsi ith element of column vectorzts
z[n1; n2; s] sth computed SR image (timet = ts)
zr Lexicographic ordering of SR imagez[n1; n2; s]
zri ith element of column vectorzs
Z Z =

�
zT1 zT2 zT3 � � � zTS

�T
Stacked column vector containingS super-resolution images
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Glossary

DFT Discrete Fourier Transform
FFT Fast Fourier Transform
GMRF Gaussian Markov Random Field
GGMRF Generalized Gaussian Markov Random Field
HMRF Huber Markov Random Field
HRVS High Resolution Video Still
LMMSE Linear Minimum Mean Square Error
LR Low Resolution
LSI Linear Shift Invariant
LSV Linear Shift Varying
MAP Maximum A-Posteriori
ML Maximum Likelihood
MMSE Minimum Mean Square Error
MRF Markov Random Field
MSE Mean Square Error
POCS Projection Onto Convex Sets
PSF Point Spread function
RLS Recursive Least Squares
RTLS Recursive Total Least Squares
SVPSF Space Variant Point Spread function
SR Super-resolution
TLS Total Least Squares
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1 Introduction

This report considers the problem of spatial resolution enhancement of low-resolution video se-
quences. It reviews existing techniques, discussing the relative merits and demerits of these ap-
proaches, and identifies promising directions for future research.

In the section that follows, we provide some background information which will provide a
overall perspective of existing and future techniques in spatial and temporal enhancement of video
sequences.

1.1 A Hierarchy of Spatio-Temporal Video Enhancement Research

Spatial resolution enhancement of low-resolution video sequences has emerged from earlier work;
first robust image interpolation for single frame resolution enhancement, followed by improved res-
olution still images from video. To complete the hierarchy, one may consider also the more general
problem of spatial and temporal resolution enhancement of a low-resolution video sequence. The
hierarchy of increasingly general techniques is illustrated in Figure 1 below.

STILL IMAGE
SPATIAL RESOLUTION ENHANCED

FROM
LOW-RESOLUTION VIDEO

STILL IMAGE
SPATIAL RESOLUTION ENHANCED

FROM
LOW-RESOLUTION IMAGE

SPATIAL RESOLUTION ENHANCED

LOW-RESOLUTION VIDEO

VIDEO SEQUENCE
FROM

LOW-RESOLUTION VIDEO

VIDEO SEQUENCE
FROM

TEMPORAL RESOLUTION ENHANCED

1

3

2

4
VIDEO SEQUENCE

SPATIO-TEMPORAL RESOLUTION ENHANCED

FROM
LOW RESOLUTION VIDEO

Figure 1: Hierarchy describing spatial and temporal resolution enhancement techniques.

The focus of this report is spatial resolution enhancement of low-resolution video which lies at
the third level in this hierarchy. Though work directly addressing this problem will be reviewed,
we shall concentrate considerable effort in reviewing work at level 2 (resolution enhanced stills
from low-resolution video) since this is the basis for much of the existing work on video resolution
enhancement. In fact, most existing techniques for spatial resolution enhancement are extensions
of those used for reconstructing still images from a video sequence, so we are justified in our
approach. Level 1 describes single image interpolation work from which techniques are sometimes
utilized in reconstruction of still images from video.
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In the material that follows, the term super-resolution (SR) may be considered synonymous
with spatial resolution enhancement.

1.2 Formal Problem Definition

The super-resolution video enhancement problem may be formally described as follows:

Let f(x1; x2; t); x1; x2; t 2 R denote the time-varying scene in the image plane coordinate
system. Given a sequence ofR low-resolution sampled imagesy[m1; m2; r] with m1 2
f1; 2; : : : ;M1rg ; m2 2 f1; 2; : : : ;M2rg and r 2 f1; 2; : : : ; Rg acquired by imaging of the
scenef(x1; x2; t) at timest1 < t2 < � � � < tr < � � � < tR, our objective is to formS esti-
matesf̂ [n1; n2; s]; 1 � s � S of f(x1; x2; �s) on the discrete,super-resolutionsampling grid
indexed by[n1; n2] with n1 2 f1; 2; : : : ; N1sg ; n2 2 f1; 2; : : : ; N2sg at the arbitrary time in-
stantst1� �1< �2< � � �<�s< � � �<�S � tR. Typically we chooseN1s >M1r ; N2s >M2r ; 8 r; s
and / orS>R. Super-resolution refers to the reconstruction of imagesf̂ [n1; n2; s] that are visually
superior to the original low resolution observations. This often impliesbandwidth extrapolation
beyond the passband of the imaging system.

Super-resolution reconstruction methods typically make use of a set of low-resolution frames
when computing each super-resolution frame. Is is the additional spatio-temporal information
available in thesequenceof low-resolution images enables reconstruction at resolutions higher
than that of the original data.

1.3 Super-Resolution Enhancement as an Ill-Posed Inverse Problem

One of the fundamental ideas we shall repeatedly encounter is the fact that super-resolution re-
construction is an ill-posed inverse problem [1]. The problem is typically that a multiplicity of
possible solutions exists given a set of observation images. The accepted approach to tackling
such problems is to constrain the solution space according toa-priori knowledge on the form of
the solution. This may include such constraints such as smoothness, positivity and so on. Inclusion
of such constraints is critical to achieving high quality super-resolution reconstructions, so much
emphasis will be placed on techniques which enable the inclusion ofa-priori knowledge.

1.4 Super-Resolution Video Reconstruction

Many of the papers we shall discuss in this report do not directly consider the problem of super-
resolutionvideorestoration, but instead concentrate on restoration of a single super-resolution still
image from a short, low resolution image sequence. All of these techniques may, however, be
applied to video restoration by using a shifting window of processed frames as illustrated in Figure
2. For a given super-resolution frame, a “sliding window” determines the set of low resolution
frames to be processed to produce the output. The window is moved forward to produce successive
super-resolution frames in the output sequence.
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Figure 2: Super-resolution video enhancement from a low resolution image sequence.

1.5 Applications

Applications for the techniques of high resolution reconstruction from sequences appear to be
growing rapidly. Super-resolution techniques have already been applied in the following areas:

� Satellite imaging

� Video Surveillance

� Video enhancement and restoration

� Video standards conversion

� Microscopy

� Digital Mosaicing

� Aperture displacement cameras [2, 3]

� Medical computed tomographic imaging

This list appears to be growing rapidly as super-resolution techniques become better known.

1.6 Overview of this Report

We will review the history and current state of the art by categorizing existing techniques into
several divisions. At the highest level, super-resolution techniques can be divided in tofrequency
domainor spatial domainalgorithms. Much of the earlier work concentrated on the frequency
domain formulation, but as more general degradation models were considered, later research has
tended to concentrate almost exclusively on spatial domain formulations.

We will discuss the frequency domain formulation of the SR problem in Section 2 which is
followed by spatial domain techniques in Section 3. Each of these sections include short conclud-
ing summaries. The report is concluded with a final summary and an identification of promising
directions for future work.
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2 Frequency Domain Methods

2.1 Introduction

In this section we discuss a major class of super-resolution methods which utilize a frequency
domain formulation of the super-resolution problem. The techniques discussed utilize the shifting
property of the Fourier transform to model global translational scene motion, and take advantage
of the sampling theory to enable effect restoration made possible by the availability of multiple
observation images.

It is interesting to note that the methods we discuss here include the earliest investigation of
the super-resolution problem, and although there are significant disadvantages in the frequency
domain formulation, work has continued in this area until relatively recently when spatial domain
techniques, with their increased flexibility, have become more prominent. This does not however
mean to say that frequency domain techniques be ignored. Indeed, under the assumption of global
translational motion, frequency domain methods are computationally highly attractive.

We begin our review of frequency domain methods with the seminal work of Tsai and Huang [4].

2.2 Reconstruction via Alias Removal

The earliest formulation, and proposed solution to the multi-frame super-resolution problem was
undertaken by Tsai and Huang [4] in 1984, motivated by the need for improved resolution images
from Landsat image data. Landsat acquires images of the same areas of the earth in the course
of its orbits, thus producing a sequence of similar, but not identical images. Observed images are
modeled as under-sampled versions of a unchanging scene undergoing global translational motion.
Impulse sampling is assumed, but the sampling rate fails to meet the Nyquist criterion [5]. Neither
the effects of blurring due to satellite motion during image acquisition nor observation noise are
considered.

The authors propose a frequency domain formulation based on the shift and aliasing proper-
ties [6] of the continuous and discrete Fourier transforms for the reconstruction of a band-limited
image from a set under-sampled, and therefore aliased, observation images. The shift and aliasing
properties are used to formulate a system of equations which relate the aliased discrete Fourier
transform (DFT) coefficients of the observed images to samples of the continuous Fourier trans-
form (CFT) of the unknown original scene. The system of equations is solved for the frequency
domain coefficients of the original scene, which is then recovered using the inverse DFT. Formula-
tion of the system of equations requires knowledge of the translational motion between frames to
sub-pixel accuracy. Solution of the equations requires that each observation contributeindependent
equations, which places restrictions on the inter-frame motion that contributes useful data.

With the continuous scene denoted byf(x1; x2), global translations off(x1; x2) yieldR shifted
images,fr(x1; x2)=f(x1+�x1r

; x2+�x2r
) wherer=1; 2; : : : ;R. The CFT of the scene is given

byF(u1; u2) and that of the translations byFr(u1; u2). The shifted images are impulse sampled to
yield observed imagesyr[m1; m2] = f(m1Tx1 +�x1r

; m2Tx2 +�x2r
) with m1=0; 1; : : : ;M1�1

andm2=0; 1; : : : ;M2�1. TheR corresponding 2D DFT's are denotedYr[k1; k2]. The CFT of the
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scene and the DFT's of the shifted and sampled images are related via aliasing [6],

Yr[k1; k2] =
1

Tx1Tx2

1X
p1=�1

1X
p2=�1

Fr

�
k1

M1Tx1
+ p1fs1 ;

k2
M2Tx2

+ p2fs2

�
(1)

wherefs1 =1=Tx1 andfs2 =1=Tx2 are the sampling rates in thex1 andx2 dimensions respectively.
We will also use the shifting property of the CFT,

Fr(u1; u2) = ej2�(�x1r
u1+�x2r

u2)F(u1; u2) (2)

If f(x1; x2) is band-limited, there existLi such thatF(u1; u2) ! 0 for juij � Lifsi ; i = 1; 2.
Assumingf(x1; x2) is band-limited, we may use the shifting property in (2) to rewrite the alias
relationship of (1) in matrix form as,

Y = �F (3)

Y is aR � 1 column vector with therth element being the DFT coefficientsYr[k1; k2] of the
observed imageyr[m1; m2]. � is a matrix which relates the DFT of the observation data to samples
of the unknown CFT off(x1; x2) contained in the4L1L2 � 1 vectorF.

Super-resolution reconstruction therefore is reduced to finding the DFT's of theR observed
images, determining�, solving the system of equations (3) forF and then using the inverse DFT
to obtain the reconstructed image. It is shown that� may be factored so as to reduce the computa-
tional cost in solving for the CFT coefficients inF.

Since the system matrix� requires knowledge of the translation parameters�x1 ;�x2, which
are not typically knowna-priori, these parameters must be estimated before reconstruction is pos-
sible. Super-resolution reconstruction is thus effected using a two step process: motion estimation
to determine the translation parameters, followed by restoration of the improved resolution image.

The authors address the problem of registration using a novel approach which appears not to
have gained significant recognition. Since the observed imagesyr[m1; m2] are under-sampled,
there is some question as to the accuracy of standard techniques for motion estimation which typ-
ically utilize two (though sometimes more) frames when computing motion estimates. It is well
recognized [7] that the accuracy of the motion estimates is arguablythe limiting factor in super-
resolution reconstruction performance, so any fruitful consideration of this problem promises sig-
nificant returns. A simultaneousmulti-frameimage registration algorithm is proposed which is
shown to deliver reliable registration parameters even under the conditions of severe undersam-
pling, provided a sufficiently large number of observation frames are available. This idea does not
appear to have been sufficiently explored in the super-resolution community and holds consider-
able promise as a means of improving current super-resolution methods. It should be pointed out
however that the idea addresses only the relatively simple problem of global translation estimation.

