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Spatial Role Labeling:

Towards Extraction of Spatial Relations

from Natural Language
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This article reports on the novel task of spatial role labeling in natural language text. It proposes
machine learning methods to extract spatial roles and their relations. This work experiments
with both a step-wise approach, where spatial prepositions are found and the related trajectors
and landmarks are then extracted, and a joint learning approach, where a spatial relation and
its composing indicator, trajector and landmark are classified collectively. Context-dependent
learning techniques, such as a skip-chain conditional random field, yield good results on the
GUM evaluation data (Maptask) data and CLEF-IAPR TC-12 Image Benchmark. An extensive
error analysis, including feature assessment, and a cross-domain evaluation pinpoint the main
bottlenecks and avenues for future research.

Categories and Subject Descriptors: I.2.7 [Artificial Intelligence]: Natural Language Processing—Language

Parsing and understanding; Text analysis; H.3.1 [Information Storage and Retrieval]: content analysis and

indexing—Linguistic processing

General Terms: Experimentations, Languages

Additional Key Words and Phrases: Semantic labeling, Spatial relations, Spatial information
extraction

1. INTRODUCTION

An essential function of language is to convey spatial relationships between objects and

their relative/absolute location in a space. The sentence “Give me the gray book on the

large table.” expresses information about the spatial configuration of two objects (book,

table) in some space. Understanding such spatial utterances is a problem in many areas,

including robotics, navigation, traffic management, and query answering systems [Tappan

2004]. Although the current work focuses on natural language processing, our long-term

research considers spatial information extraction in a multimodal environment and aims to

obtain and represent spatial relations using formal representations, allowing further spatial

reasoning. For example, an interesting multimodal environment is the navigation domain,

where we expect a robot to follow navigation instructions [Kollar et al. 2010]. When

a camera is placed on the robot, it should be able to both recognize objects and their

location and search for particular items based on verbal instruction. Another example is

answering queries about objects’ locations using both textual descriptions and visual data;

combining the evidence provided by recognizing objects in the texts and images could

generate answers that are more reliable. Spatial information extraction from language

could also play an important role in semantic search, i.e., extracting information based on
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2 · Spatial Role Labeling

meaningful categories.

We recently introduced spatial role labeling problem as the extraction of generic spatial

semantics from natural language [Kordjamshidi et al. 2010b]. We defined a semantic label-

ing scheme to annotate spatial information. It tags natural language with the spatial roles

carried by words according to the holistic spatial semantic theory (HSS) [Zlatevl 2007].

The core problem of spatial role labeling is assigning specific tags to words or phrases in

natural language sentences to express their roles in terms of spatial semantics. For exam-

ple, in “John is sitting on the ground”, the preposition “on” is an indicator of a spatial

relation between “John” and “the ground”. Many prepositions never carry a spatial mean-

ing, whereas some have spatial sense depending on the context. The preposition “on” in

this sentence has spatial sense, though it has no such sense in the sentence “I can count on

him.” “John” is the first argument of the on-relation and is a trajector. The phrase “the

ground” is the second argument of the on-relation and is a landmark. In the related re-

search in this domain, restricted languages extract very specific and application-dependent

relations from text [Kelleher 2003; Tappan 2004; Li et al. 2007]. Previous research has

not systematically covered spatial relation and role extraction from unrestricted natural

language with machine learning methods, but this paper aims to do so. Statistical machine

learning models are promising approaches to address the intrinsically ambiguous nature of

spatial information in natural language.

A major obstacle when dealing with unrestricted language is the scarcity of annotated

data available for training machine learning models. We therefore start with the available

resources. In our leading experiments, we learn prepositions’ spatial senses by exploiting

annotated data from the preposition project (TPP) employed in SemEval-2007 [Litkowski

and Hargraves 2007] and then use the results of preposition disambiguation in a spatial

role labeler that identifies trajector and landmark roles. We use linguistically motivated

features and evaluate several context-dependent classification algorithms. We successfully

evaluate spatial role labeling on texts from the GUM (General Upper Model spatial ontol-

ogy) evaluation data [Bateman et al. 2007] and CLEF IAPR TC-12 Image Benchmark data

[Grubinger et al. 2006].1

One advantage of our pipelining approach is that knowledge from another linguistic re-

source is injected into the learning system. The TPP data are exploited here to solve the

first part of our relation extraction algorithm, i.e., finding prepositions that have a spatial

sense. We use annotated data from a larger source outside our training and test data in

the extraction task, potentially increasing generalization possibilities. Errors concerning

incorrectly recognizing prepositions’ spatial meaning can propagate and lead to incorrect

recognition of spatial roles and relationships. Thus, the pipelined approach has difficulties

competing with models that jointly learn the spatial meaning of a preposition and corre-

sponding spatial roles of its arguments. Analyzing and comparing these settings provide

inspiration for utilizing (other) resources for our task.

We present the first experimental study on learning to extract spatial information from

unrestricted natural language. Our main contributions include the following:

—We introduce the novel spatial role labeling task, which extracts spatial relations from

natural language.

1See also http://imageclef.org/photodata
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—We present the first domain-independent English dataset with labeled data for spatial

expressions, specifically designed for machine learning solutions.

—Based on linguistically oriented features, we evaluate conditional random field (CRF)

algorithms and compare their suitability for the task.

—We demonstrate the injection of external data resources into the spatial role labeling

task by exploiting sense-annotated prepositions from TPP and compare it to a one-step

approach, limited to only using spatially annotated data.

—We provide extensive experiments to show that our approach produces good results for

the spatial role labeling task.

—We extensively survey related approaches for spatial language understanding in cogni-

tive science, linguistics and computer science.

—We pinpoint bottlenecks and outline future research directions.

Main structure of this article. This paper is structured as follows. In Section 2, we

describe the spatial role labeling task and formally define it in Section 3.

In Section 4, we describe our approach, based on machine learning techniques, to learn

the spatial role labeling task from an annotated dataset. This approach solves two main

subproblems for which solutions are described subsequently. The first subproblem is iden-

tifying the pivot of spatial relations, for which we learn to predict prepositions’ roles more

specifically, as described in Section 4.1. The second subproblem is identifying possible ar-

guments of the spatial relations, for which we learn to predict whether parts of a sentence

can be classified as so-called trajectors or landmarks, as described in Section 4.2. Both

subproblems tackle the overall goal of extracting spatial relations from text. In Section 4.3,

we investigate another setting in which we classify all roles jointly, i.e., without separate

classifications for spatial indicators and trajectors/landmarks. Section 4.4 reports which

algorithms, based on probabilistic graphical models, are employed by both subproblems.

In Section 5, we present and discuss a series of experiments. After introducing the main

structure and rationale of the experiments, we show results for several datasets and perform

an additional feature analysis. We give results in quantitative form but also present a quali-

tative analysis to show the effectiveness of the approachs. To complement the error analysis

and see how well the learned classifiers generalize new data, we evaluate them on several

texts from different subject domains than the training domain. After the experiments, in

Section 6, we discuss related lines of research on spatial information representation and

extraction in cognitive science, linguistics and machine learning. Section 7 concludes this

article and outlines prominent research directions in spatial language processing.

2. THE SPATIAL ROLE LABELING TASK

As discussed above, spatial information plays an important role in many applications [Gal-

ton 2009]. However, its automatic recognition in natural language expressions is unde-

veloped or, when addressed, limited to recognizing coarse-grained and brittle information

added to predicates and mainly expressed by verbs.

To highlight some general aspects of spatial semantics, consider the following two sen-

tences (taken from [Bateman et al. 2010]):

(1) He left the institute an hour ago.

(2) He left the institute a year ago.

In the first example the sentence semantics indicate that the person is no longer in the
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building, and the sentence is about physically leaving the building and going somewhere

else. This change directly amounts to a physical and spatial relocation. The second sen-

tence expresses a more fundamental change: the person has apparently quit his job at the

institute. The second type of spatial change is more involved and less material. Another

set of examples is as follows:

(3) The computer is on the table and the mouse is to the left of it.

(4) The party leader could be considered at the far left of the political spectrum.

The first sentence expresses two explicit physical relations about objects on a table. The

second sentence uses a similar relation ”at the far left of”, but its meaning is more concep-

tual. Only drawing this ”political spectrum” on a piece of paper allows one to put the party

leader on its left side.

These examples illustrate some of the challenges in spatial language understanding.

Similar lexical items can provide different spatial meanings. Conversely, two different

descriptions may have a similar semantic interpretation:

(5) Looking over his right shoulder, he saw his dog sitting quietly.

(6) The dog sat quietly on the floor to his right.

In the sentences (1) and (2), the spatial information is mainly expressed through a verb,

whereas the other examples primarily use prepositions. Furthermore, some information

is not explicitly represented in the words but can be inferred from common sense. For

example, one can infer that the mouse is on the table in sentence (3). This sentence also

includes a related inference step resolvable at the linguistic level. An anaphora resolution

step attaches it to the computer before determining the spatial semantics. It could refer to

the table, in which case the spatial semantics also differ.

Despite the variations in spatial information in natural language expressions, a sen-

tence can essentially express spatial relations between objects. For example, the third

sentence contains an on-relation between the computer and the table. Another relation is

that the mouse is to the left of the computer. Such relations, denoted on(computer,table)

and toTheLeftOf(mouse,computer), form the starting point of any system that processes

spatial information in natural language. In on(computer,table), we can distinguish the dif-

ferent spatial roles of phrases in a sentence: on expresses a predicate (or, relation) and

computer and table are arguments with their own roles. Our main concern in this article is

extracting such spatial relations.

We define spatial role labeling as the automatic labeling of words or phrases in sen-

tences with a set of spatial roles. The roles take part in one or more spatial relations

expressed by the sentence. The sentence-level spatial analysis of texts characterizes spatial

descriptions, such as determining the objects’ spatial properties and locations to answer

”what/who” and ”where” questions. The spatial indicator (typically a preposition) es-

tablishes the type of spatial relation, and other constituents express the participants of the

spatial relation (e.g., entities’ locations). The following sentence is an example:

Give me the [gray book]tr [on]si [the big table]lm.

Our spatial role set consists of trajector (tr), landmark (lm) and spatial indicator (si) (and

none otherwise) [Kelleher 2003; Zlatevl 2007; Kordjamshidi et al. 2010b]. The above

sentence contains several subsequences labeled with these roles. They are as follows:

—Trajector: the entity whose (trans)location is of relevance. The book is the main entity
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of which location is specified in the sentence. The trajector can be static or dynamic, a

person or an object, or even a whole event. Alternative terms used in the literature are

local/figure object, locatum, referent or target.

—Landmark: the reference entity in relation to which the location or trajectory of the

trajector’s motion is specified. The main entity’s location designator (the trajector, the

book) is the table. Other terms for landmarks are reference object, ground, or relatum.

—Spatial indicator: the tokens that define constraints on the spatial properties, such as

the trajector’s location with respect to the landmark (e.g., in, on). A spatial indicator

expresses a relation (or predicate) with the landmark and trajector as its arguments.

Spatial indicators explain the types of spatial relations and are often prepositions but can

also be verbs and nouns among other parts of speech. These indicators are the pivot of

spatial relations.

Other conceptual aspects, such as motion indicators, indicate specific spatial motion in-

formation (usually specified in terms of verbs); frame of reference and the path of a

motion are influencing concepts for spatial semantics and roles [Zlatevl 2007]. However,

we restrict our focus to prepositions conveying spatial information.

Fig. 1. Parse tree labeled with spatial roles.

Spatial role labeling is a special type

of semantic role labeling, and, as with

semantic roles, the spatial relations sup-

ported by the roles contribute to a

sentence’s semantic frame recognition

[Màrquez et al. 2008]. In semantic frame

labeling, a predicate is identified and dis-

ambiguated, and its role arguments are

recognized. In spatial role labeling, the

spatial indicator is identified (instead of

the verb predicate) and disambiguated,

and its semantic role arguments including

the trajector and landmark, are found.