In summary, the Tsai-Huang frequency domain method, though computationally attractive, has
significant disadvantages. The assumption of ideal sampling is unrealistic. The possibility of an
optical system point spread function, or even that of spatially integrating sensors is not addressed.
Observation noise is not considered, which is a major shortcoming given that noise will have a
detrimental effect on the solution of (3). Blurring due to finite aperture time is also not considered.
The global translation model is, for many applications, inappropriate.
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It is important to recognize that the global translation model is intimately bound with the pro-
posed frequency domain approach. Indeed, global translation in the spatial domain is related, via
the Fourier shifting property, to phase shifts in the spatial-frequency domain. This fortuitous rela-
tionship enabled the formulation presented, however it is not difficult to see that global translation
is exceptional in that more general motion models will not lend themselves so cleanly to a fre-
quency domain formulation. It is worth noting thatspatially varying(non-global) motion models,
which are of great interest in super-resolution reconstruction of scenes containing independent
motion, could not be easily accommodated using the frequency domain formulation. This lack of
flexibility is a major disadvantage of all frequency domain approaches similar to [4].

Two of the limitations of the Tsai-Huang method are addressed by Tekalp, Ozkan and Sezan in
[8]. The authors propose a frequency domain approach which extends [4] by including the effects
of a LSI PSFh(x1; x2) as well as observation noise. Periodic sampling is still assumed, but is not
necessarily ideal, since the PSF of the sensor can be integrated into the system PSF. As in [4], a
translation only motion model is used, which enables the formulation of a Fourier domain system
model which relates the noisy, degraded and under-sampled observed images to the original 2-D
scene. By utilizingL2 observed images, eachL times undersampled in thex1 andx2 dimensions,
a system ofL2 equations inL2 unknowns is formulated for each sampled frequency domain point.
These equations are solved in the least squared sense due to the presence of observation noise.

The authors assume the spatial domain observation model,

yr[m1; m2]=
M1�1X
p1=0

M2�1X
p2=0

�
f(x1��x1r

; x2��x2r
) � �h(x1; x2)

�
�(x1�p1Tx1 ; x2�p2Tx2)+nr(p1Tx1 ; p2Tx2)

(4)

Similar to [4], the equivalent frequency domain equations are derived for (4), which relates the
Fourier coefficients of the undersampled observation images of the shifted and blurred original
high-resolution image. After least-squares solution to the frequency domain equations, the estimate
of the original image is reconstructed by inverse DFT of the sampled CFT data.

In addition to the extensions of [4], the authors propose a spatial domain projection onto convex
sets (POCS) reconstruction method as well as a spatial domain interpolation-restoration approach.
These are discussed in Sections 3.6.1 and 3.2 respectively.

In the text, “Digital Video Processing,” Tekalp [9] dedicates a chapter to the discussion of
select techniques in super-resolution reconstruction. Tekalp provides an introduction to the super-
resolution problem and discusses various observation models which are capable of including the
effects of scene motion and sensor and optical system point spread functions. The frequency
domain model of Tsai and Huang [4] , as well as the extensions proposed in [8] are presented in
a tutorial exposition. The POCS method proposed in [8] (see Section 3.6.1) is also reviewed and
examples are presented. No novel results are presented in this work.

Kaltenbacher and Hardie [10] utilize the frequency domain formulation proposed by Tsai and
Huang [4] for restoration of aliased, under-sampled low resolution frames, but propose an alterna-
tive method for estimating the inter-frame global translational parameters required for restoration.
Their approach is considerably cheaper computationally than that of [4].
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Recorded low resolution imagesy[m1; m2] are expanded in a first order Taylor series,

y[m1; m2] � y[m10 ; m20 ] + (m1 �m10)
@y[m10 ; m20 ]

@m1
+ (m2 �m20)

@y[m10 ; m20 ]

@m2
(5)

Given the assumption of global translational motion, the terms�m1
=(m1 �m10) and�m2

=(m2 �m20)
represent global translation between a pair of observed low resolution frames.�m1

and�m2
are

estimated by minimizing the square error,

� =
X
m1

X
m2

�
y[m1; m2]� y[m10 ; m20 ]��m1

@y[m10 ; m20 ]

@m1
��m2

@y[m10 ; m20 ]

@m2

�2
(6)

Minimizing � is achieved straightforwardly by differentiation with respect to�m1
and�m2

and
setting the result to zero, which, after manipulation yields the matrix equation,

M� = V (7)

with,

M =

2
4 P

m1

P
m2

�
@y[m10

;m20
]

@m1

�2 P
m1

P
m2

@y[m10
;m20

]

@m1

@y[m10
;m20

]

@m2P
m1

P
m2

@y[m10
;m20

]

@m1

@y[m10
;m20

]

@m2

P
m1

P
m2

�
@y[m10

;m20
]

@m2

�2
3
5

� =

�
�m1

�m2

�

V =

" P
m1

P
m2

(y[m1; m2]� y[m10 ; m20 ])
@y[m10

;m20
]

@m1P
m1

P
m2

(y[m1; m2]� y[m10 ; m20 ])
@y[m10

;m20
]

@m2

# (8)

The spatial derivative terms are estimated by first smoothing the observed images and then applying
Prewitt operators. The resulting equations are solved to yield sub-pixel estimates of the global
translation parameters�m1

and�m2
. Various performance tests demonstrating the efficacy of

the method are presented. The motion estimates are used as parameters in the Tsai-Huang super-
resolution reconstruction algorithm. The authors suggest the use of a least squares solution to
the linear system of equations relating the aliased low-resolution observation image spectra to
the unaliased, super-resolution spectrum, when the number of observed images results in more
equations than unknowns. This leads naturally to a Moore-Penrose pseudo-inverse solution.

In summary, this paper contributes a simple method for sub-pixel accuracyglobal translational
motion estimation, which is more attractive computationally than the algorithm proposed in [4].
Super-resolution reconstruction theory is not significantly furthered beyond [4].

2.3 Recursive Least Squares Techniques

We consider now an approach based on a least squares formulation for the solution of (3) which is
implemented in a recursive fashion to improve computational efficiency.

Kim, Bose and Valenzuela [11] utilize the frequency domain theoretical framework as well as the
global translation observation model proposed by Tsai and Huang [4], however extend the formu-
lation to consider observation noise as well as the effects of spatial blurring. An excellent review
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of the frequency domain reconstruction method of [4] precedes the authors' primary contribution
- a recursive least-squares, and a weighted recursive least squares solution method for solving the
linear system of equations (3) in the presence of observation noise. Sufficient conditions for non-
singularity of the system matrix� in (3) are also derived, in terms of the relative global translation
parameters of the undersampled scene observations.

The proposed recursive solution approach is computationally attractive, while the least squares
formulation provides the advantage of a measure of robustness in the case of an under- or over-
determined system (3).

Though the authors address limitations of [4], by including LSI blur (which removes the restric-
tion of impulse sampling), LSV blur, and observation noise, the restriction to a global translation
motion observation model remains. Issues concerning estimation of the motion parameters them-
selves are not discussed - the translation parameters are assumed to be knowna-priori. It is noted
that zeroes in the the blur spectral response will result in the problem become ill-posed due to
non-uniqueness of solution due to the loss of all information at the response zeroes. This point is
not addressed.

Kim and Su [12, 13] extend their earlier work [11] by addressing the issue of the ill-posedness
of the inverse problem resulting from the presence of zeroes in the blur PSF. The formulation
of the SR problem is still that of [4], but includes like [11], a LSI PSF in the frequency domain
observation model. Since the presence of the blur PSF in general results in an ill-posed inverse
problem [14], the authors propose replacing their earlier recursive least-squares solution for (3)
with a Tikhonov regularization Tikhonov77 method. The system of equations (3), which are re-
peated below for convenience.

Y = �F (9)

In the presence of observation noise this system will typically be inconsistent, and� will be ill-
conditioned due to zeroes in the blur PSF. A regularized solution may be found by findingF which
minimizes the expression,

k�F�Yk2 + 
(F) (10)

where
(�) is aregularization functional. In this work,
(�) = �kF � ck2, wherec is an approxi-
mation to the (as yet unknown) solution.

Algebraic manipulations yield the minimum of the expression in (10) as,

F̂ =
�
�T� + �I

��1 �
�TY + �c

�
(11)

Further manipulations show that it is possible to solve (11) using an iterative method and avoid the
necessity for the matrix inversion step. Since the solution is unknown,c is initially set to zero, and
thereafter set to the result of the previous iteration.

Though this paper addresses the ill-posedness of the SR inverse problem, there are several
criticisms which can be leveled at the the approach taken. Firstly, the stabilizing function (squared
error) is unrealistic for images, tending to result in overly smoothed solutions. Secondly the use
of an estimate of the unknown solutionc, leaves unanswered questions as to the stability of the
proposed recursive solution method.
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Su and Kim [15] address one of the fundamental limitations of the Tsai-Huang [4] formulation
- the inability to accommodate non-global motion models - yet still utilize the frequency domain
framework of [4]. The proposed method allows a degree of non-global translational motion by uti-
lizing the Tsai-Huang approach on overlapping,motion compensated sub-blocksof the observation
image sequence.

The procedure is as follows: Observation images are decomposed into overlapping blocks;
translational motion is estimated for these blocks in the observation sequence frames using [16];
Tsai-Huang reconstruction is performed for each block independently; interpolation is used to
correct for occlusions and exposures; the resulting blocks are assembled to produce the final image.

The extension of [4] to accommodate non-global motion is a significant extension to the fre-
quency domain theory, however it should be noted that the fundamental limitation to a translational
motion model have not been addressed. This is due to the fact that the reconstruction phase is still
the frequency domain approach which assumes translational model. There is significant question
as the choice of the block decomposition, as well as the performance of the algorithm in cases
where there is rapid motion, or multiple independent motion within blocks. Though effective in
the test cases the algorithm presented is ad-hoc in nature, especially with regards merging the
results of reconstruction of enhanced sub-blocks.

2.4 Recursive Total Least Squares Methods

A extensions of the recursive least squares work discussed in Section 2.3 is that of recursivetotal
least squares which is known to provide some degree of robustness to errors in the observation
model, which are likely, in the case of super-resolution reconstruction, to result from errors in
motion estimation. Total least squares theory is well developed, and the reader is referred to the
references [17, 18] for additional information. The work we discuss here does not, however, extend
the observation model beyond that of the previous section.

Bose, Kim and Valenzuela [19, 20] extend the ideas developed in [11, 12, 13] to include a degree
of robustness to errors in both the matrix� and the observation vectorY in (3). The technique
for achieving this is the method oftotal least squares(TLS), [17, 18], which is known to provide
favorable robustness to errors in both observations as well as the system matrix in matrix equations
of the formAx = b. The motivation for the use of the TLS approach is to provide a degree of
robustness to errors in� which result from errors in the translational motion estimates required
in the specification of�. Since it is well understood that motion estimates need be as accurate as
possible to SR reconstruction, the justification for the TLS approach is clear.

The observation model used is of the form,

Y = [� +E]F+N (12)

whereE is the error in� due to errors in motion estimates. The TLS problem may be formulated
as a minimization problem,

Minimize k [N
... E ] k

Subject to Y �N = [� +E]F
(13)
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The Frobenius norm is used. Arecursivetotal least squares (RTLS) algorithm based on [21] (see
also [22]) is used to solve (13) efficiently. Since the formulation of the reconstruction problem is
in the frequency domain, utilizing complex DFT coefficients, (13) is transformed to an equivalent
real-valued minimization. As with their earlier work [11], the proposed algorithm is well suited
to massively parallel implementation, since DFT values ofF may be computed in a decoupled
manner.

Though attention is directed to the problem of uncertainties in the global translation parameter
estimates, the proposed method does not address more fundamental issues such as the inherent
limitations of the underlying frequency domain approach which cannot incorporate general scene
or camera motion models. Though not explicitly demonstrated in the paper, the proposed method
can incorporate a LSI blur degradation of the observed images as was discussed in the earlier
papers [11, 12, 13]. Motion blur due to non-zero aperture time is not considered.

Bose, Kim and Zhou [23], and Kim [24] provide a theoretical analysis of the performance of
their RTLS reconstruction algorithm based on existing work in TLS theory. They show that under
certain assumptions, the TLS formulation reaches the Cram´er-Rao bound.

2.5 Multichannel Sampling Theorem Based Techniques

Ur and Gross propose a super-resolution reconstruction method based on the generalized sampling
theorem of Papoulis [25] and a variant thereof, the multichannel sampling theorem, by Brown [26].
Although the implementation of the reconstruction is achieved in the spatial domain, the technique
is fundamentally a frequency domain technique relying on the shift property of the Fourier trans-
form to model the translation of the source imagery.