However, differences between these

two tasks exist. In spatial role labeling,

the roles are more specific regarding their

semantics; there is no direct correspon-

dence between the sentence’s semantic

structure based on traditional semantic frames (patient, agent) and the spatial semantics’

structure. In the above example, FrameNet’s “Giving” frame provides the semantic type

Locative relation; the Place where the Donor gives the Theme to the Recipient. The lo-

cation refers to the place where the give is performed, and not the location of the book,

mentioned in the prepositional phrases. Moreover, both the formal and informal (prag-

matic) spatial expression meanings in natural language are highly dependent on lexical

details, the ontological structure of spatial information spaces, and the embedding of ex-

tracted information into existing spatial knowledge.

Another difference between spatial role labeling and semantic role labeling is that no

large annotated corpora were available from which spatial roles could be learned directly.

New data resources were needed to apply machine learning techniques. In this respect,

breaking the problem into parts and utilizing existing linguistic resources have the advan-
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tage of limiting the training examples that must be labeled. These external resources could

improve the performance of the spatial role labeling task, which is evaluated in this paper.

General spatial relation extraction presents many challenges concerning task-specific

ambiguities and difficulties. However, there is not always a direct mapping between a

sentence’s grammatical structure and its spatial semantic structure. This issue is more

challenging in complex spatial expressions that convey several spatial relations. The sim-

ple example below shows that grammatical dependencies cannot always identify spatial

dependencies and connections:

The vase is on the ground on your left.

The dependency tree relates the first appearance of “on” to the words “vase” and “ground”.

This process produces a valid spatial relation connecting the right trajector to the right land-

marks. If we systematically follow the grammatical clues and information, then the second

appearance of “on” connects the “ground” and “your left”, producing a less meaningful

spatial relation in terms of trajector, landmark and spatial indicator (“ground on your left”),

Figure 1 shows the related parse tree. When confronted with more complex relations and

nested noun phrases, deriving “spatially valid” relations is not straightforward and highly

dependent on the lexical meaning of words. However, recognizing the right prepositional

phrase (PP) attachment during syntactic parsing can improve the identification of spatial

arguments.

Other linguistic phenomena, such as spatial-focus-shift and ellipsis of trajector and

landmark [Li et al. 2007], make extraction more difficult. Spatial motion detection and

recognition of the frame of reference are additional challenges that are not treated here.

3. PROBLEM DEFINITION

The spatial role labeling task finds spatial relations in natural language sentences, each

of which includes a spatial indicator and its arguments. We assume that the sentence is

a priori partitioned into a number of segments. The segments could be words, phrases or

arbitrary subsequences of the sentence. More formally, let S be a sentence defined as a

sequence of N segments:

S =
〈
w1, w2, . . . , wN

〉

We define a set of roles: roles = {trajector, landmark, spatial indicator, none}, and

each segment in the sentence can be assigned one or more of these roles. Each spatial

relation in sentence S is a triple

〈
wspatial indicator, wtrajector, wlandmark

〉

where wspatial indicator, wtrajector and wlandmark are three distinct segments of S, denoting

the parts of S that represent the spatial indicator and its trajector and landmark arguments,

respectively. For any spatial relation, the value of the trajector (or landmark) can be “unde-

fined”, meaning that no segment in S represents the trajector (or landmark). In those cases,

we call the trajector (or landmark) implicit, as in the sentence “Come over here”, where

the trajector “you” is only implicitly present.

Given a sentence S, the set of all spatial indicators of S is denoted I . It is induced by

ACM Journal Name, Vol. V, No. N, Month 20YY.
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the indicator function I defined over all segments w of S:

I(w) =

{

1, if w is a spatial indicator

0, otherwise

We assume that spatial indicators overlap with neither each other nor trajectors and land-

marks. In other words, for any sentence S, if w and w′ are two segments of S, then

I(w) = 1 and I(w′) = 1 imply that w ∩ w′ = ∅. Because trajectors and landmarks are

spatial indicator arguments, we define two indicator functions relative to a given spatial in-

dicator s in sentence S. The set of trajectors (landmarks) with respect to spatial indicator

s is denoted Ts (Ls), induced by indicator functions Ts and Ls defined over all segments

in S. For a spatial indicator s, its trajector and landmark cannot overlap with each other or

s itself (though they can be undefined, as mentioned earlier).

Although we have defined spatial indicators, trajectors and landmarks as arbitrary seg-

ments of a sentence, we focus on single words, each as one segment. However, a phrase in

the sentence commonly plays a role, and we thus assume that the head word of the phrase

is the role-holder. A head word determines its phrase’s syntactic type; analogously, it is

a stem that determines the semantic category of its component’s compound. The other

elements of a phrase modify the head. For example, in ”the huge blue book”, ”book” is

the head word, and ”huge” and ”blue” are modifiers. In our data, the labeling scheme

reflects this fact and only assigns roles to head words and labels the remaining words (e.g.,

modifiers) as “none”. Hence, a sentence is hereafter assumed to be a sequence of words.

Our ground-truth data include sequences, each of which contains exactly one (labeled)

spatial indicator with all possible trajectors and landmarks. A sentence can thus provide

multiple examples, up to the number of its contained spatial indicators. We formally define

each sentence in the corpus as a sequence of words 〈w1, . . . , wn〉. Let k be the number

of prepositions in a sentence s; s then induces k examples e1 . . . ek, where examples ei

and ej have the same spatial indicator for no i and j. Each ei (i = 1 . . . k) is a se-

quence 〈(w1, l1), . . . , (wn, ln) in which each word wi (i = 1 . . . n) is tagged such that

i) at most, one wj gets a label lj = spatial indicator; ii) some words get a label trajector
or landmark, if they are a trajector or landmark of the spatial indicator wj ; and iii) the

remaining words get a label none. If a preposition is not spatial, all words in the example

are tagged with none. As an illustration, consider the following sentence, which gives two

examples:

A girl and a boy are sitting at

none trajector none none trajector none none sp.indicator

none none none none none none none none

the desk in the classroom.

none landmark none none none

none trajector sp.indicator none landmark

The sentence is labeled twice, each time with a different indicator. Using our indicator

functions, we have

I = {at,in} Tat = {girl,boy} and Lat = {desk}

Tin = {desk} and Lin = {classroom}

ACM Journal Name, Vol. V, No. N, Month 20YY.
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The spatial relations for this sentence are the triples produced by the following (we only

account for head words in the role-playing phrases):

{at} × {girl, boy} × {desk} =
{
〈at, girl, desk〉, 〈at, boy, desk〉

}

{in} × {desk} × {classroom} =
{
〈in, desk, classroom〉

}

An example with an implicit trajector is the following sentence:

Go under the bridge

none spatial indicator none landmark

In this case, we derive the spatial relation using

I = {under} and Tunder = ∅ and Lunder = {bridge}

which results in 〈under, undefined, bridge〉 as the corresponding spatial relation.

This article takes a given corpus of sentences tagged with spatial indicators, trajectors

and landmarks, giving a multitude of sequence examples, and constructs (i.e., learns) an

automated spatial relation extraction method that can be employed successfully on unseen

data.

4. APPROACH

The problem definition leads to a similar problem as semantic role labeling (SRL), where

words are classified based on a known predicate (a verb). In spatial role labeling, the

spatial indicator is the pivot (i.e., predicate) of the spatial relation. A spatial indicator can

be from various lexical word classes, although the most dominant form is the preposition.

In SRL, one can start from a verb and find roles related to it, but in spatial role labeling,

one must first find the sense of the pivot (i.e., the preposition). Sometimes, a proposition

has a spatial sense, but that same preposition might not have a spatial sense in a different

context.

In our approach, the set of roles is {trajector, landmark, spatial indicator, none}, and

we use an additional term undefined to highlight the existence of implicit trajectors or

landmarks; undefined does not appear in the annotated data, nor is it learned or predicted

by our classifiers. It solely serves as a place-holder for missing elements if the three com-

ponents of a spatial relation cannot be explicitly found in a sentence (Algorithm 1 provides

further explanation). The set of all spatial relations in a sentence S, denoted SR, is defined

thus (where s, t, l are head words in S):

SR =
{
〈w, w′, w′′〉 | w ∈ I, w′ ∈ Tw, w′′ ∈ Lw

}

In this definition, three functions should be estimated. First, the function I is needed; it

takes a word in the sentence as an input and estimates whether it is a spatial indicator.

We employ a general probabilistic classifier; for spatial indicators, we learn a function Î

representing the probability that a word is spatial, given some features about sentence S. To

get the (deterministic) indicator function I , we compute (using r = {spatial, nonspatial})

I(w) =

{

1, if spatial = arg maxx∈r Î(x | w, f(w, S))

0, otherwise
(1)

ACM Journal Name, Vol. V, No. N, Month 20YY.



Spatial Role Labeling · 9

optimized over training data, where f(w, S) denotes a set of features derived from sentence

S and word w.

Indicating which words in the sentence have the trajector or landmark role requires two

other functions, given that we know that some word s is a spatial indicator. Because

the parameters for both trajectors and landmarks are the same (i.e., the spatial indicator),

we can combine them into a multi-class classification problem that classifies words in a

sentence (i.e., head words) into r′ = {trajector, landmark, none}. We call this function

R̂, and it takes a spatial indicator and tags words with these roles. We use a probabilistic

classifier here, and to obtain deterministic classifications for landmarks and trajectors, we

first compute

rw,s = arg max
x∈r′

R̂(x | w, s, f(w, s, S)) (2)

where w is a word in sentence S, s is a spatial indicator, f(w, s, S) denotes a set of fea-

tures defined over the word w, the spatial indicator s, and the sentence S. This process

maximizes a probability function given a set of features. The details of this function are

described in the next section. We continue with

Ls(w) =

{

1, if rw,s = landmark

0, otherwise
Ts(w) =

{

1, if rw,s = trajector

0, otherwise

From Equations 1 and 2, we see that a natural pipelined task decomposition presents itself.

We can first find words that potentially carry a spatial sense (I(s) = 1), and we then find

the corresponding trajectors and landmarks for each pivot.

The general structure of our pipeline approach consists of the following steps, outlined

in subsequent sections:

—Finding spatial indicators: The first task consists of labeling parts of an input sentence

S that play the spatial pivot role or finding the preposition with spatial sense. Sec-

tion 4.1 describes this step, which utilizes TPP data to learn the labeling task. As we see

below, we reduce this step to finding potential spatial indicators by only considering a

sentence’s prepositions.

—Finding spatial arguments: The second task consists of classifying parts of an input

sentence S that play the landmark or trajector roles, given a (spatial) pivot. We employ

two annotated datasets (CLEF and GUM (Maptask)) and describe it in Section 4.2.

In an additional relation extraction phase, we assemble the results of the previous two

steps to form spatial relation triplets with spatial indicators and their trajector and landmark

arguments (see also Algorithm 1). This step is straightforward and involves no learning.

We also investigate an alternative approach in which we tackle both steps jointly:

—Finding spatial indicators and their arguments jointly: In this task, we do not use a

separate preposition disambiguation step but instead learn to tag all words in a sentence

jointly. The examples in the dataset are used to train a single classifier that assigns the

spatial indicator, trajector, and landmark roles simultaneously. Classifications can there-

fore correlate without using additional data resources (e.g., TPP). Section 4.3 describes

this approach.

The remainder of this section describes the features and algorithms we designed and im-

plemented for the spatial relation recognition task.
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4.1 Learning Spatial Indicators

Various lexical categories (e.g., verbs, adjectives) can express spatial information, but

prepositions primarily do so [Baldwin et al. 2009]. However, because prepositions of-

ten have different senses [Tratz and Hovy 2009; Litkowski and Hargraves 2007], we wish

to recognize whether they convey a spatial sense. The sense of prepositions can be dis-

ambiguated by machine learning methods, as a large corpus exists for it. We consider

prepositions because of their importance and the feasibility of the disambiguation task.

According to the aforementioned formalization, the set I contains only prepositions and

I(w) = 1 holds only for prepositions with spatial sense. We aim to promote the use

of a specific training scheme for preposition sense disambiguation and not perform other

linguistic techniques to recognize them. The locatives recognized by SRL might be a

solution, but this is often not true. The following two examples stem from the preposition

disambiguation dataset (TPP) [Litkowski and Hargraves 2007].

(i) He saw Owen redden with pleasure and

laughed flinging an arm about his shoulders . . .

(ii) This project compares assumptions incorporated into

social policies about these obligations . . .

Prep POS DepRel SRL sense

about(i) IN NMOD Arg1 spatial

about(ii) IN NMOD Arg1 topic

Table I. Assigned labels by a POS tagger, dependency tree and SRL to ”about” with two senses.

Table I shows the labels assigned by a part-of-speech (POS) tagger, a dependency parser,

and SRL to the preposition ”about”. The parse tree, the dependency tree and even the

semantic role labeler could not distinguish between two senses of the preposition ”about”.

We therefore propose to learn these senses from a corpus labeled with senses (TPP) pro-

vided for the preposition disambiguation task (SemEval07) [Litkowski and Hargraves 2007],

featuring the category SpatialSense among others.

More specifically, the component Î performs this preposition disambiguation task in

Equation 1. It uses the following linguistically motivated features and the preposition

contextual features that we aim to classify:

—The preposition itself

—By exploiting the dependency parser:

—The words directly dependent on the preposition (head1)

—The words on which the preposition is directly dependent (head2)

—For the predicates which have a dependency relation with the preposition:

—All words that are arguments of the predicate other than the preposition are added

using a semantic role labeler

For all extracted words satisfying the above conditions, the following features are also

included:

—The lemma
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—The part-of-speech tag (POS)

—The type of dependency relation (DPRL)

—The semantic role labels and, for predicates, the sense of the predicate (if assigned)

We present a sentence containing a preposition and the extracted features as an example.

He saw Owen redden with pleasure, and laughed , flinging an arm about his shoulders ...

{Preposition(′′about”), P reposition POS(′′IN”),
P reposition DPRL(′′NMOD”), P reposition isarg(′′A1 arm.01”),
head1(′′arm”), head1Lemma(′′arm”),
head1 POS(′′NN”), head1 DPRL(′′OBJ”),
head1 sense(′′arm.01”), head1 isarg(′′A1 flinging.01”),
head2(′′shoulders”), head2 lemma(′′shoulder”),
head2 POS(′′NNS”), head2 DPRL(′′PMOD”),
head2 isarg(shoulders.01), head2 sense(”shoulders.01”)}

To identify the spatial prepositions, we use the TPP data provided for the preposition dis-

ambiguation task, SemEval07 [Litkowski and Hargraves 2007]. We extract the features

from the training and test data and use a maximum entropy and a Naive Bayes classifier to

disambiguate the prepositions’ sense. This process results in a binary classification of a

preposition’s spatial or nonspatial sense.

4.2 Trajector and Landmark Classification

As explained in Section 4, a multi-class classifier R̂ must be trained to map each word w

onto a class label from the set {trajector, landmark, none}, given a spatial indicator s.

Because spatial indicator features are used to classify the roles of words in the sentence,

the spatial indicator must be known before classifying trajectors and landmarks. Hence, we

utilize the first step of preposition sense disambiguation, described in the previous section,

to recognize the spatial indicators first, after which its arguments (trajectors and landmarks)

can be classified. The generic feature set used in Equation 2 can now be defined in more

detail using three different sorts. The first set of features relates to the word that we aim

to classify (f1(w)), the second includes the features of the spatial indicator of which the

word may be an argument (f2(s)), and the third contains the features that relate the word

to the sentence’s indicator (f3(w, s)). SRL inspired these features, but they center on the

spatial indicator. As mentioned, features are defined for head words.

—Features of a word w — f1(w):
—The word (form) of w.

—The part-of-speech tag.

—The dependency to the syntactic head in the dependency tree.

—The semantic role.

—The subcategorization of the word (sister-nodes of its parent node in the tree).

—Features of the spatial indicator s — f2(s):
—The spatial indicator word (form).

—The subcategorization of s.

—Relational features of w w.r.t. s — f3(w, s):
—The path in the parse tree from the w to the s.

—The binary linear position of w with respect to the s (e.g., before or not).
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—The number of nodes on the path between s and w normalized by dividing over the

number of all nodes in the parse tree (to obtain an integer value it is reversed and

rounded afterwards):

distance =
#Nodes on the path between s and w

#Nodes in the parse tree

Take the following sentence as an example.

”The vase is on the ground on your left.”

Here, the input features for classification of ”vase” w.r.t. the first ”on” are:

”vase”, ”NN”, ”SBJ”, ”A0”, NP-VP
︸ ︷︷ ︸

”on”, ”NP”
︸ ︷︷ ︸

NN ↑ NP ↑ S ↓ VP ↓ PP ↓ IN, ”true”, ”3”
︸ ︷︷ ︸

f1(w) f2(w) f3(w, s)

A semantic role labeler is typically trained on a large external dataset. Using assigned

semantic roles as features brings in additional knowledge, which may not be present in the

dataset used to train the spatial role labeler. This issue encourages the use of the semantic

roles as features.

The task is now a multi-class classification problem in which each word, represented by a

feature vector, is separately classified, assuming that these classifications are independent.

We use such a model in our initial experiments. In subsequent models, words are also

described by their features, but the class to which they are assigned depends not only on

their own values but also on the other feature vector values and relations among the various

classes. The obtained class of a word may constrain the class of the next word.

We therefore employ several conditional random field (CRF) models. In these models,

a sentence is a sequence of observations (i.e., words), 〈w1, . . . , wN 〉, which can be repre-

sented using a probabilistic graphical model. Each observation can be described in terms of

the described feature vectors, and the model outputs a label for each word in the sequence.

After recognizing the trajector and landmark given a spatial indicator, we have all the re-

lation elements. Relation extraction is performed in a straightforward way, by assembling

all extracted spatial indicators, trajectors, and landmarks and combining them into spatial

relation triplets. Algorithm 1 shows the entire process, based on preposition disambigua-

tion and trajector/landmark classification.

4.3 Learning Spatial Relations without a Priori Spatial Indicator Classification

The spatial role labeling task can be seen as a joint classification task: to predict each triplet

of segments as being in the indicator-trajector-landmark relation or not. In the previous

section, we outlined a pipelining method for spatial role labeling, where a preposition

(i.e., spatial indicator) is classified as spatial or nonspatial and the trajector and landmark

are then sought for the obtained spatial indicators. Our focus on prepositions added one

constraint to this task; the indicator should be a preposition (a realistic bias in English).

The main purpose of this pipeline approach is to exploit a large external data source (TPP)

for spatial sense disambiguation.

Combining two steps of the pipeline provides another option for learning spatial rela-

tions. We could omit the first step of using a dedicated classifier for spatial sense recog-

nition, and learn to assign all spatial roles jointly, i.e., tagging words with trajector,
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Algorithm 1 Spatial-Relation-Extraction( S : sentence ) returns relations SR

1: {preposition disambiguation}
2: for all w ∈ S do

3: Estimate Î(w) by training a probabilistic classifier and

4: construct the set I of all spatial indicators of the sentence S.

5: for all s ∈ I do

6: {trajector and landmark classification}
7: for all w ∈ S do

8: Estimate a probabilistic multi-class classifier R̂ and

9: construct the sets Ts and Ls according to the assigned labels.

10: if Ts = ∅ then Ts ← {undefined}
11: if Ls = ∅ then Ls ← {undefined}
12: {relation extraction}
13: SR← SR

⋃{
〈s, t, l〉 | t ∈ Ts, l ∈ Ls

}

14: return SR

landmark, spatial indicator or none, based on a training dataset. To train the classi-

fier, we can employ a procedure and examples as in the pipeline setting, but the classifier

must then learn one more label (spatial indicator). To test and evaluate the classifier on

a new (unlabeled) sentence S, we see that S can contain several prepositions with spatial

sense and many trajectors and landmarks, whereas the classifier can only assign a single

label to each word. The solution we use here is to, again, generate multiple examples

from S, where each example contains a designated pivot with specific features extracted

for that word (e.g., path features from words to the pivot). For each example, the words

are classified using these features. One must theoretically generate as many examples as

there are words in S; in our practice, it suffices to do this procedure only for pivots that

are prepositions. The main advantage of this setting is that the learning algorithm gets the

freedom to classify trajectors, landmarks and indicators in the context of one another.

In the relation extraction step, we perform the same general steps as in Algorithm 1, dif-

fering primarily in that we take all prepositions as possible spatial indicators in the preposi-

tion disambiguation phase (lines 1–4) and that the classifier R̂ now uses all roles, including

spatial indicator. This fact allows multiple words to be classified as spatial indicators in

one sequence and could in principle allow the extraction of spurious relations. However,

due to the learning bias (i.e., each example contains only one targeted preposition), we

discovered that spurious relations are rarely extracted. While on the one hand, the joint

setting enables a learning algorithm to use the information in the data without depending

on external data resources, on the other hand, there is a hazard of becoming specialized to

the spatial preposition distribution in the available data. The experimental results section

empirically investigates this trade-off.

4.4 Algorithms

A conditional random field (CRF) is a state-of-the art model for context-dependent classi-

fication. A CRF is an undirected graphical model or Markov random field, conditioned on

a set of observations X to predict a set of output variables Y . We define G = (V, E) as

an undirected graph (with vertices V and edges E) such that a node v ∈ V corresponds to

each random variable and V = X ∪ Y . We denote an assignment to X by x, an assign-
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ment to a set A ⊂ X by xA, and similarly for Y . If each random variable y ∈ Y obeys the

Markov property with respect to G, then (Y, X) is a conditional random field. This model

represents a probability distribution over a large number of random variables by a product

of local functions that each depend on a small subset of variables. This factorization of the

global probability distribution makes learning and inference feasible.

A CRF generally defines a probability distribution p(y|x) as follows:

p(y|x) =
1

Z(x)

∏

A
ΨA(xA, yA)

in which ΨA(xA, yA) is a potential function, where ΨA : V n → ℜ+ and Z(x) is the

normalization factor:

Z =
∑

y

∏

A
ΨA(xA, yA) and ΨA(xA, yA) = exp

{ K(A)
∑

k=1

λAkfAk(xA, yA)

}

Finally the conditional probability is the following:

p(y|x) =
1

Z(x)

∏

ΨA∈G

exp

{ K(A)
∑

k=1

λAkfAk(xA, yA)

}

For the CRF experiments we use Mallet2 and GRMM:3

—Linear-chain CRF. The structure of graph G is theoretically arbitrary; however, when

modeling sequences (in our case, words of a sentence), the simplest graph is a linear-

chain CRF in the form of a (often first-order) Markov chain [Lafferty et al. 2001; Sutton

and MacCallum 2006]. In this setting, the spatial role label of a word in the sentence de-

pends on the label of word in the previous position. Considering sequential relationships

can increase the learning model’s accuracy. The conditional probability p(x|y) is

1

Z(x)

∏N

t=1
Ψt(yt−1, yt, x)

where X = (x1, . . . ,xK) is a sequence or other structural set of observations and Y =
(y1, . . . ,yK) is the corresponding set of labels assigned to X . In the spatial role labeling

task, X ranges over the words of a sentence, while Y ranges over the classes trajector

(tr), landmark (lm), spatial indicator (si in the joint setting) or none of these (none).

Ψt(yt−1, yt, x) is a potential function, which is a real-valued function that captures the

degree to which the assignment yt to the output variable fits the transition from yt−1 and

X . The potentials typically factorize according to a set of features F = {fk} such that

Ψ(yt−1, yt, x) = exp{
∑K

k=1 λfk(yt−1, yt, x)}.

The linear chain CRF setting of Mallet uses a forward-backward algorithm to compute

the marginal distributions and the Viterbi algorithm to compute the most probable se-

quence label assignment. For our task, allowing transitions unobserved in the training

2http://mallet.cs.umass.edu/download.php
3http://mallet.cs.umass.edu/grmm/index.php
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Fig. 2. Graphical representation of CRF with preposition template. Prepositions are connected to the candidate

trajectors and candidate landmarks i.e noun phrases. Factors occur as black squares.

data during the inference and prediction phases adds more flexibility to the model, par-

ticularly when there are few training examples. This setting is called fully-connected in

the Mallet tool, and we use it in our experiments. We refer to this setting as “linear chain

CRF(FC)”.