Consider a functionf(x) which is band-limited to�� < ! < � and is passed throughR
”mutually independent” linear channels, the outputs of which are sampled at the rate2�=R (under-
sampled at1=R of the Nyquist rate) to produceR discrete signalsyr(mT ), T = R=2�, m 2 Z.
By the multichannel sampling theorem,f(x) may be reconstructed fromyr(mT ) by passing the
sub-sampled signals throughR linear filters, summing the outputs and performing band-limited
interpolation. Specifically,

f̂(x) =
RX
r=1

f̂r(x) =
RX
r=1

1X
m=�1

yr(mT ) � hr(x�mT ) (14)

wheref̂(x) is a sampled version off(x) meeting the Nyquist criterion and which may be interpo-
lated to recoverf(x) exactly. TheR filters with impulse responseyr(m) may be found according
to equations given in [25] and [26]. A frequency domain derivation is used to obtain the above
result. In particular, in the formulation by Brown [26] of the multichannel sampling theorem,
matrices containing samples from the frequency domain representation of theR sampled signals
are used to determine the set of filtershr(�) which are applied in the time domain to theR de-
graded and sub-sampled signals to yield a sampled version off(t). This is similar to the frequency
domain formulation of Tsai and Huang, in which systems of equations in the frequency domain
are be solved to yield the frequency domain representation off(t). The multichannel sampling
theorem yields a time domain method (multichannel linear filtering) which effects the equivalent
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reconstruction as is achieved in the Tsai-Huang method which operates by solving a linear system
of frequency domain equations.

Ur and Gross consider the linear degradation channels to include the effects of a blur PSF as
well as global translation which may be modeled as a delay. Observing that the operations of
blurring and translation are commutative and assuming a single blur common to all the channels, it
is show that the super-resolution problem may be separated into two distinct processes: ”merging”
the under-sampled signals into a single�-band-limited function, followed by deblurring of the
merged signal. Since the deblurring operation is independent of the merging process, it is possible
to derive a closed form solution for computing the merged signal from theR degraded and under-
sampled channel outputs. Any standard image restoration algorithm may then be applied to the
merged signal to correct for the blur degradation.

In terms of application, the Ur and Gross method assumes that the global translation parameters
are knowna-priori. No attention is directed to the motion estimation problem.

As mentioned above, the Ur-Gross approach is, in effect, a spatial domain analog of the the
Tsai-Huang frequency domain formulation, the only significant difference being the inclusion of a
single PSF common to all the observations. Observation noise and motion blur is not considered.
Since the Ur-Gross proposal is effectively a spatial domain implementation equivalent to the fre-
quency domain methods discussed in Section 2.2, it suffers from the same limitations in range of
feasible motion models. The authors are thus limited to global motion models only, and like Tsai
and Huang, considered only the simplest case of global translational motion.

2.6 Summary

Super-resolution reconstruction via the frequency domain approach discussed in the previous sec-
tions has significant advantages:

� Simplicity

The principles behind the frequency domain approaches discussed are readily understand-
able in terms of basic Fourier theory. Though additional complexity exists in the implemen-
tation, the fundamental principles are clear.

� Computational complexity

Many of the techniques discussed in this section are computationally attractive. In the Tsai-
Huang [4] formulation and its derivative forms, the system of frequency domain equations
are decoupled - that is a single frequency sample point of the super-resolution image may be
computed independently of any other. This fact makes this formulation highly amenable to
massively parallel implementation.

� Intuitive super-resolution mechanism

The techniques discussed are all based on the de-aliasing techniques of [4]. This formu-
lation makes explicit the underlying mechanism of resolution improvement - restoration of
frequency components beyond the Nyquist limit of the individual observation image sam-
ples. Later we shall encounter methods where the mechanism of super-resolution restoration
are not as abundantly obvious.
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There are, however, significant disadvantages which must be addressed if more general super-
resolution video restoration problems are to be tackled:

� Global translation motion model

It is important to note that all the frequency domain methods we have discussed utilize a
global translational motion model. Even [15], which describes a method with local motion
by a block decomposition of the low-resolution observation images, falls into this category
since only a global translation model for the decomposed blocks is possible. The global
translation model we observe is no coincidence. This is a fundamental limitation of the
frequency domain approach as we show in the next point.

� Inflexibility regarding motion models

The frequency domain methods discussed require the existence of a transformation which
is the Fourier domain equivalent of the spatial domain motion model. This requirement
imposes severe limitations on the range of feasible motion models due to the inability to
formulate Fourier domain transformations which are equivalent to spatially varying motion
models typically required in sophisticated SR applications.

� Degradation models

For reasons similar the previous point, it is also difficult to include spatially varying degra-
dation models in the frequency domain reconstruction formulation.

� Inclusion of spatial domaina-priori knowledge for regularization

Since super-resolution reconstruction is ill-posed, regularization is often required in order
to achieve acceptable quality solution imagery. Though certain of the methods we have
discussed include regularizing functionals, these are, as a result of the frequency domain
formulation, necessarily spatially invariant. Often the most usefula-priori knowledge used
to constrain the solution space to effect regularization is via spatial domain constraints, which
are highly convenient and intuitive. Frequency domain methods do not lend themselves well
to the inclusion of such constraints.

In the limited case of global translation motion, there is significant benefit in frequency domain
approaches to super-resolution restoration, however since we are interested in more general classes
of motion, as well as degradations, it is clear that the frequency domain approach is insufficient. In
the sections that follow, we shall review the literature of spatial domain super-resolution methods,
some of which completely address the disadvantages noted for frequency domain approaches.
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3 Spatial Domain Methods

3.1 Introduction

Having examined a number of frequency domain approaches to super-resolution reconstruction,
we turn our attention to the second major division in super-resolution literature - spatial domain
methods. The papers we discuss in this section formulate the super-resolution reconstruction in the
spatial domain. The major advantages provided by this approach include:

� General observation models, which may include:

– Arbitrary motion models (global or non-global)

– Motion blurring due to non-zero aperture time

– Optical system degradations (spatially varying or invariant)

– Effects of non-ideal sampling (spatially varying or invariant)

– Ability to model complex degradations (such as compression blocking artifacts)

� Powerful methods for inclusion ofa-priori constraints

– Spatial domain image models such as Markov Random Fields

– Set based constraints (POCS formulation)

– Nonlinear models capable of bandwidth extrapolation.

3.2 Interpolation of Non-Uniformly Spaced Samples

In this section we consider a simple approach to constructing super-resolution images from an
image sequence based on spatial domain interpolation. The low-resolution observation image
sequence are registered, resulting in a composite image composed of samples on a non-uniformly
spaced sampling grid. These non-uniformly spaced sample points are interpolated and resampled
on the high-resolution sampling grid. Though this approach may initially appear attractive, it is,
however, overly simplistic as it does not take into consideration the fact that samples of the low
resolution images do not result from ideal sampling but are, in fact, spatial averages. The result
is that the reconstructed image does not contain the full range of frequency content that can be
reconstructed given the available low-resolution observation data.

Keren, Peleg and Brada [27] describe a spatial domain approach to image registration using a
global translation and rotation model, as well as a two stage approach to super-resolution re-
construction. Here we discuss the motion estimation techniques and the first stage of the super-
resolution reconstruction method which is a simple interpolation technique. The second stage,
which falls into the category of the simulate and correct type methods will be discussed in Section
3.4.
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Consider the continuous image pairfa(x1; x2) andfb(x1; x2) related by global translation and
rotation as

fb(x1; x2) = fa(x1 cos � � x2 sin � +�x1; x2 cos � � x1 sin � +�x2) (15)

where�x1;�x2 ; � are the translation parameters in thex1 dimension, translation in thex2 dimen-
sion and rotation, respectively. By expanding the trigonometric functions in a second order Taylor
series and then expandingfa as a Taylor series about(x1; x2), an approximate error�(�x1 ;�x2; �),
betweenfb andfa may be determined as,

�(�x1 ;�x2 ; �) =
X�

f(x1; x2) +

�
�x1 � x2� � x1

�2

2

�
@f

@x1
+

�
�x2 + x1� � x2

�2

2

�
@f

@x2

�2
(16)

The summation is over overlapping portions offb andfa. The minimum of�(�x1 ;�x2 ; �) is found
by differentiation and equating to zero, yielding a set of three equations in the three unknowns.
This system is solved using an iterative method, utilizing a Gaussian pyramid to expedite process-
ing. The result is the registration parameters�x1 ;�x2; �. It is reported that the approach yields
parameters with sub-pixel accuracy provided� is small, due to the small angle approximation to
the trigonometric functions describing the image rotation.

GivenR observed frames the registration procedure described above is used to extract�x1,�x2

and� for each ofR � 1 images relative to a chosen reference image. The images are registered
and a high resolution reconstruction grid is imposed on the “stack” of observed images. Each
pixel in the high resolution image is chosen as a outlier trimmed mean of the value of the set of
observation image pixels the centers of which fall within the area of the high resolution pixel under
consideration. Post-processing of the interpolated image may be effected using a de-blurring filter,
under the assumption of a Gaussian blur.

The resulting image, which is a composite of theR observed low resolution images does not
significantly extend the frequency domain content of the reconstructed image beyond that of any
individual low-resolution image since the reconstruction is predominantly the result of linear com-
bination of the data which is known not to extend frequency content of the signal. Though the
paper does contribute early ideas concerning image registration, the image interpolation procedure
is overly simplistic in its approach to the super-resolution problem. No attempt is made to de-alias
the observation data - a feature of all frequency domain methods in Section 2 and though perhaps
not as explicitly, by many of the spatial domain methods we shall discuss. In effect, a only a
fraction of the availableinformationis utilized in the reconstruction. The proposed method does
not provide a systematic framework for achieving super-resolution reconstruction. There is little
indication as to the nature of the image improvement and no analysis of the method is proffered.

Another interpolation based approach is proposed in an early paper of Aizawa, Komatsu and
Saito [28]. They examine the problem of acquiring high-resolution imagery from stereo cameras.
Though ostensibly distinct from the problem of super-resolution reconstruction from an image se-
quence, it is in fact an analog in that an image pair captured using a single camera with relative
camera/scene motion produces, like a stereo pair, similar, but not identical views of the scene.
Of course the range of possible motion is more general in the case of temporally distinct images,
however under the observation model assumptions used here, this is not a significant complication.
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By considering the spatial frequency response of a regularly spaced two dimensional array of
sampling apertures (CCD pixels) the authors show that there is a limit (Nyquist's theorem) to the
extent of frequency components which may be reconstructed from the sampled image. By consid-
ering the possibility of sampling at spatial positionsbetweenthe array pixels, it is demonstrated
that the effective frequency response of the combined (double image) system is increased.

In practice this is implemented by utilizing two (and in their later papers, more) cameras which
are positioned so as to provide images which are shifted by sub-pixel distances relative to the first
(reference) image. The image from the second camera is registered relative to the reference image
sampling lattice to sub-pixel accuracy using gradient based or block matching techniques. Due
to effects such as perspective projection, differing camera alignment, etc., the samples from the
second camera do not fall regularly between the reference sampling grid, but are non-uniformly
spaced. The result is a set of regular samples (from the reference image) amongst which are
interspersed samples from the second image. In order to reconstruct a high resolution frame, the
authors are thus faced with the problem of interpolation and resampling to obtain the desired high
resolution image. This is effected using a method for reconstruction from non-uniformly spaced
samples [29]. We demonstrate the idea in the one dimensional case. Consider the functionf(x)
sampled at timesxm which are non-uniformly spaced. If a one-to-one mapping
(�) exists such
thatmT = 
(xm) and iff(
�1(x)) is band-limited to!0 = �=T thenf(x) may be reconstructed
as:

f(x) =
1X

m=�1

f(xm)
sin[!0(
(x)�mT )]

!0(
(x)�mT )
(17)

This is immediately recognized as band-limited sinc interpolation with a nonlinear mapping used
to correct for the non-uniform spacing of the samples. The case for two dimensions entails minor
additional complications regarding the choice of
(�; �), but the principle remains the same.

In later papers by the authors, the ideas discussed here are extended to the case of multiple
cameras (closer to our multiple image reconstruction problem), and an iterative simulate and cor-
rect approach based on an approach proposed by Landweber [30] is used to estimate the uniformly
spaced samples of the super-resolution reconstruction. We shall discuss these papers later in this
section.

Tekalp, Ozkan and Sezan [8] propose, amongst other techniques discussed in Sections 2.2 and
3.6.1, a two step procedure where the upsampling of the low resolution images and the restoration
to correct for a sensor PSF are performed sequentially. The low resolution frames are registered
and combined to form a non-uniformly sampled high resolution image which is then interpolated
and resampled on a uniform grid to produce the reconstructed high resolution frame. They suggest
the use of the thin-plate spline method of Franke [31], the iterative method of Sauer and Allebach
[32] or the POCS based method of Yeh and Stark [33] to effect the interpolation and resampling.