—General CRF with preposition template. In many relation extraction tasks, certain

long-distance dependencies between entities play an important role. In our task, prepo-

sitions primarily play a spatial indicator role, while trajectors and landmarks are noun

phrases. There could be many words in between the roles in the sentence that have no

particular role and are assigned the none label. In light of this fact, we apply a version

of a skip-chain CRF [Sutton and MacCallum 2006] to account for the probabilistic de-

pendencies between distant labels. These dependencies are represented by augmenting

the linear-chain CRF with factors dependent on the labels of the sentence’s pivot prepo-

sition and noun phrases. The features on skip edges can incorporate information from

the context of both endpoints, so the strong evidence of one endpoint can influence the

label at the other endpoint. In our skip-chain CRF model, we exploit two clique tem-

plates: one is the normal sequential part (connecting neighboring words) and the other

connects pivot prepositions to candidate trajectors and landmarks. Following the related

work [Sutton and MacCallum 2006], the set of all pairs of positions for which there are

skip edges (i.e., between prepositions and nouns) is represented as PN = {(u, v)}; the

probability of label sequence y given input x is

pθ(y|x) =
1

Z(x)

N∏

t=1

Ψt(yt, yt−1, x)
∏

(u,v)∈PN

Ψuv(yu, yv, x)

where Ψt are factors for sequential relations and Ψuv are factors over skip edges.

We define the factors as Ψt(yt, yt−1, x) = exp{
∑

λ1kf1k(yt, yt−1, x, t)} and

Ψuv(yu, yv, x) = exp{
∑

λ2kf2k(yu, yv, x, u, v)}, where θ1 = {λ1k}
K1

k=1 are the pa-

rameters of the linear-chain template and {f1k} is the related set of feature functions

or sufficient statistics. Similarly, θ2 = {λ2k}
K2
k=1 are the parameters of the preposition

template, and {f2k} is its related set of feature functions or sufficient statistics. The

full set of model parameters is θ = {θ1, θ2}. We use loopy belief propagation as the

approximate inference algorithm in our experiments.

We compare the results of the CRFs with two baseline approaches:

—MaxEnt (baseline) model. As a baseline learning model, we classify the words of a
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sentence independently using a standard maximum entropy classifier.

—Simple baseline. To encourage the use of machine learning, a simple baseline is em-

ployed: given a spatial preposition, the first head word before the preposition is taken as

the trajector and the head word after the preposition as the landmark. There is no learn-

ing from data in this setting, but the dependency tree is exploited to discover dependent

headwords.

5. EXPERIMENTAL STUDY

In this section, we report on a series of experiments to evaluate various components of the

spatial role labeling and relation extraction tasks.

5.1 Structure and Goals of the Experimental Setup

We present our leading research questions and identify the sections where we experimen-

tally answer those questions.

—Which data resources are available, or can be generated, to learn the spatial role label-

ing task from data?

We answer this question in Section 5.2. In our experiments, we clearly want to solve

the spatial role labeling task for unrestricted natural language input. However, we are

limited by the amount of available data for machine learning. We describe our novel

data resources and summarize their statistics.

—How can we detect the spatial sense of prepositions using available resources?

We answer this question in Section 5.3. We first investigate whether other resources

(e.g., locatives obtained from SRL) can help and what benefits lie in directly learning

the spatial sense from a large external and available data source (TPP).

—If we assume that the spatial sense of a preposition is known or learned beforehand, how

can we learn its corresponding trajectors and landmarks from data?

In Section 5.4, we present various classifiers that take a given (spatial) preposition as

input, and label the corresponding arguments (landmark and trajector) of the predicate

the preposition represents.

—What benefits lie in the sequential nature of finding the spatial sense of a preposition

and then finding trajectors and landmarks (the so-called pipeline technique)?

In Section 5.4.1, we first decouple the two problems and focus solely on the situation in

which the spatial sense is known perfectly. In Section 5.4.2, we investigate two different

situations where we fully automate the task, i.e., we use the preposition disambiguation

output as input for spatial relation recognition. Without ground-truth data on the spatial

sense of the prepositions, some landmarks or trajectors cannot be found because this

spatial sense is classified incorrectly. We investigate a setting in which unknown prepo-

sitions are classified as spatial by default and another in which they are nonspatial by

default.

—What benefits lie in jointly recognizing spatial indicators, trajectors and landmarks, and

how can long-distance dependencies help in this setting?

In Section 5.4.3, we investigate an approach in which we learn to tag words with an

extended label set that includes spatial indicators. This process side-steps preposition

disambiguation as a separate phase; thus, classifications depend only on the information

in one training dataset.
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—How do different pipelining methods affect the accuracy of the whole-relation extrac-

tion?

In Section 5.5, we perform experiments in which we measure the accuracy of different

pipelining techniques on the whole-relation extraction (thus finding the correct spatial

indicators, i.e., prepositions and their correct landmarks and trajectors).

—What is the effect of the used features on the extraction task?

Section 5.6 discusses the effects of leave-one-out feature analysis.

—What is the cross-domain performance of the approach on an unrestricted natural lan-

guage text that contains both spatial and nonspatial information?

In Section 5.7, we apply our system to several small, general, and unrestricted natural

language texts to evaluate performance on data outside the training domain.

—What are the main sources of errors in our approach?

In Section 5.8, we investigate the errors made in 50 sentences of our dataset. We can

distinguish five general categories of errors, including nested spatial relations and spa-

tial focus shift. The errors caused by different model characteristics and different data

domain characteristics are investigated in two separate subsections.

5.2 Dataset Description

For our experimental analysis, we use several manually annotated datasets. We describe

their characteristics and usefulness for our study in this section. Statistics for the corpora

are presented in Table II.

—TPP dataset For the preposition disambiguation task, we employ the standard test and

training data provided by the SemEval-2007 challenge [Litkowski and Hargraves 2007].

It contains 34 separate XML files, one for each preposition, totaling over 25,000 in-

stances with 16,557 training and 8,096 test example sentences; each sentence contains

one example of the respective preposition.

—GUM (Maptask) dataset Because the spatial role labeling task is newly defined, there

is no annotated English corpus available. However, the GUM (General Upper Model)

evaluation data [Bateman et al. 2007], comprising a subset of a well-known corpus for

spatial language is a useful dataset. It has been used to validate the expressivity of spatial

relations in the GUM ontology. Currently, the dataset contains more than 300 English

examples and 300 German examples. We used 100 English samples in this corpus that

are originally from the Maptask corpus. The GUM-annotation for this sentence is an

example:

”The destination is beneath the start.”

is:

SpatialLocating (locatum ”destination”, process ”being”, placement GL1 (relatum

”start”, hasSpatialModality UnderProjectionExternal)).

Here, relatum and locatum are alternative terms for landmark and trajector. Spatial

modality is the spatial relation mentioned in the specific spatial ontology. The corpus

contains 65 trajectors and 69 landmarks appearing in 112 spatial relations. Each sen-

tence produces spatially labeled sequences in the number of its prepositions: 122 se-

quences for GUM (Maptask). Although complete phrases are annotated in this dataset,

we only use a phrase’s headword with trajector (tr) and landmark (lm) labels and their
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spatial indicator (si). Using this small corpus to evaluate our approach for a very

domain-specific corpus, including only instructions and guidance for finding the way

on a map, is beneficial.

CLEF GUM (Maptask) Fables DCP

#Sentences 686 100 289 250

#Sequences 1430 122 864 809

#Spatial Relations 869 112 121 222

#Trajectors 839 65 106 199

#LandMarks 741 69 95 188

#Spatial Prepositions 735 112 121 222

#nonSpatial Prepositions 695 10 743 587

Table II. Data statistics.

—CLEF dataset Because the available dataset is small, an additional dataset4 was anno-

tated, based on textual descriptions of 400 images of the IAPR TC-12 Image dataset [Grub-

inger et al. 2006], hereafter the CLEF dataset. This dataset generated an additional 686

English sentences with 869 spatial relations. The CLEF dataset contains images taken

by tourists with descriptions in several languages. The text describes objects with their

absolute and relative positions in the image. It is therefore a rich resource for spatial

information. However, the descriptions are not always limited to spatial descriptions

and are thus less domain-specific and contain free image explanations.

We have annotated the textual descriptions with spatial roles of trajector (tr), landmark

(lm) and their corresponding spatial indicator (si). Roles are assigned to the headwords of

the phrases only. Two annotators provided annotations (325 sentences) and we investigated

the inter-annotator agreement [Carletta 1996]. The Kappa value is 0.896 with a 95%

confidence interval (0.882–0.910).

As mentioned above, we only consider prepositions as spatial indicators. This restriction

is natural in English texts and especially for our data. Ignoring lexical categories other than

prepositions has a trivial influence on our experiments with this corpus. Three exceptional

cases exist in CLEF, where the words crossing, supporting and away are tagged as spatial

indicators and this is the case for seven sentences in GUM (maptask) dataset. Furthermore,

in compound verbs such as ”surrounded by”, the preposition, here ”by”, is annotated as the

indicator although it is attached to the verb. However, for mapping to the spatial relation

semantics, having the correct pp-attachment is an important feature, though beyond the

scope of this paper.

In addition to the datasets mentioned above, two other corpora from different domains

are annotated for evaluation purposes. These are described below.

—DCP dataset The dataset contains a random selection from the website of The Degree

Confluence Project.5 This project seeks to map all possible latitude-longitude intersec-

tions on Earth and have people who visit these intersections provide written narratives of

the visit. The main textual parts of randomly selected pages are manually copied, and up

to 250 sentences are annotated. Approximately 30% of the prepositions are spatial. This

4The datasets will be made publicly available.
5http://confluence.org/
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percentage represents the proportion of spatial clauses in the text. These webpages are

similar to travelers’ weblogs but include more precise geographical information. The

richness of this data enables broader applicability for future applications. Compared

to CLEF, this dataset includes less spatial information, and the type of text is narra-

tive rather than descriptive. It also contains more free (unrestricted) text. Moreover,

the spatiotemporal information contained in this data has recently been used to extract

discourse relations [Howald and Katz 2011].

—Fables dataset This dataset contains 59 randomly selected fable stories6, which have

been used for data-driven story generation [McIntyre and Lapata 2009]. The dataset

contains a wide scope of vocabulary and only 15% of the prepositions are spatial, making

it the most difficult corpus for our system. We annotated 289 sentences from this corpus

for cross-domain experiments.

The datasets are preprocessed as follows. We generate parse trees for the sentences us-

ing the Charniak parser7 [Charniak and Johnson 2005], and the LTH8 tool [Johansson and

Nugues 2007] produces the semantic roles and several other features in CoNLL-2008 out-

put format.9

5.3 Preposition Disambiguation

Because this study concerns recognizing spatial prepositions, we investigated how accu-

rately semantic role labeling (SRL) recognizes and labels the locatives in the TPP corpus

before performing preposition sense disambiguation. We measure SRL’s accuracy in la-

beling spatial prepositions with LOC (location) or DIR (direction). The results show that

the precision is good. Whenever SRL recognizes the spatial sense, it is mainly correct;

however, there are many cases in which SRL does not recognize spatial senses, rendering

a lower recall and consequently a lower accuracy (Table III). This experiment provides

an argument for the necessity of sense disambiguation even when recognizing only spatial

prepositions. TPP contains 8,781 spatial prepositions and 14,681 nonspatial prepositions.

The 99% confidence interval for the accuracy and F1-measure of both MaxEnt and Naive

Bayes is (0.875 − 0.89) and (0.868 − 0.88), respectively. The reported results show the

mentioned classifiers’ performances in a multi-class classification setting with respect to

the class of spatial prepositions.

System Precision Recall F1 Accuracy

SRL(locatives) 0.83 0.49 0.53 0.59

Naive Bayes 0.86 0.92 0.88 0.88

MaxEnt 0.88 0.91 0.88 0.88

Table III. Accuracy of the detection of spatial or nonspatial preposition sense, relying on detected locatives when

labeling semantic roles (SRL), using a Naive Bayes and maximum entropy classifier (MaxEnt). The results are

given for the TPP dataset and averaged over 10 folds.

6http://homepages.inf.ed.ac.uk/s0233364/McIntyreLapata09/
7http://www.cfilt.iitb.ac.in/ anupama/charniak.php
8http://barbar.cs.lth.se:8081/
9http://barcelona.research.yahoo.net/dokuwiki/doku.php?id=conll2008:format
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In the preposition disambiguation experiments, we evaluate the recognition of coarse-

grained senses on the preposition SemEval-2007 data [Litkowski and Hargraves 2007].