Since the interpolated image still suffers from sensor blur, as well as errors resulting from
interpolation process itself, a restoration step is applied. The authors suggest the use of any of the
commonly known deconvolution methods that take into account the presence of noise.

Aizawa, Komatsu, Saito and Igarashi extend [28] by introducing an iterative super-resolution re-
construction procedure based on their merging and interpolation work. In [34, 35, 36], the prob-
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lem of acquiring high-resolution imagery from two or more cameras is considered and is extended
[37, 38] to include cameras which differ in the dimensions of the CCD array sampling apertures.
The objective is the acquisition of images beyond the physical resolution limitations of the indi-
vidual sensor arrays. As discussed earlier, this problem is related to that of super-resolution image
reconstruction problem from a single camera image sequence.

As in [28], theR low resolution observation images are merged, using motion compensation,
to form a non-uniformly sampled high resolution image~z. Desired, however, is the uniformly
sampled imagez. Various interpolation based techniques are considered, [29, 39, 40, 41], however
a method based on the Landweber algorithm [30] is used to iteratively estimate the uniformly
sampled high resolution image from the non-uniformly sampled image produced by the registration
process. The desired, uniformly sampled imagez and the merged image~z are related by,

~z = Az (18)

whereA represents the non-uniform sampling process. Inversion of (18) is infeasible due to the
dimensionality, and likely singularity ofA. Instead, an iterative procedure which corrects for the
non-uniform sampling process is used.

An initial guessz(0) of the high resolution image (with uniformly spaced samples) is made, and
is then iteratively updated by the recurrence formula,

z(j+1) = z(j) + � �A� �
�
~z�A � z(j)

�
(19)

whereA is the non-uniform sampling process,A� is the adjoint operator ofA, � is a control
parameter, and~z is the non-uniformly spaced, merged image. The parameter� is chosen so as to
ensure that (19) is convergent.

In Section 3.4 we will encounter an identical Landweber type iteration, however it is important
to note that the operation represented byA then models theimaging processitself, not the mapping
between a pair of super-resolution images as is the case here.

The authors later propose a single camera temporal integration imaging procedure which uti-
lizes deformable, quadrilateral based, motion estimation [42, 43]. This work is, in effect, an image
region registration and interpolation procedure with limited ability for super-resolution.

The techniques we have discussed in this section have the advantage of simplicity but do not
address several important issues. The observation models used are generally unrealistic as they
do not properly account for the effects of optical blurring, motion blurring or noise. Though [8]
did consider an observation PSF, there is much question as to the optimality of separated merging
and restoration phases of super-resolution reconstruction. None of the methods discussed include
a-priori information in an attempt to resolve the non-uniqueness of solution typical in the super-
resolution problem.
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3.3 Algebraic Filtered Backprojection

An early algebraic tomographic filtered backprojection approach to super-resolution reconstruction
is that of Frieden and Aumann, [44]. The authors do not consider the problem of super-resolution
image reconstruction from an image sequence, but the related problem of super-resolution image
reconstruction from multiple 1-D scans of a stationary scene by a linear imaging array. Noting
that the PSF in the 1-D scan system represents a line integral and that of the multiple image super-
resolution problem represents an area integral, it is clear that the problems differ only in the form
of the imaging system PSF. In [44], the linear imaging array detectors are assumed to be larger than
the limiting resolution of the optical system. The imaging geometry provides overlapping scans of
a given scene area, enabling reconstruction at a resolution higher than the limiting spatial sampling
rate of the sensor array.

The imaging process is described by the discrete model,

y = Hz (20)

wherey is a vector of the observed data from the successive image scans,H is the system matrix
which describes the imaging geometry, andz is a vector containing the unknown image to be
estimated. Observation noise and/or a lack of data, as well as the considerable size of the matrix
H preclude direct inversion to estimatez. Instead the authors propose that an estimate be formed
using thebackprojectionof the observation data as follow:

ẑ = HTy (21)

It is important to note that the backprojection matrixHT is not equivalent to the inverseH�1,
indeed we have, using (20),

ẑ = HTHz (22)

If and only if HTH = I will the backprojection be equivalent to the inverse. In the given appli-
cation, the matrixHTH is Toeplitz, and thus associated with a well defined point spread function,
allowing fast Fourier domain inverse filtering to restore the backprojected observation data. This
is indeed the technique known asfiltered backprojectionin the tomography literature, though in
the given application, the point spread function differs from that typically found in the case of
computed tomographic reconstruction.

It is instructive to notice that the application of an inverse filter forHTH yields an estimate,

ẑ =
�
HTH

��1
HTy (23)

which is immediately recognized as the minimum mean square error (MMSE) estimate forz.
Frieden and Aumann make no allowances for the presence of observation noise. This has

serious consequences since inverse filtering is well known to be highly noise sensitive due to
the increasing amplitude response of the inverse filter with increasing frequency. The proposed
reconstruction method does not fall into the class of regularized methods and as such cannot be
expected to yield acceptable performance in the presence of noise or missing data. Despite these
serious drawbacks, this paper has the distinction of being an early attempt to apply tomographic
image reconstruction techniques to the super-resolution reconstruction problem.
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3.4 Simulate and Correct Methods

We now consider a large class of super-resolution reconstruction methods which have in com-
mon a simulate and correct approach to reconstruction. Given an estimate of the super-resolution
reconstruction and a model of the imaging process, the imaging process is simulated using the
super-resolution estimate as the input to produce a set of simulated low resolution observation im-
ages. These images are compared with the actual observations, an error is computed and used to
correct the estimate of the super-resolution image. This simulate/correct process is iterated until
some stopping condition is met - typically the minimization of some error criterion between the
simulated and observed images.

For a given observation model there is considerable freedom in the choice of the mechanism
for back-propagating the error to determine the correction term for the super-resolution estimate,
as well as the error function to be minimized. In this section we will examine several approaches.
Despite these differences, it is possible to cast the reconstruction procedure into a single theo-
retical framework, with the differences in approaches evident in the choice of the projection and
backprojection operators as well as the error functional to be minimized.

Consider the observation model relating theR low resolution observation images described
by the stacked vectorY of lexicographically ordered pixels of each image, to the (unknown) dis-
cretized sceneF via the operatorH which typically performs motion compensation and subsam-
pling;

Y = Hf (24)

Given an estimatêz of the super-resolution reconstruction of the scenef , it is possible tosimulate
the low resolution observation images by applying (24) to the super-resolution estimateẑ as,

Ŷ = Hẑ (25)

Iterative, simulate and correct procedures discussed here update the estimate of the super-resolution
reconstruction bybackprojectingthe error between the simulated low resolution imagesŶ(j) and
the observed low resolution imagesY via the backprojection operatorHBP which models the
apportioning of “blame” for errors in the projection, to pixels in the super-resolution estimateẑ(j).
TypicallyHBP is designed toapproximatethe inverse of the operatorH.

ẑ(j+1) = ẑ(j) +HBP
�
Y � Ŷ(j)

�
= ẑ(j) +HBP

�
Y �Hẑ(j)

� (26)

It is interesting to note that the simulate/correct approach bears close similarity to many well
known problems. In computed tomographic reconstruction, the operatorH is typically a projection
matrix which describes the interaction of the x-ray with the object to be reconstructed, andHBP

is a back-projection operator. In the solution of integral equations, (26) is seen to be of the form
of the Landweber iteration [30]. The choice of the projection and backprojection operators in (26)
varies widely in the papers we discuss.

Peleg, Keren and Schweitzer [45] and Keren, Peleg and Brada [27] present the initial ideas
which would, in their later papers, be developed into the tomographic backprojection type algo-
rithms for super-resolution reconstruction. In [45], super-resolution reconstruction from a set of
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globally translated images of an unchanging 2-D scene is considered, while in [27], a more general
global translation and rotation model is used. The method for estimating the motion parameters
for this model was discussed in Section 3.2. In [45, 27], the effects of a spatially invariant PSF is
included.

An iterative procedure for finding a super-resolution reconstruction is proposed. Given an es-
timate of the super-resolution image, a simulated imaging process yields a set of low resolution
images which are compared with the observed low resolution images. The super-resolution esti-
mate is then modified so as to reduce the error between the observed and simulated images. The
process is terminated when the error has reached some predetermined level, or after a given number
of iterations.

TheR observed images are denotedyr[m1; m2] with r=1; 2; : : : ; R. A super-resolution im-
age, coincident with one of theR observed images, is to be reconstructed from the low-resolution
sequence. Thej th estimate of the super-resolution image is given byẑ(j)[n1; n2]. Assuming the
imaging process which resulted in the observed images is known, it is possible to simulated the
imaging process with the estimateẑ(j)[n1; n2] as an approximation to the original scene, yielding
R low resolution simulated imageŝy(j)r [m1; m2]. The error between thej th iteration simulated
images and the original observed images is defined as,

�j =
RX
r=1

X
m1;m2

��ŷ(j)r [m1; m2]� yr[m1; m2]
�� (27)

Since it is desired that the simulated images be identical to the observed images, the error�j must
be minimized. Peleget. al.propose the following modification of the current estimateẑ(j)[n1; n2].
For some pixel[n1; n2] if ẑ(j)[n1; n2] = l, then consider modificationŝz(j)[n1; n2] = l � 1 and
ẑ(j)[n1; n2]= l+1. Compute for these three pixel valuesfl�1; l; l+1g the corresponding simulated
low resolution images and the corresponding errors. Choose the pixel value for which the error in
(27) is a minimum. Repeat the process for each pixel in the image over several iterations.

Notice that since this very simple optimization attempts to monotonically decrease the error
on a pixel by pixel basis it is highly likely to converge to only a local minimum. This problem
is addressed by utilizing a simulated annealing [46] approach for optimization. Though it has
been shown in [47] that simulated annealing is provably convergent to the global minimum given a
suitableannealing schedule, the required schedule is too slow to be of practical utility. Selecting an
appropriate annealing schedule to deliver useful performance in acceptable time may be difficult,
and since the process is run for a finite time, there remains a finite probability of attaining a local
minimum even with this algorithm. Convergence of the proposed optimization is thus slow.

The issue of the uniqueness of the solution is not addressed. There are likely to be many images
which, under the imaging process, yield a set of simulated images which match the observation
data. The proposed framework provides no manner in which to favor certain solutions over oth-
ers. Furthermore, the particular solution image reached in the space of possible solutions will be
dependent on the initial estimate for the super-resolution image, as well as the order in which pix-
els are updated in a given super-resolution image estimate. The effects of noise are inadequately
considered.

The simulated imaging process is equivalent to a projection operation in the computed tomog-
raphy framework. Back-projection of the error is not, however obvious. The modification of the
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solution estimate typically makes more sophisticated use of the error information available. In this
case, the error is simply a scalar and no attempt is made to utilize the per-pixel errors. Modification
of the estimate is nonetheless made on an error minimizing basis.

Irani and Peleg [48, 49] extend the earlier work [45, 27] by improving the means of backpro-
jecting the error between the simulated low resolution images and the observed data. They modify
the error functional (27) to the form,

�j =

vuut RX
r=1

X
m1;m2

�
yr[m1; m2]� ŷ(j)r [m1; m2]

�2
(28)

They use consider a simulated imaging process which includes a point spread function to model
degradation in the imaging system. The primary modification to [45, 27] is the use of a back-
projection kernel in the update of the estimateẑ(j)[n1; n2]. The update procedure is intuitively
understood as follows: The value of each high-resolution pixelẑ(j)[n1; n2] is updated according to
all low resolution pixels which are dependent on its value (via the simulated imaging process). The
contribution of a low resolution pixel̂y(j)r [m1; m2] is the erroryr[m1; m2]� ŷ

(j)
r [m1; m2] multiplied

by a factor which measures the relative contribution of the the high resolution pixelẑ(j)[n1; n2] to
the low resolution pixelyr[m1; m2]. The result is that errors in low resolution pixels which are
strongly influenced by a particular high resolution pixel contribute more strongly to to corrective
term applied to the estimatêz(j)[n1; n2]. The correction may be written in the form,

ẑ(j+1)[n1; n2] = ẑ(j)[n1; n2] +
RX
r=1

X
�

�
ŷr[m1; m2]� ŷ(j)r [m1; m2]

�
hBP [n1 �m1; n2 �m2]

(29)

where� is the set of low resolution pixels[m1; m2] in thejth low resolution image dependent on the
high resolution pixel̂z(j)[n1; n2]. hBP [�; �] is abackprojection kernelwhich scales the correction to
the high resolution estimate depending on the influence of a given high resolution pixel on the low
resolution pixel for which the error is computed. The authors observe thathBP may be chosen so
as to influence the solution to which the iteration converges; thus the backprojection kernel may
be used to incorporate additional constraints on the solution such as smoothness. It is important
to note, however, that these constraints are all linear in form. We shall encounter non-linear con-
straints in later papers. A theorem providing a sufficient condition onhBP for convergence in the
special case of de-blurring, is proved.