Coarse-grained senses include 20 general classes of preposition senses, such as spatial,

temporal, causal, and membership.

System Accuracy

Proposed-features(MaxEnt) 0.874

Proposed-features(NB) 0.86

MELB-YB(Best in SemEval-2007) 0.861

BOW(MaxEnt) 0.81

FreqSense 0.649

FirstSense 0.61

Table IV. Accuracy of coarse grained disambiguation (TPP).

Table IV gives the accuracy of a 10-fold cross-validation using a maximum entropy clas-

sifier and a Naive Bayes classifier. This table shows the results of the best system in the

SemEval-2007 challenge for this coarse-grained sense disambiguation, the accuracy of

applying bag of words (BOW), using the most frequent (FreqSense) and first (FirstSense)

senses as baselines. The difference between our system and the best system from SemEval-

2007 is statistically significant with a 95% confidence level (p < 0.05). Table III gives the

evaluation considering only the prepositions’ spatial sense, as mentioned before, compared

to SRL’s recognition. Table V gives results for some frequently used prepositions (e.g., in,

on, after, before).

Preposition
Naive Bayes

Pre Rec F1

MaxEnt

Pre Rec F1

SRL

Pre Rec F1

on 0.733 0.963 0.832 0.788 0.950 0.861 0.707 0.399 0.510

after 0.500 0.900 0.643 0.540 0.700 0.609 0.000 0.000 0.000

in 0.660 0.920 0.769 0.697 0.882 0.779 0.558 0.906 0.691

before 0.670 0.857 0.750 0.800 0.570 0.666 0.500 0.428 0.461

Table V. Accuracy of the detection of spatial or nonspatial preposition senses for some frequently used preposi-

tions in the TPP dataset.

Although other work [Tratz and Hovy 2009] on preposition sense disambiguation outper-

forms results of the SemEval-2007 challenge too, the authors report only on the results of

fine-grained sense disambiguation, which was not required for spatial sense recognition in

our setup.

As the TPP data are a benchmark problem, we use a similar evaluation setting for com-

parison purpose and do not further experiment with different training regimes (in train/test

splits). The current preposition disambiguation results are a promising start for spatial

sense recognition and spatial relation extraction. After the evaluation process, the final

preposition sense classifiers were constructed using the whole TPP dataset. We imple-

mented 34 classifiers for the prepositions. For some prepositions in CLEF, e.g., ”op-

posite”, no classifier exists. This issue occurred in 35 of 1,430 cases. Table VI shows

the preposition disambiguation performance on GUM (Maptask) and CLEF. GUM (Map-

task) is more domain-specific and contains more spatial prepositions (112/122), including a
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larger percentage (24/122) of prepositions that are not found in the TPP corpus and thus not

recognized as spatial prepositions. This fact leads to a lower recall for spatial preposition

recognition in this corpus in comparison to CLEF. We use the disambiguated prepositions

in this step in the pipeline of spatial role labeling.

Corpus Precision Recall F1 #Unrecognized PPs

CLEF 0.858 0.818 0.84 35

GUM (Maptask) 0.97 0.71 0.82 24

Table VI. Performance of preposition disambiguation trained on TPP and tested on CLEF and GUM (Maptask).

5.4 Extraction of Trajector and Landmark

The classification of trajectors and landmarks is not an isolated classification of words,

but a classification of relations between a word and spatial pivot. This statement is the

underlying assumption for relation extraction in the experiments described below. We

show results for different settings: i) using ground-truth preposition disambiguation; ii)

using a pipeline approach in which the preposition disambiguation is learned from external

data; and iii) using a joint classification mode in which spatial indicators, trajectors and

landmarks are learned and classified together.

5.4.1 Using Ground Truth for Preposition Disambiguation. To extract the trajectors

and landmarks related by a spatial pivot, we first use the disambiguated ground-truth pivots.

We implemented two different classification settings. In one setting, we classify each word

based on its related extracted features described in section 4.2 and using maximum entropy

classifier. This process generates a multi-class classification setting in which each word is

classified as trajector, landmark or none. In the second setting, we classify each word using

probabilistic graphical models, particularly CRFs, considering its context (the sentence)

and employing the same linguistic input features as the first setting. Tables VII and VIII

show the precision, recall and F1 measures for each tag using 10-fold cross-validation on

the CLEF and GUM (Maptask) datasets.

Method
Trajector

Pr Rec F1

Landmark

Pr Rec F1

MaxEnt(baseline) 0.775 0.744 0.758 0.916 0.853 0.881

Linear-chain CRF 0.870 0.744 0.801 0.950 0.869 0.907

Linear chain CRF(FC) 0.905 0.792 0.844 0.953 0.879 0.914

Simple baseline 0.269 0.413 0.326 0.456 0.784 0.576

Table VII. Extraction of trajector/landmark roles in the CLEF dataset relying on the ground-truth preposition

sense; 10-fold cross-validation.

The results show that context-dependent classification models outperform the maximum

entropy model and that the differences are statistically significant for p < 0.05, where the

fully connected CRF model gives the best results. Using the fully connected setting of

the simple tagger yields statistically significant improvements in trajector classification in

CLEF and landmark classification in GUM (Maptask).
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Method
Trajector

Pr Rec F1

Landmark

Pr Rec F1

MaxEnt(baseline) 0.862 0.931 0.891 0.776 0.762 0.750

Linear-chain CRF 0.990 0.959 0.973 0.916 0.918 0.915

Linear chain CRF(FC) 1.000 0.969 0.983 0.947 1.000 0.971

Simple baseline 0.008 0.015 0.011 0.337 0.500 0.402

Table VIII. Extraction of trajector/landmark roles in the GUM (Maptask) dataset relying on the ground-truth

preposition sense; 10-fold cross-validation.

5.4.2 Pipeline Setting – Exploiting Preposition Disambiguation. In this experiment,

we fully automate the tasks of recognizing spatial roles and the corresponding spatial

relations. The preposition disambiguation and the extraction of trajector/landmark tasks

are connected and followed by the whole-relation-extraction. The preposition classifier is

trained on the TPP dataset. The landmark/trajector/none classifier is trained on the subset

of GUM and also the CLEF dataset.

In this setting, various options are examined during the test phase. Each preposition

in a sentence is given to the relevant classifier from the 34 TPP-classifiers. If it does not

match a TPP preposition, it is an unknown preposition and treated in two distinct ways:

i) nonspatial (first row in Tables IX, X) or ii) spatial (second row in the tables). If the

preposition is recognized as spatial, the process of the trajector/landmark extraction is

performed; otherwise, all words in the sentence are labeled as none with respect to that

preposition. We compare these settings to the one in which every preposition is blindly

assumed to be a spatial indicator. These results help to assess the effect of preposition

disambiguation.

Training and test instances are drawn from sentences in the respective datasets. For each

preposition recognized in the sentence, a distinct instance of the sentence is created. In

training instances, only the landmark(s) and trajector(s) (if any) in a spatial relationship

with the pivot of the instance are annotated. In test instances, trajector(s) and landmark(s)

(if any) in a spatial relationship with the pivot of the instance are automatically labeled.

Method
Trajector

Pr Rec F1

Landmark

Pr Rec F1

Pip(unrec PP nonSp) 0.886 0.654 0.752 0.914 0.714 0.801

Pip(unrec PP Sp) 0.889 0.685 0.773 0.916 0.741 0.819

All PP’s spatial 0.870 0.792 0.828 0.904 0.878 0.891

Ground truth PP’s 0.905 0.792 0.844 0.953 0.879 0.914

Joint Learning 0.884 0.668 0.759 0.919 0.712 0.802

Joint Learning+PPtemplate 0.988 0.998 0.980 0.866 0.892 0.843

Table IX. Extraction of trajector/landmark on CLEF dataset, comparing pipeline, ground-truth and joint learning

by 10-fold cross-validation.

The experimental results in Table IX show that exploiting the linguistic features of the cor-

rect spatial preposition in the CLEF corpus improves the trajector and landmark extraction

performance compared to pipelining, as expected. The difference is statistically significant

(p < 0.05). However, in the complete extraction problem, i.e., with unknown spatial in-

dicators, assuming all prepositions to be spatial yields the highest recall, as it allows the
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trajector/landmark classifier to find related arguments. The pipeline model (assuming un-

recognized prepositions as spatial), receiving input from the preposition disambiguation

module, improves precision but lowers recall. Investigating the errors indicates that no tra-

jectors and landmarks are generally extracted when nonspatial prepositions are recognized

as spatial and the words are correctly classified as none. However, having a spatial prepo-

sition wrongly classified as nonspatial prohibits trajector and landmark extraction, causing

a drop in recall.

Method
Trajector

Pr Rec F1

Landmark

Pr Rec F1

Pip(unrec PP nonSp) 1.000 0.510 0.660 0.930 0.460 0.580

Pip(unrec PP Sp) 1.000 0.701 0.801 0.937 0.660 0.752

All PP’s spatial 1.000 0.969 0.983 0.947 1.000 0.971

Ground truth PP’s 1.000 0.969 0.983 0.947 1.000 0.971

Joint Learning 1.000 0.956 0.976 0.920 0.956 0.934

Joint Learning+PPtemplate 0.934 0.945 0.936 0.720 0.760 0.727

Table X. Extraction of trajector/landmark on GUM (Maptask) dataset, comparing pipeline, ground-truth and joint

learning by 10-fold cross-validation.

In the GUM (Maptask) corpus, inputting the correct preposition does not make a signifi-

cant difference compared to “all spatial”; moreover, pipelining yields lower recall. GUM

(Maptask)’s statistics show that more than 93% of the prepositions are spatial and errors

in preposition disambiguation prohibit the extraction of related trajectors and landmarks,

resulting in a sharp drop in recall with no significant variation in precision.

5.4.3 Joint Learning Setting. According to section 4.3, each training instance in this

setting contains at most one preposition labeled as a spatial indicator and annotations for

only the landmark(s) and trajector(s) (if any) of that spatial indicator. Each sentence

gives several instances, up to the number of prepositions it contains. In test instances,

the trajector, landmark, spatial indicator and none labels are automatically assigned to

each word in the sentence based on the input features for a given preposition.

Because spatial indicators are classified jointly with other spatial roles, some of the er-

rors caused by the pipelining can be removed. However, as Table IX shows on the CLEF

dataset, the recall of best pipeline system (unrec PP Sp), is slightly higher than joint learn-

ing in trajector and landmark classification, and the improvement is statistically significant

(p < 0.1).
Adding long distance dependencies to joint learning through the preposition template

greatly improves performance on CLEF dataset, particularly in trajector classification. In

contrast, a sharp decrease in landmark classification occurs in GUM (Maptask). The dif-

ference in language characteristics in these datasets affects these results, which calls for

further investigation. In Section 5.8, an error analysis categorizes the types of errors that

can occur in the spatial role labeling task and the errors of two models (with and without a

template) are compared using a test subsample.

For GUM (Maptask), Table X shows that assuming all prepositions to be spatial out-

performs other settings, including joint learning. The previous experiments show joint

learning outperforming pipelining, though the pipeline setting uses the external resource

ACM Journal Name, Vol. V, No. N, Month 20YY.



24 · Spatial Role Labeling

TPP. Cross-domain differences and sentence types in TPP, CLEF, and GUM (Maptask)

datasets account for this discrepancy. This issue will be discussed later in this paper.

Method
WR (GUM)

Pr Rec F1

WR (CLEF)

Pr Rec F1

Pip (unrec PP nonSp) 0.874 0.534 0.663 0.653 0.605 0.628

Pip (unrec PP Sp) 0.894 0.722 0.799 0.547 0.627 0.584

All PP’s spatial 0.870 0.948 0.907 0.391 0.722 0.507

Ground truth PP’s 0.948 0.948 0.948 0.704 0.723 0.714

Joint learning 0.888 0.904 0.896 0.704 0.737 0.720

Joint learning+PPtemplate 0.672 0.703 0.684 0.830 0.830 0.830

Table XI. Extraction of whole relations (WRs) on GUM (Maptask) /CLEF, comparing pipeline, ground-truth and

joint learning using 10-fold cross-validation.

5.5 Whole Relation Extraction

A correct relation is a relation in which all three components, i.e., a spatial indicator and its

corresponding trajector and landmark, are correctly recognized. Every wrong assumption

about a spatial indicator initiates a new wrong spatial relation. In this case, the precision

and recall of the whole relation are as follows.

TP = the number of correctly produced spatial relations

FP = the number of incorrectly produced spatial relations

FN = the number of spatial relations that are incorrectly not produced

Recall and precision are thus:

recall = TP
TP+FN

and precision = TP
TP+FP

When the preposition is incorrectly classified as spatial, the number of FPs increases, lead-

ing to lower precision. If the preposition is incorrectly classified as nonspatial, the number

of FNs increases, leading to lower recall.

As observed in Table XI, based on this experiment, assuming all prepositions as spatial

is generally impractical. The low performance on CLEF indicates that the relation extrac-

tion by this assumption is not robust for unrestricted language, though this setting works

well for trajector and landmark extraction on GUM (Maptask). Employing ground-truth

prepositions provided the best results for GUM (Maptask), though we observed no signifi-

cant difference compared to joint learning for relation extraction in CLEF. To explain how

the joint learning setting can, in this particular case, perform as well as the ground-truth

setting, we must examine the input and output features of the models. In the ground-truth

setting, the (correct) spatial indicators function as input, and the classifier learns to label

trajectors and landmarks, but not spatial indicators. In the joint learning setting, the model

learns to utilize the correlations between trajectors, landmarks and spatial indicators and

outputs labels for all of them, so it considers the transitions between spatial indicators and

other labels. The settings thus differ in input/output. Future work may consider integrating

the settings more tightly by stacking the classifiers and incorporating the output of a TPP-

trained classifier into the joint model or by employing a joint learning setting in which the

ACM Journal Name, Vol. V, No. N, Month 20YY.



Spatial Role Labeling · 25

spatial indicator values are ’clamped’ and used as hard constraints, fully using both the

TPP data and learning joint probabilities over the spatial relation triplets.

In the two pipeline settings, assuming prepositions to be spatial (for unrecognized prepo-

sitions with TPP classifiers) shows better results in GUM (Maptask) but worse results in

CLEF. This finding is reasonable due to the prior distribution of spatial prepositions in

GUM (Maptask) and CLEF, as discussed above. The joint learning setting gives the best

results for whole relation extraction on CLEF. This setting is ideal for spatial role labeling

problem when there are sufficient training examples, which is not always the case. The

pipeline setting performs better in some trajector and landmark classifications, which sig-

nals the significance of exploiting the TPP resource. Our final experiments on texts from

different domains in Section 5.7 highlight the importance of the TPP resource.

Data Features
Trajector

Pr Rec F1

Landmark

Pr Rec F1

WholeRelation

Pr Rec F1

CLEF

All features

-dis

-SRL

-dis-wordsubcat

0.905 0.792 0.844

0.889 0.792 0.836

0.893 0.795 0.840

0.883 0.770 0.822

0.953 0.879 0.914

0.956 0.879 0.915

0.961 0.876 0.916

0.954 0.871 0.911

0.704 0.723 0.714

0.697 0.717 0.707

0.701 0.717 0.709

0.680 0.693 0.687

GUM

All features

-dis

-SRL

-dis-wordsubcat

1.000 0.969 0.983

1.000 0.969 0.983

0.987 0.956 0.969

0.983 0.969 0.975

0.947 1.000 0.971

0.920 0.987 0.951

0.917 0.924 0.916

0.920 0.946 0.929

0.940 1.000 0.971

0.932 0.947 0.940

0.874 0.894 0.884

0.906 0.921 0.913

Table XII. The effect of applying distance (dis), word subcategorization (wordsubcat) and SRL feature for trajec-

tor and landmark extraction, using ground-truth preposition senses. The baseline uses all features.

5.6 Experimental Feature Analysis

As mentioned in section 4, SRL inspired most of the employed input features. However, we

also used the distance, word subcategorization and semantic roles. In the results reported

above, we use all of the features described in that section. By investigating the features’

impacts and omitting them one by one, we determined that almost all features contribute

positively to the performance. The path feature contribution was marginal, especially for

GUM (Maptask). Because GUM (Maptask) is a small corpus and the path feature has too

many unique values in our dataset, its discriminative power is limited here. The complex

path feature generally can produce some overfitting or inserts noise into the model, due

to incorrect prepositional phrase (PP) attachments, for example. The distance between the

preposition and its arguments is thus a valuable feature that helps determine whether a

word is an argument of a preposition. The experiments with and without this feature show

a positive impact on both datasets; an overall gain of approximately 1% − 3% for both

GUM (Maptask) and CLEF is statistically significant (p < 0.1). To understand the effect

of our additional features, we use ground-truth preposition senses, and Table XII shows the

results.

Exploiting more discriminative structural features may compensate for the lack of lexi-

cal information, we therefore evaluate adding the subcategorization of a target word using

the aforementioned definition. The last row in Table XII for each dataset shows the per-

formance using neither distance nor sub-categorization. The quantitative effect of the SRL

feature is represented in the same table. The table clearly shows the positive influence of
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this feature on GUM (Maptask), but it contributes less for CLEF. GUM (Maptask) contains

directional instructions with few compound locative descriptions, so there are more direct

relations between semantic roles, including AM-DIR, AM-LOC and being a landmark as

well as between a “patient” role and being a trajector.

5.7 Cross-domain Evaluation

Although our methodology for extracting spatial semantics is domain independent, the

general problem still depends on lexical features. A model trained in one domain and

later employed in another often performs poorly due to feature distribution changes. Ad-

ditionally, classifiers trained on the new domain alone may suffer from too few training

samples. Other applications of machine learning methods share this problem [Jiang et al.

2008], particularly the natural language processing area. Because one of our contributions

is preparing a corpus for spatial information extraction, we annotated several types of tex-

tual data for domains in which spatial information extraction could be an important issue.

As explained in previous sections, our main data set is CLEF, which contains many spatial

descriptions but is still balanced with nonspatial information. The GUM (Maptask) cor-

pus is much smaller, domain-specific and biased to spatial descriptions; learning from the

same corpus in a cross-validation setting produces good results. We based our experiments

on these two data sets to show that our problem, spatial role labeling, is feasible and that

specific learning algorithms and representations are effective. In this section, we discuss

experiments that explore transfer capabilities from one dataset (domain) to another and

test the advantage of using external data resources (e.g., TPP) in that process.

Corpus Precision Recall F1 #Unrecognized PPs

Fables (TPP) 0.444 0.657 0.530 13

Fables(SRL-locatives) 0.495 0.420 0.454 -

DCP (TPP) 0.584 0.687 0.631 29

DCP(SRL-locatives) 0.226 0.423 0.295 -

Table XIII. Preposition disambiguation performance trained on TPP and tested on Fables and DCP.

Our first experiment concerns the intrinsic cross-domain nature of employing TPP data.

As previously done for CLEF and GUM (Maptask), we evaluate preposition sense disam-

biguation performance on the new datasets Fables and DCP. This classifier is also used in

the pipeline setting in subsequent experiments. The results in Table XIII indicate that the

preposition spatial sense recognition is harder in these data sets than in CLEF and GUM

(Maptask).

However, for Fables and DCP datasets, the TPP-based model outperforms SRL in spatial

preposition recognition. The results also show that the SRL system is more accurate for

Fables than DCP. The more frequent use of compound verbs in Fables may account for this

phenomenon, as the prepositions are mostly attached to verb phrases.

In a second set of experiments concerning trajector and landmark extraction, we applied

the settings described in previous sections to Fables and DCP. The models were trained on

CLEF and tested on these data sets. For the joint learning setting, we applied the learned

classifier (for spatial indicators, landmarks and trajectors) to the unlabeled Fables/DCP

data. For the pipeline setting, the classifiers trained on TPP find the spatial indicators,

after which we apply a classifier trained on CLEF (for trajectors and landmarks) to the
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Method
Fables

Trajector Landmark Indicator

DCP

Trajector Landmark Indicator

Pip(unrec PP nonSp) 0.080 0.397 0.530 0.208 0.435 0.631

Pip(unrec PP Sp) 0.100 0.424 0.348 0.232 0.463 0.554

All PP’s spatial 0.181 0.342 0.245 0.293 0.447 0.431

Ground truth PP’s 0.231 0.620 —— 0.338 0.590 ——

Joint Learning 0.113 0.378 0.45 0.223 0.432 0.614

Joint Learning+PPtemplate 0.101 0.292 0.333 0.163 0.319 0.409

Table XIV. F1-measure of cross-domain evaluation; the classifiers learned on CLEF and tested on fable stories

and DCP data.

unlabeled Fables/DCP data. Table XIV reports the results, to summarize the tables only

F1-measure is presented. Confidence intervals (90%) for the last column are (0.428–0.532)

and (0.423–0.527), and all others have a lower variance. The table shows that the pipeline

setup outperforms joint learning, demonstrating the benefits of the model trained on TPP

and the value of exploiting TPP in this experiment. The outperforming of the pipeline is

statistically significant.

For trajectors and landmarks, the first unsurprising result is that the ground-truth prepo-

sitions, trajectors and landmarks can be classified more accurately in both data sets. The

whole relation extraction (not shown) proved more difficult here. Once more, in Section

5.8 we chose a sample of the errors to obtain a clearer analysis on cross-domain evaluation.

Dataset Best method Trajector Landmark Indicator whole rel

Fable stories Joint Learning 0.544 0.569 0.638 0.481

Confluence Joint Learning 0.518 0.595 0.685 0.475

Table XV. F1-measure of 10-fold cross-validation; the best method has the maximum F1-measure averaged over

all roles.

For completeness, we evaluate how well our techniques work on the additional datasets

without training on CLEF using standard 10-fold cross validation in a third experiment (see

Table XV). To summarize the tables, we only present the F1-measures of the most out-

performing models, where we find that joint learning is the best setting for both datasets.

Considering the previous cross-domain experiment, this result is reasonable. The joint

learning setting shows higher performance with 10-fold cross validation because the train-

ing and test sets have similar (lexical) feature distribution. Overall, the evaluation of these

two datasets performed worse than our main datasets, CLEF and GUM (Maptask), be-

cause of the broad vocabulary range in these additional datasets and the lower proportion

of spatial expressions. This situation requires more training examples to obtain acceptable

accuracy. In Section 5.8, a brief discussion on the errors of this experiment is given too.

5.8 Error Analysis

The experiments using the GUM (Maptask) and CLEF datasets clearly indicate that depen-

dencies between observed nodes in the CRF model are advantageous for spatial role label-

ing. Most errors are classical information extraction errors. The lack of a huge training cor-

pus with sufficient word occurrences results in invalid argument assignments concerning
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spatial semantics. Cross-domain experiments on Fables and DCP are more affected by this

lack. In the pipeline setting, errors are primarily propagated from one phase to another. The

more elaborate solution of jointly classifying prepositions and trajector/landmarks should,

theoretically, provide a better solution. However, this setting suffers even more from the

lack of lexical information but shows promising results in general. This setting could be the

best platform with the injection of the partially labeled external TPP resource. Many words

in a sentence have ambiguous meanings, which also causes errors, as in other semantic an-

notation tasks. In particular, errors may occur more often in sentences with more than one

relation due to the issues mentioned above. In the following subsections we consider three

subsamples of sentences, two from test folds of CLEF and one from the Fables dataset, to

investigate the error types and the ways that model characteristics and data characteristics

cause certain errors.

5.8.1 Error types. To understand the nature of the errors (i.e., other than those from

pipelining), we manually inspected over 10% of the errors, 50 wrongly labeled sequences

from the largest data set CLEF. We selected the setting with a given ground-truth preposi-

tion to analyze problematic issues in classifying trajector and landmark roles and relation

extraction. Table XVI categorizes the errors based on their cause and gives the percentage

of each category in the random sample.

Class Description Percentage

1 A role element is classified as none 48%

2 Nesting spatial relations 24%

3 Spatial focus shift 10%

4 Irregularity in the grammar 10%

5 Errors in the annotated data 8%

Table XVI. Error classes.