Irani and Peleg extend their earlier work [48, 49] in [50] where they propose a very general
procedure for super-resolution reconstruction of scenes which contain arbitrary independent mo-
tion. The primary contribution of [50] is not in the super-resolution reconstruction algorithm per
sé, which is unchanged from [48, 49], but in the incorporation of a multiple motions tracking al-
gorithm which allows super-resolution reconstruction for partially occluded objects, transparent
objects or some object of interest.

The details of the motion detection and estimation algorithms are discussed in in detail in
[51], but due to the relevance of the proposed techniques, we shall summarize the principles. The
proposed approach uses an iterative procedure to identify and track multiple, independent motions
occurring in the scene. A single motion is first computed and an object corresponding to this
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motion is identified and tracked. This is called the “dominant” motion, and object, respectively.
Once the dominant object is identified and tracked it is excluded from the region of analysis, and
the process is repeated to identify other objects and their motions. The procedure is terminated
when no further objects are identified. Object motion may be modeled using any 2-D parametric
motion model. The procedure is also extended to include a “temporal integration” approach which
builds an internal representation for each moving object over the course of several frames.

Shah and Zakhor [52, 53] utilize a Landweber [30] reconstruction method similar to that of
Irani and Peleg. Their primary contribution, however, is not in the area of reconstruction tech-
niques, but is a novel approach to resolving problems caused by unreliable motion estimates in the
super-resolution restoration. A per-pixel block-based motion estimation method in which asetof
possible motion vectors are stored for each pixel in each low resolution frame is suggested.

The authors illustrate how standard block matching techniques may select incorrectmotion
estimates even though they maximize some correlation measure. Indeed motion estimation is an
ill-posed problem. Often multiple candidate motions are equally “optimal” with respect to the
block correlation measure. Since the effectiveness of the super-resolution reconstruction scheme
is critically dependent on the accuracy of the estimated motion vectors [7], erroneous motion es-
timates are highly undesirable, resulting in degraded performance in the form of objectionable
motion artifacts. The situation can arise where the true motion is rejected in favor of an incorrect
estimate which has a higher block correlation measure. By maintaining asetof “near optimal”
matches, recourse to other feasible motion estimates is possible if the initial motion estimate for a
particular pixel is found to be inconsistent with those for surrounding pixels.

The simulate and correct type methods we have discussed provide a useful strategy for solving
the super-resolution problem by providing a mechanism for constraining the super-resolution re-
construction to conform to the observation data. A complication concerns the uniqueness of the
simulate/correct type solution given the fact that the super-resolution problem is ill-posed. Many
solutions that satisfy the constraints given by the observed low resolution frames exist. Though the
algorithms discussed here are convergent, they are therefore not necessarily convergent to a unique
solution. Indeed the solution found may be a function of the initial estimate for the Landweber
iteration, or may be dependent on the order of pixel updates. This is usually undesirable.

A powerful method for resolving this non-uniqueness of solution is the use ofa-priori knowl-
edge which constrains the solution space. This is not easily achieved within the simulate/correct
framework. Though Irani and Peleg citeIrani90,Irani91 suggest that choice of the backprojection
kernel may impose smoothness constraints, their approach is neither flexible or general.

We therefore turn our attention to probabilistic methods (Section 3.5) and the POCS formula-
tion (Section 3.6.1) wherea-priori constraints may be directly included. It is interesting to note
that though the Bayesian and POCS methods do not employ the Landweber type iteration which we
encountered here, they do ensure that the super-resolution reconstruction is constrained to match
the observed data. In this sense these methods are equivalent to those discussed in this section.
They differ though in that the reconstruction needalsomatch thea-priori constraints.
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3.5 Probabilistic Methods

In this section we discuss one of the major research tracks in super-resolution reconstruction. Since
super-resolution is an ill-posed inverse problem, techniques which are capable of includinga-
priori constraints are well suited to this application. In recent years, Bayesian methods, which
inherently includea-priori constraints in the form of prior probability density functions, have
enjoyed increasing popularity and are now central to the solution of ill-posed inverse problems in
a wide range of applications. The Bayesian approach is synonymous withMaximum A-Posteriori
estimation which is the starting point for our discussion of probabilistic techniques. We shall also
briefly address other methods.

3.5.1 MAP Reconstruction Methods

Given the general observation model,

Y = Hf +N (30)

TheMaximum A-Posteriori(MAP) approach to estimatingf seeks the estimatêfMAP for which the
a-posterioriprobability,Pr ff jYg is a maximum. Formally, we seek̂fMAP as,

f̂MAP = argmax
f

[Pr ff jYg] (31)

Applying Bayes' rule yields,

f̂MAP = argmax
f

�
Pr fYjfgPr ffg

Pr fYg

�
(32)

and since the maximum̂fMAP is independent ofY we have,

f̂MAP = argmax
f

[Pr fYjfgPr ffg] (33)

Since the logarithm is a monotonic increasing function, this is equivalent to finding,

f̂MAP = argmax
f

[logPr fYjfg+ logPr ffg] (34)

wherelog Pr fYjfg is thelog-likelihood functionandlog Pr ffg is the log of thea-priori densityof
f . SinceY = Hf+N, it is easy to see that the likelihood function is determined by the probability
density of the noisefN(�) as,

Pr fYjfg = fN (Y �Hf) (35)

Typically since the noise is assumed to be Gaussian, then the use of the natural logarithm in the
above derivation removes the exponential term from the densityfN(�). Additionally, it is common
to utilize a Markov Random Field prior which has a Gibbs probability density of the form,

Pr ffg =
1

Z
exp

�
�
1

�
U(f)

�
(36)
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whereZ is a normalizing constant,� is the so called “temperature” parameter andU(f) is the
“energy” of f . The use of the logarithm in the formulation for the MAP solution thus greatly
simplifies manipulations in these cases.

If the noise is assumed to be Gaussian and the prior is chosen to to be a convex function of
f , then it is easily seen [54] that the optimization of (31) is convex, so that the solutionf̂MAP is
assured to exist and is unique. This is a very significant advantage of the MAP formulation.

We begin our discussion of MAP reconstruction methods with Schultz and Stevenson. The rela-
tively detailed development will provide a clear theoretical framework which in essence describes
many of the existing MAP reconstruction methods, allowing other work to be mentioned in terms
of differences from this work.

Schultz and Stevenson extend their earlier work [55, 56] on Bayesian (MAP) image interpo-
lation for improved definition using a Huber Markov Random Field (HMRF) to the problem of
super-resolution image reconstruction in [54, 57, 58, 7]. They propose a motion compensated sub-
sampling matrix based observation model which accounts for both scene and camera motion which
occurs between images acquisitions. Blurring due to motion during a non-zero aperture time is not
considered in the their early work. Here we summarize the observation model, which remains
essentially unchanged in their later papers.

Assume thatp (odd) low-resolution frames,y[m1; m2; k]with k 2 fc�p�1
2
; : : : ; c; : : : ; c+p�1

2
g

andm1 2 f1; 2; : : : ;M1g ; m2 2 f1; 2; : : : ;M2g are observed. The objective is to reconstruct a
super-resolution imagef [n1; n2; c] with n1 2f1; 2; : : : ; qM1g ; n2 2f1; 2; : : : ; qM2g andq 2 N ,
coincident withy[m1; m2; c], the center frame in the observed image sequence. A subsampling
model, which models the spatial integration of sensors in the detector array, is proposed for thecth

observed frame:

y[m1; m2; c] =

qm1X
n1=qm1�q+1

qm2X
n2=qm2�q+1

f [n1; n2; c] (37)

This relationship for thecth (center) frame may be more succinctly written using lexicographic
ordering of the LR and SR images as,

yc = Hcfc (38)

whereHc 2 R
M1M2�q

2M1M2 is the subsampling matrix relating the SR imagefc with the observed
frameyc. The remaining observed imagesyk are related tofc via motion-compensatedsubsam-
pling matrices which compensate for the effects of motion occuring between frames as,

yk = Hkfc + uk; for k 2 fc�
p� 1

2
; : : : ; c� 1; c+ 1; : : : ; c+

p� 1

2
g (39)

Hk 2 R
M1M2�q

2M1M2 is the motion-compensated subsampling matrix which relates thekth LR
observation to the SR imagefc which is temporally coincident with the center frame in the LR
sequence. The vectoruk contains pixels which are unobservable fromfc, but present infk. The
elements ofuk are not known sincefc is unknown. Notice that rows ofHk which contain useful
information are those for which elements ofyk are observedentirely from motion compensated
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elements offc. To improve robustness, rows for which this is not true are removed, yielding a
reduced set of equations,

y0k = H0

kfc (40)

In practiceH0
k is unknown and must be estimated from the observed LR framesyk andyc. This

results in,

y0k = Ĥ0

kfc + nk (41)

wherenk contain the errors resulting from the use of the estimateĤ0
k. The elements ofnk are

assumed to be independent identically distributed Gaussian random variables.
With p observed frames we have the system of equations:

y0
c�(p�12 )

= Ĥ0

c�(p�12 )
fc + n

c�(p�12 )
...

...
...

...
y0c�1 = Ĥ0

c�1 fc + nc�1
yc = Hc fc + 0

y0c+1 = Ĥ0
c+1 fc + nc+1

...
...

...
...

y0
c+(p�12 )

= Ĥ0

c+(p�12 )
fc + n

c+(p�12 )

(42)

Which may be written as a stacked set of equations,

Y = Hfc +N (43)

The SR imagefc is estimated using the MAP criterion as,

f̂c = argmax
fc

[logPr ffcjfykgg] (44)

which after applying Bayes' rule may be written,

f̂c = argmax
fc

[logPr ffcg+ logPr ffykgjfcg] (45)

Schultz and Stevenson use the Huber Markov random field (HMRF) for the prior termlog Pr ffcg,
which is a discontinuity preserving image model, which allows edge reconstruction while imposing
smoothness constraints on reconstruction. It is assumed that motion estimation errors between
frames are independent thus, the likelihood term may be written in the formPr ffykgjfcg =Q

k Pr fykjfcg. Taking into account thatHc is known exactly, findinĝfc requires the solution of
theconstrainedoptimization,

Find f̂c = argmaxfc2F [log Pr ffcg+ logPr ffyk; k 6= cgjfcg]

Subject to F = ff : Hcf = ycg
(46)
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This constrained optimization is solved using a gradient projection technique, the details of which
may be found in [7].

The observation model assumes local translation motion which is computed using block match-
ing for motion estimation. A hierarchical block motion estimation techniques is used for both
computation efficiency as well as to ensure consistency in the motion estimates.

Schultz and Stevenson have also successfully applied their super-resolution reconstruction
technique to the problem of scan conversion - where interlaced scan images are combined to pro-
duce motion compensated, de-intelaced, super-resolution images [59].

Schultz, Stevenson and Meng, noting the importance of accurate motion information for super-
resolution reconstruction have examined techniques for sub-pixel motion estimation.

In [60, 61] the MAP super-resolution reconstruction procedure of [7] is reviewed, and various
motion estimation methods are studied. In particular, the block motion estimation procedure of [7],
an eight parameter projective model proposed based on [62], as well as the Horn Schunck [63] opti-
cal flow method are discussed and utilized in various super-resolution reconstruction experiments.
Methods for detecting and eliminating inaccurate motion vector estimates are also presented. The
result is improved super-resolution reconstructions since objectionable artifacts resulting from in-
correct motion vectors are minimized.

Noting that motion estimation is itself and ill-posed problem, Schultz and Stevenson [64] pro-
pose the use of a regularized motion estimation procedure which favors smoothness of the motion
fields while still allowing discontinuities. This is achieved using a Bayesian motion estimation
techniques and Huber-Markov random fielda-priori smoothness constraints with Horn Schunck
optical flow estimation. Super-resolution image reconstructions from an image sequence with mo-
tion estimated using the Bayesian motion estimator are compared with those computed using the
block motion estimation technique of [7] and is found to produce visually superior results.

It is interesting to note that in [60, 64, 61] motion estimates are computed from only image
pairs. It is reasonable to anticipate improved reliability in the motion estimates computed using
multiple images. Also of note is the fact that the motion estimation techniques are not object
based. No attempt is made, as was the case with [50] to construct internal representations for
multiple independent motions within the scene. These points should be addressed.

Hardie, Barnard and Armstrong [65] present a MAP super-resolution reconstruction proce-
dure which is essentially identical in form to that of Schultz and Stevenson [7]. They consider
the cases of global as well as non-global motion estimation. For the former, they use the transla-
tion and rotation model of [49] and for the latter, they draw on optical flow techniques [66] with
foreground/background segmentation. The super-resolution formulation is equivalent to that of
Schultz and Stevenson under the assumption of Gaussian noise and a Gauss-Markov random field
prior model. This work is extended in [67] to consider the problem of simultaneous estimation of
both the super-resolution imagef̂ and the motion parametersŝ. A MAP formulation similar to that
of [65] is used, but included in the optimization are the unknown motion parameters as,

f̂ ; ŝ = argmax
f ;s

[Pr ff ; sjYg] (47)

Since estimation of̂f requires the motion estimatesŝ, a procedure is suggested in whichf̂ and
ŝ are estimated alternately, that is,ŝ is fixed, and̂f estimated, and then̂f fixed andŝ estimated.
Though this procedure can be slow to converge, it does have significant advantages. Motion is no
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longer estimated from the low resolution images directly as is the case in most super-resolution
algorithms, instead, the motion parameters are chosen as those which minimize the error between
simulated low resolution observation images (as computed using the observation model and the
current super-resolution image estimate), and the observed low resolution frames. The priors used
for the super-resolution image and the motion are Gaussian. The optimization in (47) is achieved
using iterated coordinate descent. The authors observe that it is not possible to use the faster
conjugate gradient method, since the cost functional is non-constant from iteration to iteration due
to the joint estimation of both the motion parameters and the super-resolution reconstruction.

A more detailed exposition of a observation model, which includes global rotation, translation
and a sensor and optical system PSF may be found in [68] where image registration is performed
using the method of Irani and Peleg [49] and Lucas and Kanade [69]. In this paper, which estimates
motion in a separate step from the super-resolution reconstruction phase, gradient descent and
conjugate gradient descent methods are used to maximize the posterior probability. The details of
these methods are presented.

Lorette, Shekarforoush and Zerubia [70] also present a MAP formulation of the super-resolution
reconstruction problem. Elsewhere [71] they consider the problem of 3-D super-resolution recon-
struction, but [70] study three non-linear penalty functions for their Markov-random field prior
model which allow edge reconstruction while ensuring smoothness. It should be noted that Huber
MRF of Schultz and Stevenson performs exactly this function.

Cheeseman, Kanefsky, Kraft and Stutz [72, 73, 74] have been applying MAP super-resolution
reconstruction to Viking, Voyager and more recently Mars Pathfinder imagery. Their formulation
assumes Gaussian noise and utilized a prior terms which leads to a linear system of equations
which are solved using Gauss-Jacobi methods.

Hunt, Sementilli, Mariappan, Marcellin, Nadar, Yuen and Sheppard have pursued work on a
Poisson MAP super-resolution formulation and have provided a theoretical analysis of the per-
formance of this super-resolution technique in [75, 76, 77, 78, 79, 80]. This work concentrates
on restoration of astronomical images and as such make fundamental assumptions concerning
bounded support of the reconstructed objects which are not valid in the more general problem
super-resolution video restoration. Furthermore, the assumption of Poisson photon statistics in
the observation are not relevant since imagery captured for video super-resolution do not, in gen-
eral, have low photon counts. A substantial portion of this work concentrates on super-resolution
restoration techniques which are well known within the astronomical community but are of ques-
tionable applicability to our problem. This body of research is noted here primarily for complete-
ness, as well as a source for theoretical ideas.

3.5.2 Maximum Likelihood and Expectation Maximization based Algorithms

Tom and Katsaggelos [81, 82] examine the super-resolution reconstruction problem as composed
of three separate steps - registration of the low resolution images, restoration of these images fol-
lowed by an interpolation step which yields the super-resolution reconstruction. In [81], a simul-
taneous registration and restoration approach is proposed in an effort to improve super-resolution
reconstruction. The work is based on ideas on multichannel image identification and restoration in
developed in [83]. In [84] these ideas are extended to perform combined registration, restoration
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and interpolation.
These papers are essentially based on a maximum likelihood (ML) formulation of the registra-

tion, restoration and interpolation phases of super-resolution reconstruction. A fundamental prob-
lem with this approach is the fact that ML estimation is poorly suited to the solution of ill-posed
inverse problems due high noise sensitivity when the reconstruction problem is under-specified.
Throughout this section, the importance of regularized solutions usinga-priori constraints has
been emphasized as a necessary condition for yielding high-quality reconstructions. These papers
do not sufficiently address this issue despite the useful ideas contributed in terms of simultaneous
restoration and registration.

Elad and Feuer [85, 86] have also considered (along with other techniques discussed later)
a ML estimation formulation, but the same criticisms apply to this work. In fact they modify
the ML estimate to include a regularization functional in [85], which in effect is equivalent to a
MAP formulation with a Gaussian prior or the Tikhonov-Arsenin [87] type regularization. It is
also suggested the the simulate and correct methods yield the ML estimate of the super-resolution
reconstruction.

3.5.3 Summary

The probabilistic reconstruction techniques we have considered here; the MAP formulation uti-
lizing Markov random field prior models in particular; have become one of the most popular ap-
proaches for super-resolution reconstruction. There are several reasons for this:

� The MAP framework allows direct incorporation ofa-priori constraints on the solution -
essential for finding high quality solutions to the ill-posed super-resolution inverse problem.

� Markov random field priors have become almost standard as they provide a highly conve-
nient, intuitive and realistic method for modeling typical image characteristics using only a
local neighbor interaction model. With judicious choice of the form of the penalization of
the activity measure in the MRF model, priors may be defined which provide the smoothness
constraints necessary to ensure acceptable reconstruction under conditions of limited or poor
data, but also allow effective reconstruction of edges.

� Optimization using the MAP framework and convex cost functionals in MRF priors leads to a
globally convex optimization problem, ensuring not only the existence and uniqueness of the
solution, but also enabling the use of well understood and efficient descent type algorithms.

� Simultaneous motion estimation and restoration is possible within the MAP framework.

The MAP formulation is thus one of the most promising and flexible approaches to super-
resolution image reconstruction. It's only competitor in terms of convenience and flexibility are
the POCS based methods which we discuss next.
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3.6 Set Theoretic Methods

3.6.1 Projection Onto Convex Sets

One of the prominent approaches to super-resolution reconstruction is based on the method of
projection onto convex sets. In this formulation, constraint sets are defined which limit the feasi-
ble solution space of the super-resolution reconstruction. Constraints are defined as convex sets
in the vector spaceRN1�N2 which represents the space containing all possible super-resolution
reconstructions. Sets that represent desirable characteristics of the solution are defined, such as
positivity, bounded energy, fidelity to data, smoothness and so on. The solution space of the super-
resolution reconstruction problem is thus the intersection of the convex constraint sets. Projection
onto convex sets (POCS) refers to an iterative procedure which, given any point in the vector space,
locates a point which satisfies all the convex constraint sets.

Givenk convex constraint sets inRN1�N2 such that the intersection of the sets is non-empty,
POCS projects a point in the vector space onto each constraint set, repeating until a point is reached
which is in the intersection of thek sets. It can be shown that provided the constraint sets are convex
that this iteration converges. A detailed theoretical discussion of the POCS method may be found
in [88]. Discussions on the use of POCS techniques in image restoration are presented in [89, 90].

POCS has attracted much attention in recent years in a multitude of image reconstruction and
restoration applications. Three reasons for this stand out:

� Simplicity

POCS is very intuitive and generally simple to implement. The only potential source of
difficulty is the determination of the projection operators.

� Flexible Spatial Domain Observation Model

Because the POCS method is typically formulate in the spatial domain, very general motion
and observation models may be used. The complexity of the motion and observation model
has little impact of the POCS solution procedure.

� Powerful inclusion ofa priori information

Perhaps the most useful aspect of the POCS formulation is the ease with whicha-priori
information may be included. It is generally simple to define convex constraint sets which
incorporate desired solution characteristics. These sets may impose restrictions such as pos-
itivity or bounded energy which are difficult to represent in terms of cost functionals.

We begin our examination of POCS based techniques with a detailed exposition of an ear-
lier paper which demonstrates many of the fundamental ideas. This will enable a more concise
explanation of later work.

Stark and Oskoui [91] propose an early POCS based solution to super-resolution image recon-
struction problems. In particular, the paper addresses the scanning linear array problem origi-
nally discussed by Frieden and Aumann (see Section 3.3) as well as the problem of restoring a
super-resolution image from multiple plane array images. We begin our discussion of the POCS
reconstruction technique with a brief outline of the proposed imaging model. We develop the
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mathematics for the case of a time invariant image. It will be clear how the method is extended to
the case of time varying imagery with multiple image acquisitions.

The optical system projects an imagef(x; y) onto the image sensor array which is assumed to
be a regular array ofM1 by M2 sensor elements. The outputyi of the ith detector in the sensor
array with spatial response characteristic�i(x; y) is given by,

yi =

Z Z
1

�1

f(x; y)�i(x; y) ; 1� i�M1M2 (48)

This integration over the continuous spatial variables(x; y) may be discretized on the super-
resolution reconstruction grid[n1; n2] yielding,

yi =
X
n1

X
n2

f [n1; n2]�i[n1; n2] ; 1�n1�N1 ; 1�n2�N2 (49)

WhereN1 >M1 ; N2 >M2 are the dimensions of the super-resolution reconstruction array. The
ith detector spatial response characteristic�i(x; y) is discretized to yield�i[n1; n2] which is the
fractional area of the super-resolution pixel[n1; n2] contained within the response region of theith

low-resolution detector. This assumes a uniform, unity response of the detector over its response
region. In particular,

�i[n1; n2] =

8<
:

0 if SR pixel [n1; n2] is completely outside ofith detector response region
1 if SR pixel [n1; n2] is completely withinith detector response region
ri (0 < ri < 1) if SR pixel [n1; n2] is partially within ith detector response region

(50)

Lexicographic ordering off [n1; n2] and�i[n1; n2] yields column vectorsf and�Ti allowing us to
instead write,

yi =
X
j

fj�ij ; 1�j�N1N2 (51)

Or more succinctly,

yi = �
T
i f (52)

Now consider the setsCi as,

Ci =
�
f : �T

i f = yi
	

; 1� i�M1M2 (53)

The setCi in (53) is the set of all discretized super-resolution images for which the response of
the ith sensor in the detector array isyi, the observed value. The setCi is defined for each pixel
observationi ; 1 � i �M1M2, and thus there are a total ofM1M2 such sets for a single image
observation. These sets place a constraint on the possible values which may be assumed by the
solutionf – in particular (53) ensures that anyf 2 Ci ; 1� i�M1M2 is constrained to be consistent
with the measured datumyi. Noticing that the constraints onf are linear, it is in principle possible
to obtain a sufficient number of equations, so that a solution forf may be found by matrix inversion.
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For reconstruction of a super-resolution image withN1N2 pixels by matrix inversion,N1N2 in-
dependentobservation equations are required. Notice immediately that sinceN1>M1 ; N2>M2,
data from more than one image acquisition is required to obtain a sufficient number of equations to
enable solution by matrix inversion. Indeed the requirement to obtainN1N2 independentequations
implies that novel information must be present data obtained in the acquisition of the additional
images. This novel information is present in small differences in the acquired images usually
resulting from scene or camera motion. In practice however, direct matrix is infeasible.

In reality, additional image observations contribute further sets of the form of (53). These ad-
ditional constraints augment the under-determined system of equations derived for a single image
so that the system approaches the fully-determined case.

The collection of setsCi are often called data consistency constraints and in this case can be
shown to be closed and convex. This allows the definition of a projection operatorPi as follows:

Pif =

(
f if �T

i f = yi

f +
yi��

T
i f

�
T
i
�i
�i otherwise

(54)

Pif is the projection of the pointf onto the setCi. In the POCS formulation, an initial guessf (0)

for the super-resolution image is projected onto each the constraint setsCi to ensure consistency
with each measured datumyi and whereK is the number of pixel measurements.

f (n+1) = P1P2P3 � � �PKf
(n) (55)

This set of projections is applied repeatedly to yield an updated estimate of the super-resolution
image. Closedness and convexity of the constraint sets ensure convergence of the iteration to some
point satisfying all the constraint sets [88]. It is imperative to note however, that this point is in
general non-unique, but is a point on the surface of the convex polytope defined by the intersection
of the constraint sets. The solution is in general dependent on the initial guess.