—Class 1. One frequent error assigns none labels to words that play spatial roles. This

error originates from two sources: the lack of lexical information and the high prior

probability of the none class compared to role-holder words, leading to lower recall of

both trajectors and landmarks. The latter generally causes errors in experiments on the

CLEF dataset. In the sentence below, “woman” is wrongly classified as none, which

the latter issue causes.

Example: A [woman]Tr holding a plastic bag [on]Ind the left.

However, the first cause (i.e., the lack of lexical information) generally affects errors in

the cross-domain experiments in section 5.7.

—Class 2. These errors are caused when the sentence expresses spatial relations that

are more complex. In these cases, multiple trajectors are assigned to a preposition. In

nested relations, the spatial relation has the transitivity property, so the assigned roles are

semantically correct. However, we avoid spatial reasoning in the hand-labeled data, and

these relations have not been annotated. The transitivity property of the relation depends

only on the context, type of relation and its trajector and landmark entities. Injecting

these more complex inputs makes the learning more difficult for the machine learning

model, particularly when it lacks training data. These additional role assignments are
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classification errors and cause lower precision particularly in trajector labeling in our

dataset.

Example: A dark-haired girl in a white T-shirt is sitting at a [desk]Tr [in]Ind a [classroom]Lm.

With respect to the second “in”, only “desk”is the annotated trajector, though the clas-

sifier also classifies “girl” as a trajector. This assignment is semantically correct, but as

described above, it does not match the ground-truth annotations.

—Class 3. This type of error concerns cases in which the transitivity property does not

hold. A preposition trajector cannot semantically be a trajector of the next preposition

in the sentence, but the landmark of the first relation is often the trajector of the next.

In other words, the spatial descriptions’ focus changes from one trajector to another.

In these cases, a wrong trajector is assigned to a preposition and is related to a wrong

landmark.

Example: More kids sitting at their desks and a [blackboard]Tr [in]Ind the [background]Lm.

Depending on the context, one can infer that only the “blackboard” is in the “back-

ground” and the desks are not. Hence, “background” is a wrong landmark for both

“kids” and “desks”.

—Class 4. The sentences’ grammar causes this type of error, primarily the phenomenon

of semantic ellipsis.

Example: A king size bed with the night [table]Tr [on]Ind the [side]Lm.

Here, “bed” is classified as the trajector of “on”, while “table ”is actually the trajector.

In fact, “side” should be labeled as the landmark that actually refers to the side of “bed”.

—Class 5. The annotator, not the classifier, causes these errors. This fact implies that

accuracy can, to some extent, vary.

5.8.2 Error Analysis Cross Folds and Models (CLEF and GUM). Adding the preposi-

tion template had inconsistent impacts on the performance of CRF’s on different datasets.

Particularly, this impact was greatly positive on trajector classification in CLEF and neg-

ative on landmark classification in GUM. This inconsistency encouraged to take a small

subset of testing examples and compare the errors of two models (with and without a tem-

plate) to address the effects of adding the templates on each type of error.

In the CLEF dataset, several sentences contain nouns and prepositions between the

pivot-preposition and its related trajector. The sequential joint learning makes errors due to

assigning “none” to these long distance trajectors. The template performs the first correc-

tion to handle these long distance trajectors properly in the skip-chain CRF. To quantify,

65% (11 of 17) of the errors in the checked subsample (100 instances) are in this category,

leading to lower recall in the linear-chain CRF. Those errors belong to class 1, and most

are corrected by the skip-chain CRF model. The following sentence is an example:

Example: A dark-skinned, dark-haired [boy]Tr with a gray shirt is standing in a room

[in]Ind front of a [wall]Lm made of red bricks.

The linear-chain model labels “boy” as “none” with respect to “in” (front of), which the

skip-chain model corrects it to “trajector”.

The second type of error includes cases in which two trajector labels are assigned despite

there being only one actual trajector. The previous subsection classifies and explains these

errors as classes 2 and 3. In this subsample, we see that the long distance noun is the

actual trajector in 3 of 17 such cases. In 3 other cases, the noun immediately before the

preposition is the actual trajector. These errors, totaling 6 of 17 (36%), lead to a decrease

in both recall and precision.
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Example: There is a wooden commode and a mirror on the left, a wooden bedside table

with a table lamp next to the bed and a huge [fan]Tr on the wall [above]Ind the [bed]Lm.

The linear-chain tagger labels both “wall” and “fan” as trajectors with respect to “above”,

while the general skip-chain CRF correctly tags only “fan” as the trajector.

The only error made by the skip-chain CRF concerning trajectors in our subsample is

the example below, in which the trajector “boy” is assigned a “none” label with respect to

the second “in”, in the sentence:

Example: A dark-skinned, dark-haired [boy]Tr in a very colorful pullover is standing in

between two desks [in]Ind the [classroom]Lm.

This error is not typical but merely arbitrary, as there are similar cases in the test data that

the skip-chain CRF model correctly classifies.

Furthermore, the improved model outperforms even the ground-truth in trajector classi-

fication. This finding is unexpected but not contradictory. In the ground-truth and pipeline

settings, the correlations between indicators and other role labels are not considered, while

joint learning uses this extra feature in the form of hidden variable(s). The template clearly

increases the probability of assigning role labels (i.e., trajector/landmark) instead of a

none label, with the additional probabilistic factor connecting distant nouns to the pivot-

preposition; this process corrects the long distance words labeled as none and increases

recall of both trajectors and landmarks. This feature removes one cause of class 1 errors.

Because landmarks are usually in prepositional phrases and close to the pivot preposition,

modeling long distance dependencies contributes less than for trajectors. However, it still

increases recall of landmarks. It may, however, introduce additional false positive land-

marks, as in the following example:

Example: [Tourists]Tr are standing [in]Ind the [classroom]Lm of a school in front of

the blackboard.

Here, both “school” and “classroom” are labeled as landmarks of the first “in”. The

F-measure, therefore, has less improvement in landmarks than in trajectors.

In contrast to CLEF, sentences are short in GUM (Maptask), and modeling long-distance

dependencies does not improve recall. Some cases lack trajectors because sentences con-

tain directional instructions in which “you” is the implicit trajector. The skip-chain CRF

thus only does equally well or slightly worse in trajector classification. Fitting the more

complex model to the small amount of data in GUM (Maptask) lowers both the recall and

precision of landmarks. Additional investigation of one fold of the errors in the skip-chain

CRF of GUM (Maptask) shows that many landmarks are annotated as none because both

occurring a specific noun as a landmark in the training data and the combination of a land-

mark with a specific preposition are important to the model. However, the linear chain

CRF is less strict and annotates them correctly. The additional probabilistic factor makes

the model tend to overfit the data, strengthening the effects of the lack of training data and

lexical information. The incorrect “none” labels here assigned more primarily due to the

lack of training data than due to the frequently occurring “none” labels in sentences. The

additional template can, therefore, also introduce class 1 errors, but for a different reason

than mentioned above.

5.8.3 Error Analysis Cross Domains and Models (DCP and Fables) . The lower per-

formance of cross-domain evaluation and also 10-fold cross validation on Fables and DCP

encouraged an investigation on the incorrectly classified sentences in these datasets. A

sample is selected from Fables’s test errors because it shows more problematic than DCP.
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Most of the errors belong to class 1. The high prior probability of the “none” labels in

the sequence of words is the main cause. Adding the preposition template in the skip-chain

CRF model increases the errors of this type. The increased complexity of this model and

the limited training data typically cause overfitting, i.e., the model adapts to the training

data characteristics too strongly and does not generalize properly. This type of error is more

problematic for trajector classification, whereas the landmarks are frequently in preposi-

tional phrases and close to the indicators. Syntactical information thus helps achieve higher

recall for there. If the indicator has been identified correctly, landmarks are more easily

recognized than trajectors.

For trajector classification, due to the variety of trajectors syntactical features, lexical

information are more discriminative and useful for the model. In the example sentence

below, in which gold labels are indexed, the trajector is incorrectly classified as “none”

because the word eagle does not occur as a trajector in the CLEF dataset:

Example: An [Eagle]Tr sat perched [on]Ind a lofty [rock]Lm, keeping a sharp look-out

for prey.

The next example is another case in which none of the roles are recalled and all are labeled

as “none”. Because the type and context of the texts differ from Fables to CLEF, contextual

features are ineffective.

Example:A [huntsman]Tr, concealed [in]Ind a [cleft]Lm of the mountain and on the

watch for game.

Conversely, exploiting grammatical features introduces more false positives and decreases

precision for landmarks. The following sentence is an example of this phenomenon:

Example:One touch from you and I should be broken in pieces.

The model wrongly classifies in as an indicator and pieces as a landmark while in has no

spatial sense. For this example, the semantic role labeler labels in as AM-LOC, which is

also incorrect. Despite dissimilarities in the sentences’ vocabulary and context, there are

several cases where all roles have been labeled correctly. Their similarity to typical spatial

description grammatical structures in CLEF accounts for this and the below sentence is an

example:

Example:There were two [Cocks]Tr [in]Ind the same [farmyard]Lm, and they fought

to decide who should be master.

We also briefly study the errors made by the system in 10-fold cross-validation inside

these datasets. The trajector and landmark classification precision is nearly 100% for both

datasets, but recall is very low, signifying that the major problem is again insufficient evi-

dence for assigning the roles, i.e., a lack of training data and particularly a lack of positive

examples. If we compare the overall number of prepositions to the number of spatial prepo-

sitions, there are many more non-spatial prepositions per sentence in the Fables and DCP

compared to GUM and CLEF, which leads to a stronger bias toward assigning none labels.

Having an unbalanced dataset (with respect to positive and negative examples) is a typical

challenge for relation extraction with machine learning.

Overall, the error analysis in these experiments indicates the main issues for successful

transfer of models across different domains. It also suggests ways to improve spatial role

labeling systems in the future.

Because labeling data to train a model in each domain of interest is inefficient, we have

shown one way in which to use existing resources to alleviate the annotation labor. Ex-

periments in different domains present difficulties in cross-domain transferability and in-
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dicate that learned classifiers become biased to the distribution of features and words in

the training dataset. However, exploiting more general resources, such as TPP, can help

reducing this bias. Other future directions include feature expansion and using latent word

models [Deschacht and Moens 2009] to broaden the vocabulary range recognizable by the

model. In fact, more abstract features and categories of sentence components can be ob-

tained either by exploiting linguistic resources or from various corpora in an unsupervised

setting. For example, acquiring the feature animal from eagle or more abstract properties,

such as physical object about entities, could increase both recall and precision of classify-

ing trajectors and landmarks. Moreover, using partially labeled data in the joint learning

setting would gradually decrease the requirements for manually prepared, annotated data.

Performance could improve by coupling these directions with underlying machine learning

models. The last section of the paper presents more general future directions and research

potentials.

6. RELATED WORK

Several research areas have studied spatial information, both practically and theoretically.

The various perspectives include cognitive, linguistic and computational aspects. Use-

ful application areas include geographic information systems (GIS), navigation, natural

language processing, robotics and computer vision tasks. Most applied approaches con-

cerning spatial information are domain-specific and only provide some feasible solution

for specific tasks and domains. However, such narrow domains inevitably lead to less

realistic settings and inflexible solutions and are unsuitable for real situations involving

multi-disciplinary tasks. Studying various aspects of spatial information processing and

clarifying connections to the research described in this article are still important, with the

goal of exploiting state-of-the-art approaches in less domain-specific contexts. In this sec-

tion, we try to draw a summarized descriptive image of related works.

In the literature, various formal representation languages and reasoning systems exist

to handle spatial information [Galton 2009]. Moreover, researchers have proposed spatial

calculi models, such as qualitative spatial calculi, and elaborated compositional extensions

for spatial reasoning and inference [Stock 1997; Renz and Nebel 2007; Cohn and Renz

2008]. For most computational aspects of spatial information, linguistic issues have not

been given much attention, and non-linguistic formalizations are often pursued. This is the

case for fundamental works on both formalizing and applying spatial relations. Bateman

et al. [Bateman et al. 2010] also argue this shortage. These formal models are inherently

based on the logics of human spatial cognition, independent of linguistic constructs, and

the way humans express such relations in natural language. Spatial cognition studies could

make the connection between the two aspects more transparent because they investigate

abstract spatial concepts that, on the one hand, are expressed in language and, on the other

hand, are formulated in spatial calculi, particularly in qualitative spatial calculi models.

When the theory is brought into practice and spatial computational models are exploited,

a specific set of spatial concepts is presumed and formalized to make the computations

feasible in each application. When natural language processing is required, a simplified

and domain-specific setting is employed. The lack of domain-independent applications

is caused by the flexible, complex and unmanageable linguistic constructs that lead to

under- or over-specificity when mapping natural language to formal representations. Bate-

man [Bateman 2010] extensively discusses this issue and argues the necessity of using two
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semantic levels, explaining linguistically oriented spatial ontologies, such as GUM [Bate-

man et al. 2007]. This type of ontology facilitates mapping between natural language and

spatial calculi [Hois and Kutz 2008b; Bateman et al. 2007; Hois and Kutz 2008a].

In application-oriented works, the type of works in which we are interested, investigating

the cognitive aspects is more important when targeting understanding unrestricted natural

language. Few research works exist that consider both this problem and the abstraction

of spatial concepts in their systems [Ross et al. 2005; Kollar et al. 2010]. We therefore

describe the related works that inspired us to employ the selected spatial elements for this

work and to identify other research efforts in this area.

In this work, we pay particular attention to spatial prepositions. From a cognitive-

linguistic point of view and in related spatial language research, spatial prepositions, their

semantics’ variation, and grounding their perceived meaning have been thoroughly investi-

gated [Herskovits 1986]. In the visual context, applying computational spatial preposition

models to a visually situated dialog system is investigated [Kelleher and Costello 2009].

Lockwood et al. [Lockwood et al. 2006; Lockwood et al. 2008] describe a model for learn-

ing to classify visual scenes according to the spatial preposition depicted. They use SEQL,

an existing model for analogical generalization, to construct relational descriptions from

stimuli input, such as hand-drawn sketches, and their suggested model can distinguish be-

tween in, on, above, below, and left after being trained on simple sketches exemplifying

each preposition. These efforts are valuable but remain too limited to ground unrestricted

spatial natural language perception. A spatial preposition only portrays a symbol whose

meaning should be extracted from its context, using other spatial elements in the language.

In our work, the automatic mapping to the prepositions’ meaning is performed by exploit-

ing the first level of mapping the language to spatial roles. This plays an important role in

the semantic representation of spatial prepositions in a domain-independent way.

The preposition disambiguation task employed in this paper has been introduced before

as a benchmark task [Litkowski and Hargraves 2007; Tratz and Hovy 2009]. However,

though we show improved results on the general (coarse-grained) task, our focus on spa-

tial prepositions in spatial relation extraction is novel. The importance of prepositions in

meaning conveyance has been extensively investigated [Baldwin et al. 2009], and preposi-

tions’ dominant role in language semantics has been experimentally proven. This fact also

explains why prepositional sense disambiguation has recently received much attention in

semantic text analysis [O’Hara and Wiebe 2009; Dahlmeier et al. 2009]. Exploiting prepo-

sition disambiguation in this work shows the benefits of this computational linguistic task

in spatial relation extraction.

After processing the prepositions and their senses in a computational linguistic task,

we formulated the extraction of the trajector, landmark, and spatial indicator roles as the

second step in our spatial role labeling task. Related works have noticed these primitive

spatial elements in both visual contexts and processing locative phrases [Barclay and Gal-

ton 2008]. Extracting these elements from language has been noticed in few applications

containing multimodal environments or in tasks that are occupied with visual information

and visualization. There are few works that focus on the linguistic aspect, with notable

exceptions [Li et al. 2007; Li et al. 2006] (for the Chinese language). These focus on ex-

tracting similar trajector and landmark elements to visualize fable stories. However, their

approach is limited to a binary classification label for the trajector role. The landmark is

extracted using limited background knowledge instead of a machine learning approach.
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Kollar et al. in a recent work [Kollar et al. 2010] presented a system for interaction be-

tween humans and robots. The robot follows natural language directions by extracting

a sequence of spatial description clauses (SDCs) from the linguistic input and infers the

most probable path through the environment given information only about environmental

geometry and detected visible objects. Their spatial description clauses contain elements

including figure (trajector), verb, spatial relation and landmark. Grounding the flexible

spatial language of directions in perception is interesting, but it essentially assumes that

directional instructions are given, which renders it to be domain-specific understanding.

None of these works formalized the complete task of domain-independent spatial role

labeling using machine learning nor did they pay attention to linguistically motivated fea-

tures. The idea of defining spatial role labeling is inspired by the more general task of

semantic role labeling [Màrquez et al. 2008]. Section 2 discusses some differences that

make our task novel. The effects of structured and relational features in this task and the

lexical information encouraged the use of relational machine learning methods, such as

CRFs. Kollar et al. [Kollar et al. 2010], also used a CRF model (to extract SDCs) but

with different settings and feature functions. Because of their capability, general CRFs can

model long-distance dependencies, and skip-chain CRFs can be intuitively useful for cer-

tain information extraction tasks. Researchers have applied skip-chain CRF’s for named

entity recognition [Sutton and MacCallum 2006]. However, they have not been used in

spatial information extraction. We show that modeling dependencies in the CRF frame-

work benefits the spatial role labeling task.

Apart from cognitive/linguistic models, we point to additional related works that ex-

ploit machine learning models in their restricted spatial settings. For example, Reinberg-

err [Reinbergerr 2005] presents an unsupervised method to extract spatial relations at the

preposition level from text corpora and use the output as preprocessed material to build a

virtual environment. They use a shallow parser and select functional relations from which

they can extract spatial information. That work manually evaluates the adequacy of the

extracted relations. Another work transforms a textual description of a spatial scene in a

sequence of prepositions into a graph with objects, annotating local reference systems as

nodes and relations as arcs [Claus et al. 1998; Wiebrock et al. 2000]. Inference is real-

ized by multiplying transformation matrices, constraint propagation and verification using

machine learning techniques. By assigning values to the parameters and using heuristics

for object placement, a visualization of the described spatial layout is generated from the

graph. They also consider a limited set of predefined relations.

Spatial relations are also important in semantic image analysis. In one work, eight fuzzy

directional relations, such as right, left and above, are supported [Papadopoulos et al.

2006]. All relations are evaluated for each pair of objects in the image. That work presents

a learning approach, coupling Support Vector Machines (SVMs) and a Genetic Algorithm

(GA), for knowledge-assisted domain-specific semantic image analysis. There are also

many challenges in video analysis, handling spatial and temporal relations and extracting

those relations from video; an interesting work proposes a framework for learning object

and event categories from video [Sridhar et al. 2008]. The work exploits graphical models,

and spatio-temporal patterns in the video are represented using an activity graph.

To interpret spatial language for following navigational directions, a system is presented

that does not use semantic annotation but instead learns from human demonstration on the

Maptask corpus [Vogel and Jurafsky 2010]. In this work, a reinforcement learning setting
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derives the correspondence between the instruction language and path features. On the

same corpus, an earlier work first manually maps the spatial language to conceptual NIUs

(navigational information units) [Levit and Roy 2006]. The combination of NIUs is then

automatically interpreted as a spatial path using dynamic programming. The linguistic part

of NIU extraction is ignored there. The same authors in a recent work start from natural

language and map it to SDCs [Kollar et al. 2010].

Moreover, several systems extract information directly from text and determine spatial

relationships between objects in a 3D scene to generate such scenes from these textual

descriptions. These systems consider the semantic models of spatial relations and their

computational implementation. However, they are restricted to simple narratives, often

invented by the authors, and do not consider a real corpus. For applying machine learning

usually a limited number of relations is defined to keep the problem tractable. A more

general overview of older vision and language systems can be found in [Kelleher 2003].

To our knowledge, the current main obstacles to employing machine learning and using

this effective approach are the lack of agreement on a unique semantic model for spatial

information, the diversity of formal spatial relations, and the consequent lack of annotated

data from which machine learning can learn and extract spatial relations. Some research

works focus on annotating spatial descriptions in natural languages, specifically for geo-

graphical information systems, such as SpatialML [Mani et al. 2008]. To obtain an ap-

propriate annotation scheme, one must investigate and design linguistic and also spatial

ontologies to cover the necessary information and to maintain the practical feasibility of

automatically annotating unobserved data. However, there is no systematic research on

using existing annotations for learning to extract spatial information. Our work here is a

first effort in this direction.

Hence, we place our work as an application-oriented investigation that considers ab-

stract spatial elements and the way they are generally expressed in natural language. This

abstraction enables processing unrestricted natural language for mapping to formal spatial

relations. We define a novel framework for spatial relation extraction by machine learning

approaches at the linguistic level. We use a subset of GUM evaluation data for our ini-

tial experiments. To our knowledge, no other reported experimental studies have used the

same data with machine learning. We also utilize the CLEF corpus in this work, which

is partially annotated based on our proposed scheme in [Kordjamshidi et al. 2010b]. We

suggest this scheme to cover both primitive concepts of spatial semantic and a mapping to

formal spatial ontologies for machine learning approaches. The suggested spatial ontology

is small compared to the extensive and expressive ontology of GUM, however mapping

between natural language and a formal ontology while exploiting probabilistic relational

machine learning approaches is discussed in [Kordjamshidi et al. 2010a].

7. CONCLUSIONS AND FUTURE DIRECTIONS

This paper has mainly defined the spatial role labeling task and spatial information ex-

traction from unrestricted natural language using machine learning techniques. We have

presented a novel task (spatial role labeling), a set of techniques, and annotated data re-

sources for spatial language understanding. Much of our method’s success stems from

well-engineered features and state-of-the-art machine learning techniques. The context-

dependent classification methods employed, including various CRFs, were particularly

useful. We have successfully applied spatial role labeling to texts from the GUM (Gen-
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eral Upper Model spatial ontology)-evaluation and CLEF, IAPR TC-12 Image Benchmark

datasets. Our extensive experiments have shown that learning the spatial role labeling task

is feasible, and the results on individual datasets are promising. We have also tested our

learned classifiers on different domains shown that if a classifier is trained on one dataset

and tested on another with a different, or less restricted, vocabulary, performance drops

accordingly. One part of our methodology, the pipeline, has performed particularly well

in such cases. We have experimentally shown that utilizing large, external data resources,

such as TPP, is useful when coping with these difficulties, as is splitting the task in two

parts: preposition disambiguation and spatial role classification.

Several research directions can extend this work. First, obtaining more data and incor-

porating additional linguistic elements dealing with focus shift and motion detection are

both useful directions. Moreover, using different types of spatial indicators can enhance

the range of language constructs that can be handled. An example of the last is the sentence

“The table is supporting the book.”, in which a verb is the spatial indicator.

Second, our main efforts will focus on using more powerful probabilistic machine learn-

ing systems that can address richly structured knowledge representations. The field of

probabilistic logic learning [De Raedt et al. 2008] has developed many powerful proba-

bilistic learning techniques, many of which have algorithms that can be applied in our set-

ting. We have performed initial experiments with CRF extensions that can use the (logical)

relational knowledge representation, TildeCRF [Gutmann and Kersting 2006]. To fully use

such systems, the components in the spatial role labeling task should be defined relation-

ally. The potential to inject background knowledge and probabilistic linguistic constraints

in a logical form encourages a move beyond the purely propositional representations usu-

ally employed in computational linguistics. Extracted information, i.e., spatial relations,

are generally best handled by representation and learning techniques that can explicitly

deal with structured data in terms of objects and relations. In this direction, we will exploit

various resources which can help to jointly learn smaller related tasks [Andrew et al. 2004].

Additionally, semi-supervised learning and expanding a small data set using latent words

and related techniques to cope with the lack of lexical patterns in the training data are a

promising direction [Deschacht and Moens 2009].

Third, a related direction of research is using formal knowledge representations to repre-

sent spatial information. Using additional reasoning mechanisms, can aid in the extraction

process in addition to performing reasoning-after-solution on the extracted spatial infor-

mation. We recently made the initial steps towards this direction in [Kordjamshidi et al.

2010a; Kordjamshidi et al. 2011].
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