It is interesting to note that application of the POCS method using only the data consistency
constraints in (53) is identical to the Algebraic Reconstruction Technique found in the computed
tomography literature [92].

In addition to the data consistence constraints, additional constraints which representa-priori
knowledge of the form of the solution may be included. In particular the range of values in the
solution image may be constrained to the setCA,

CA = ff : ��fi�� ; � < �g (56)

Another possibility is to ensure that the solution be contained in a set of solutions with bounded
energy as:

CE = ff : kfk�Eg (57)

Or if the solution is known to be similar to some reference imagefR then the solution may be
constrained to the sets,

CR = ff : kf � fRk��Rg (58)
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Bounded support of the solution may also be imposed by defining a set of pointsA for which the
solution is required to be zero, such as

CS = ff : fi = 0 for i 2 Ag (59)

Additional constraints on the solution may be defined in a similar manner. The iteration in (55)
is augmented to include the additional constraint sets. The inclusion of prior knowledge in this
fashion constrains the solution space thus enabling robust performance in the presence of noise,
inconsistent data or missing data.

This paper is significant as it is the first application of the POCS method to the problem of
super-resolution reconstruction problem. There are, however, several drawbacks to the approach
taken in the paper, many of which are addressed in later work. For now, we note that the proposed
observation model does not incorporate noise. The observation model for thekth single observed
image is of the form,

yk = Hkf

Hk =
h
�
T
1k
�
T
2k

� � � �T
M1k

M2k

iT (60)

which may be written in the case ofp image observations as,

Y = Hf

Y =
�
yT1 yT2 � � � yTk � � � yTp

�T
H =

�
HT

1 HT
2 � � � HT

k � � � HT
p

�T (61)

Tekalp, Ozkan and Sezan [8] propose three different super-resolution reconstruction approaches.
Here we will concentrate on the POCS based approach which extends the earlier work by Stark
and Oskoui [91]. The other proposed approaches, which are a frequency domain formulation and
a interpolation/restoration method are discussed in Section 2.2 and 3.2 respectively. The primary
contribution of this paper is an observation model which includes noise. In particular, the authors
propose a single image observation model of the form,

y = Hf + n (62)

where the system matrixH includes the effects the sensor PSF. Only global translational motion is
modeled. In order to account for the observation noise, the data consistency constraint for theith

pixel observation (as proposed by Stark and Oskoui in (53)) is modified to the form,

Ci = ff : jrij < �0g (63)

whereri is theith element of the residual,

r = y �Hf (64)

Noticing that

y �Hf = n (65)
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It is clear that the residualr is nothing more than the observation noisen and so�0 represent a
confidence in the observation and may be set according to the noise statistics. The authors pro-
ceed to define the required projection operator for the set defined in (63) and show the results of
experiments where a super-resolution image is reconstructed from several globally translated, un-
dersampled frames. Though this paper has addressed the problem of observation noise, the motion
model used assumes only global translation between image acquisitions and does not consider the
effects of motion blur. This is not, however, a result of any inherent limitation with the POCS
based as we see in [93].

Patti, Sezan and Tekalp address the shortcomings of [8] in [93]. This paper utilizes the same
general observation modely = Hf+n and a POCS formulation for the solution of these equations.
The primary development in this paper is the motion model included in the system matrixH which
departs significantly from previous work. Most significantly, the matrixH incorporates a space-
varying PSF (SVPSF) which models the degradations caused by sampling with a low-resolution
sensor, as well as the effects of relative motion between the sensor and the scene (which includes
blurring due to a non-zero aperture time). The SVPSF results from three modeling stages; first the
blur caused by the relative motion between the scene and the sensor during the aperture time; next
the effects of the physical dimensions and response characteristics of the low resolution sensors;
and finally the effects of sampling by the sensor array. The combined model defines the system
matrixH.

The motion model proposed, which appears to be inspired by Sawchuk [94] allows for the in-
clusion of a very general class of scene motion. In particular, the authors show how it is in theory
possible to include general scene motion, provided occlusions are not present. A theoretical deriva-
tion illustrate how the SVPSF may be found for this general case. This model is illustrated using
the example of temporally piecewise constant motion velocities, with the case of global transla-
tional motion fully developed and used in experiments. Reconstruction of the super-resolution
image is effected using a POCS framework which follows their earlier work [8].

In summary, this paper provides a POCS based framework for super-resolution reconstruction
which accounts for aliasing, sensor blur, motion blur and additive noise. It is interesting to note that
spatial blurring due to motion occurring during the aperture time had not been addressed prior to
this work. Additionally this work relaxed the constraint that blur and noise affecting each acquired
image be LSI.

In addition to their work addressing the super-resolution reconstruction problem, Patti, Sezan and
Tekalp have also published in the related but not identical problem of standards conversion, [95],
in which the objective is robust spatial and temporal resampling of a video signal in one spatio-
temporal sampling lattice to some other lattice. This work extends [8, 93] to include an arbitrary
input spatio-temporal sampling lattice. The form of the discrete observation model is unchanged
from the SVPSF model proposed in [93]. A POCS formulation identical to that found in [93] is
utilized for reconstruction. In [96] reconstruction of super-resolution stills from interlaced video
sequences is addressed. This paper contains several extensions in terms of motion detection and
analysis, utilizing both a global affine dominant motion model, estimated using gradient based
techniques as well as segmented local motion regions.

Full details of the work of Patti, Sezan and Tekalp may be found in [97] which consolidates
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and elaborates on the earlier papers [8, 93, 95]. The observation model incorporates a spatially
varying point spread function which takes into account, camera and scene motion, motion blurring
resulting from non-zero aperture time, the physical dimensions of LR sensor elements and blurring
caused by imaging optics. Sensor noise is considered. A new development is the inclusion of
sampling of the continuous scene on an arbitrary space-time lattices. A detailed derivation of the
motion modeling is provided as well as the techniques used for motion estimation. Reconstruction
is via the POCS method discussed previously. The results of several experiments are presented,
demonstrating the capabilities of the proposed method.

It is interesting to note that the simulate and correct methods discussed in Section 3.4 are a
special case of the POCS procedure where the data consistency constraint (53) requires equality
rather that allowing an error tolerance.

The extension of observation models to include arbitrary local motion compounds the problem of
reconstruction artifacts caused by unreliable motion estimates. Estimating local motion is gener-
ally less reliable than the case for global motion estimates. This is due simply to a lack of data.
Global motion may often be reliably estimated since a large number of image pixels (usually every
pixel in the image) are utilized in the computation. In the case of local motion, however, an esti-
mate must be computed using a small neighborhood of pixels and is therefore less reliable. Since it
is necessary to obtain sub-pixel accurate motion estimates for super-resolution reconstruction, it is
imperative that motion estimates used be accurate. When the reliability of the motion estimates is
questionable, it is important that they do not adversely affect the accuracy of the super-resolution
reconstruction. In [98], Eren, Sezan and Tekalp extend [97] to consider means of improving the
robustness of the super-resolution reconstruction methods to errors in motion estimates. To do this,
two new concepts are introduced, avalidity mapand asegmentation map. The validity map dis-
ables projections based on observations with inaccurate motion estimates, while the segmentation
map enables object-based tracking and processing where more accurate object-based motion mod-
els may be used to improve the quality of the reconstruction. The segmentation map also allows
reconstruction of specific objects in manner similar to [50].

3.6.2 Bounding Ellipsoid Method

A variant of the POCS based formulation using an ellipsoid to bound the constraint sets has been
investigated by Tom and Katsaggelos [99, 100] and briefly mentioned by Elad and Feuer [85, 86].
Given a set of ellipsoidal constraint sets, a bounding ellipsoid is computed [101]. The centroid of
this ellipsoid is taken as the super-resolution estimate. Since direct computation of this point is
infeasible, an iterative procedure is used. It is interesting to note that this approach takes a form
closely related to regularized methods. The observation model used in this work is similar to that
proposed by Schultz and Stevenson [7].
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3.6.3 Summary

We comment here primarily on the POCS based methods. At the outset of the discussion concern-
ing POCS methods, we noted the following advantages to the POCS formulation:

� Simplicity

� Flexible Spatial Domain Observation Model

� Powerful inclusion ofa priori information

Our discussion clearly demonstrated these points. POCS is not, however, without disadvantages:

� Non-Uniqueness of Solution

The solution space for the POCS method is defined as the intersection of the convex con-
straint sets. Unless the intersection is a point set, the solution is thereforenon-unique. This is
a serious drawback of the POCS based formulation. In the MAP formulation, convex priors
were favored in order to ensure the existence and uniqueness of the solution. In POCS, this
is typically impossible.

� Dependence of Solution on Initial Guess

Worse yet is the fact that the solution determined using the POCS framework is dependent on
the (arbitrary) initial estimate, as well as the order of application of the projections. POCS
repeatedly projects the current estimate of the super-resolution image onto the constraint
sets. The solution is the first point in the vector space of possible solutions which satisfies
all the constraint sets. When not using relaxed projections, the solution lies on the surface of
the volume of intersection of the constraint sets.

� Computation Cost

POCS based methods require considerable computation and a large number of iterations to
achieve convergence. An analysis of POCS methods shows that without the use of relaxed
projections or similar modifications, POCS can be very slow to converge as the solution is
approached. For this reason POCS is commonly not run to convergence but to a point where
the estimate is visually acceptable.

It may be noted that the bounding ellipsoid method does have a unique solution within the
intersection of the convex constraint sets. The problem is that this solution is completely arbitrary.
There is little reason why the centroid should be favored amongst possible solutions within the
set intersection. In contrast, in the MAP formulation, the solution is unique and maximizes that
a-posterioridensity.
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3.7 Hybrid ML/MAP/POCS Methods

Some work has been undertaken on combined ML/MAP/POCS based approaches to super-resolution
reconstruction. In particular the desirable characteristics of MAP estimation and those of the very
flexible POCS method could be combined in a hybrid optimization.

Elad and Feuer [85, 86], after reviewing several existing super-resolution techniques, propose a
hybrid ML/POCS based method which uses the statistical ML formulation to pose super-resolution
as a statistical estimation problem, while utilizing projections based constraints to effect regular-
ization.

It is interesting to note, however, that this approach is evident in the earlier work of Schultz
and Stevenson [7] where a constrained MAP super-resolution reconstruction algorithm, in which
an alternating projections based constraint and maximization of thea-posterioridensity iteration
is used. Schultz and Stevenson did not, however, explicitly identify this approach as novel.

The idea is to minimize the a-posteriori density or likelihood function (in the MAP and ML
estimation frameworks respectively) while ensuring that the solution remains within constraint sets
specified to reduce the feasible solution space. In [7] the constraint set ensured that downsampling
of the super-resolution image exactly matched the reference frame of the low resolution image
sequence.

The hybrid ML/MAP/POCS optimization approach is highly promising as it combines the
most favorable characteristics of statistical methods (optimal estimation theoretic solution, math-
ematical rigor and direct inclusion ofa-priori constraints) and POCS based approaches (powerful
mechanism for inclusion of linear and nonlinear, set theoretica-priori constraints).

The observation model used by Elad and Feuer is closely based on that of Schultz and Steven-
son [7].
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3.8 Optimal and Adaptive Filtering Methods

Several researchers have proposed inverse filtering approaches to super-resolution reconstruction.
Here we briefly review efforts in this area. These techniques are considered primarily for com-
pleteness, as several are sub-optimal in terms of inclusion ofa-priori constraints.

Jacquemod, Odet and Goute [102] proposed a simple deconvolution restoration approach that
assumes sub-pixel translational motion. A deconvolution filter suitable for restoration of merged
observation images is determined. This approach is poorly suited to the incorporation of more
general observation models and is limited in terms of inclusion ofa-priori constraints.

Erdem, Sezan and Ozkan [103] have proposed a LMMSE filtering approach, the motion com-
pensated multiframe Wiener filter, for restoration of image sequences degraded by LSI spatial blur
and additive noise. A global translation model is assumed, but motion blurring is not incorporated.
Though the motion and degradation models are limited, and non-lineara-priori constraints are dif-
ficult to incorporate in their formulation, this paper is noteworthy in thatsimultaneousmultiframe
restoration is undertaken. There are several reasons why this approach is attractive, as we shall
discuss in Section 5. A similar framework is discussed by Srinivas and Srinath [104].

Techniques based on adaptive filtering, especially the Kalman filter, have also seen applica-
tion in super-resolution reconstruction. Patti and Sezan [105] and Elad and Feuer [106, 107] are
examples. In [105] a motion compensated model Kalman filter capable of super-resolution re-
construction under spatially varying blurs is proposed. Though their Kalman filtering formulation
is computationally efficient, it is, in effect, still a linear minimum mean square error estimator.
Nonlinear image modeling constraints which provide bandwidth extrapolation cannot be easily in-
corporated into this framework. Similar comments apply to the work of Elad and Feuer [106, 107]
which is reduced to a LMMSE estimate of the super-resolution image. Kim [24] dedicates a chap-
ter of his doctoral dissertation to a similar Kalman filtering based approach to super-resolution
reconstruction.

3.9 Tikhonov-Arsenin Regularized Methods

Due the the ill-posedness of the super-resolution problem, Hong, Kang and Katsaggelos [108, 109]
have proposed the use of Tikhonov-Arsenin [87] regularization for super-resolution reconstruc-
tion. This is a deterministic regularization approach utilizing regularization functionals to impose
smoothness constraints on the space of feasible solutions. The regularization functional used is, in
effect, equivalent to a Gaussian Markov random field (GMRF) prior in the Bayesian (MAP) frame-
work. GMRF priors are well known to produce overly smoothed reconstructions [110]. Indeed the
poor performance of the GMRF prior is the reason why priors such as the Huber MRF and Gen-
eralized Gaussian MRF, which impose smoothness while still enabling edge reconstruction, were
introduced. This work is thus a limited, special case of the more general Bayesian framework such
as that of Schultz and Stevenson [7]. The observation model used in these papers is similar to the
motion compensated subsampling matrix of [7].
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3.10 Summary of Spatial Domain Methods

Super-resolution reconstruction via the spatial domain approach addresses many of the shortcom-
ings of frequency domain approaches:

� Motion models

Spatial domain methods, using the linear observation model of the formY = Hf are capa-
ble of including an almost unlimited range of motion models. Since the matrixH models
observation image pixels as a linear combination ofanycombination of pixels in the super-
resolution imagef , there is enormous flexibility in the formulation of the motion model.
There is no limit, as was the case with frequency domain approaches to super-resolution re-
construction to global models. It is just as simple to include a local motion model as a global
model using the spatial domain formulation.

� Degradation models

The system matrixH also allows almost trivially simple inclusion of linear degradations such
as motion blurring resulting from a non-zero aperture time (modeled as spatial integration
over the motion trajectory), spatially varying or invariant blurs, missing pixels and so on. It
is extremely cumbersome, if not impossible to include such degradations using the frequency
domain super-resolution reconstruction framework.

� Inclusion of spatial domaina-priori knowledge for regularization

As we have discussed at length, inclusion ofa-priori information is necessary for the solu-
tion of ill-posed inverse problems such as super-resolution reconstruction. Markov random
fields as well as the spatial domain POCS formulation provide almost trivially simple, yet
very powerful methods to incorporatea-priori constraints into the reconstruction process.
Working with spatial domain constraints is highly intuitive and direct. Furthermore, the
ability with MRF models to provide smoothness along with edge preservation (impossible
in the frequency domain) is highly desirable.

� Powerful mechanism for Bandwidth Extrapolation

The combination of data from multiple images, as well as the use of realistica-priori con-
straints on the reconstructed image endow spatial domain methods with a powerful mech-
anism for image bandwidth extrapolation. MRF models which utilize non-linear penalty
functions are especially useful as they are capable of introducing novel frequency informa-
tion. It is even possible for spatial domain methods to extrapolate frequency information
beyond the diffraction limitations of the optical system.

� Theoretical Framework

Probabilistic methods, especially the MAP estimation method, provide a solid mathematical
framework within which further theoretical developments can be made. Theory applying to
optimality of estimators is directly applicable, as well as bounds on errors and so on. This is
a rich framework which is not available in the frequency domain approach.
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Spatial domain methods do however come at some cost:

� Simplicity

Unlike the frequency domain approach where reconstruction was a relatively simple process,
the optimizations involved in spatial domain methods are more complex than their frequency
domain counterparts.

� Computational complexity

The increased flexibility of spatial domain methods tend to come at the cost of much in-
creased computational requirements. This is especially true of methods which utilize non-
convex priors for which one must resort to slow simulated annealing or graduated non-
convexity approaches.

� Intuitive super-resolution mechanism

In the frequency domain formulation, the mechanism for super-resolution reconstruction was
abundantly clear - dealiasing of shifted, undersampled frames. For spatial domain techniques
the mechanism for resolution enhancement is not as obvious.

It should be clear from this discussion that for super-resolution reconstruction of scenes in-
volving anything more than global translational motion, that spatial domain techniques are the
preferred approach.

We have discussed the advantages and disadvantages common to spatial domain techniques in
general, but have not yet directed our attention to a closer scrutiny as to which of the techniques
hold the most promise for the future. We shall do this in Section 4.
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4 Summary and Comparison of Techniques

We begin by presenting a tabular form comparison of the two main classes of super-resolution
reconstruction approaches - frequency and spatial domain. The table is divided into two sections.
The upper portion deals with the formulation of the observation, motion and degradation models,
while the lower portion makes generalizations concerning the solution approaches. It is important
to realize that these are generalizations, and as a result, exceptions exist within the wide range
of techniques we have discussed. We choose the most optimistic approaches within both the fre-
quency and the spatial domain methods.

Frequency Domain Spatial Domain
Observation model Frequency domain Spatial domain
Motion models Global translation Almost unlimited
Degradation model Limited LSI or LSV
Noise model Limited Very flexible, even spatially varying

SR Mechanism Dealiasing Dealiasing & BW extrapolation using
a-priori constraints

Simplicity Very simple Generally complex
Computational Cost Low High
A-priori constraints Limited Almost unlimited
Regularization Limited Excellent
Extensibility Poor Excellent
Performance Good for specific applicationsGood

From the table it is evident that apart from the computational and technical complexity of
spatial domain methods, these methods are superior to the frequency domain super-resolution for-
mulation. Within the class of spatial domain super-resolution reconstruction methods, two major
techniques stand out as most promising; the Bayesian (MAP) approach and the set theoretic POCS
methods. These are compared in the table below:

Bayesian (MAP) POCS
Theoretical Framework Rich Limited
A-priori constraints Prior PDF (typically convex) Convex Sets

Easy to incorporate Easy to incorporate
No “hard” constraints Very powerful yet simple

SR solution Unique Non-unique
MAP estimate Volume of intersection of sets

Optimization Iterative, standard methods Iterative
Good convergence Often slow convergence

Computational Cost High High
Complications Optimization difficult Projection operators can

for non-convex priors be difficult to define
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In terms of motion estimation, several important observations may be drawn from the papers re-
viewed:

� Sub-pixel motion

Sub-pixel relative motion between observation frames contributes novel information which
provides constraints for the solution of the inverse problem.

� Accuracy of motion estimates

It is essential that motion estimates be accurate to sub-pixel dimensions. This is obvious in
light of the previous point.

� Density of motion estimates

Motion estimates need not necessarily be dense in order to effect super-resolution recon-
struction. It is more important that motion estimates be accurate than dense. Intuitively,
motion estimates computed in near constant valued regions are unlikely to be accurate, but
are also of limited utility to the super-resolution algorithm since little resolution enhance-
ment is possible in such regions. The most fruitful motion estimates may be found where
they can be most reliably estimated - in regions of high spatial variance.

� Regularized motion estimation

Motion estimation is itself an ill-posed problem. Given realizations from an image sequence,
the motion estimates are unlikely to be unique. Regularization can be fruitfully applied to
ensure consistent motion maps, especially with non-parametric motion models.

� General motion models

We encountered several motion models including global translation, rotation, affine and pro-
jective, as well as various non-parametric models. Model (object) based motion estimation
featured in later papers, allowing super-resolution of objects subject to partial occlusion,
transparency, under motion, and so on.
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5 Directions for Future Research

In this section we identify three research areas in which developments promise improvements in
the state of the art of super-resolution video reconstruction - motion estimation, degradation models
and restoration algorithms. For each of these we list specific avenues of investigation and provide
some justification as why performance gains can be expected.

� Motion Estimation Techniques

Super-resolution enhancement of arbitrary scenes containing global as well as multiple inde-
pendent object motion is the ultimate goal of this research effort. Achieving this is critically
dependent on the development of robust, model based, sub-pixel accuracy motion estima-
tion and segmentation techniques. This is presently an open research problem. However the
following directions of research are expected to yield returns:

– Review and analyze sub-pixel motion estimation techniques.

– Investigate errors in motion estimates computed from noisy, undersampled frames.

– Examine multiframe motion estimation techniques to improve accuracy and reliability.

– In the case of non-parametric motion, utilize constrained motion estimation to ensure
consistency in motion maps.

– Utilize regularized motion estimation methods to achieve this.

– Investigate the use of non-dense motion maps.

– Consider mechanisms for achieving motion estimation with reliability measures which
should assist in reconstruction.

– Develop general scene, and multiple independent motion identification and tracking.
This is expected to require:

� global and local motion models.

� iterative motion estimation, identification and segmentation.

� independent model based motion for independently moving objects.

� motion prediction.

– Examine simultaneous motion estimation and super-resolution reconstruction approaches.
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� Degradation Models

Observation models which accurately account for degradations occurring in the imaging
system (and thus accurately describe the relationship between the super-resolution image
and the observed data) promise improved super-resolution reconstructions. For this reason
we anticipate that work in the following areas will lead to improvements in reconstruction
quality.

– Color imagery

Few of the existing super-resolution techniques address the problem of super-resolution
restoration of color video. This problem differs from the single band case as there exists
significant correlation between color bands which should be incorporated in the obser-
vation model. Since applying super-resolution techniques to each band independently
is sub-optimal, color super-resolution restoration should be investigated.

– Compressed image sequences

The requirement for digital storage of video sequences has led to the emergence of
several lossy image compression schemes. Source data in these formats are degraded
via color subsampling and quantization effects. Super-resolution restoration of such
sequences promises greatest returns if these degradations can be effectively modeled.

– Low quality video camera sequences

Consumer video cameras typically yield low quality images. Since restoration of se-
quences captured using such equipment is a likely application scenario, an effort should
be made to understand the degradations typical of these devices. Degradations inherent
in the magnetic media recording and playback process should be modeled, as well as
the effects of the CCD array (see next point).

– CCD modeling

CCD arrays are currently the most common image plane array used in video cameras.
It is interesting to note, however, that little work has been undertaken which attempts
to model the degradations occurring in these devices. This is especially relevant in
consumer electronic devices where low price necessitates performance compromises.
In particular effort should be focused in modeling of:

� sensor geometry.

� spatio-temporal integration characteristics.

� noise and readout effects.
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� Restoration Algorithms

– Hybrid MAP/POCS restoration

In the previous section we determined that spatial domain methods, in particular the
Bayesian and set theoretic POCS super-resolution restoration methods were most promis-
ing. We noted that each of these approaches provided significant strengths. Though the
techniques are quite different it is possible to combine the MAP and POCS formula-
tions to yield a hybrid super-resolution reconstruction technique similar to those dis-
cussed in Section 3.7, thereby gaining the benefits of both methods. The hybrid method
is MAP based but with constraint projections inserted into the iterative maximization
of thea-posterioridensity in a generalization of the constrained MAP optimization of
[7].

– Simultaneous motion estimation / restoration

Several papers have considered simultaneously estimating motion and other observa-
tion model parameters within the reconstruction iteration. This approach can be ex-
pected to yield improved reconstructions since motion estimation and reconstruction
are interrelated. Separate motion estimation and restoration, as is commonly done, is
sub-optimal as a result of this interdependence.

– Simultaneous multiframe super-resolution restoration

In Section 1.4 we discussed the manner in which super-resolution sequence reconstruc-
tion was effected using an independent frame by frame restoration approach. Tech-
niques that simultaneously restore multiple frames of the super-resolution sequence
can be expected to achieve higher performance since additional spatio-temporal con-
straints on the super-resolution image ensemble may be included. Though this is a
well known technique in restoration theory, it has not seen any application in super-
resolution reconstruction.
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6 Conclusions

This report examined techniques used for spatial resolution enhancement of low-resolution video
sequences. We have presented a comprehensive literature review within a taxonomy of existing
techniques. We have discussed the advantages and disadvantages of these methods and have pro-
posed directions for future work which we expect will provide improvements in the state of the
art, in terms of both reconstruction quality as well as applicability to “real world” scenes captured
using typical consumer quality hardware.
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