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Abstract: The high spectral resolution of hyperspectral images (HSIs) provides rich information but
causes data redundancy, which imposes a computational burden on practical applications. Band
selection methods can select a subset of HSI without changing the main information to reduce
the spectral dimension. Clustering-based methods can reduce band correlation significantly, but
traditional clustering methods are mostly hard clustering and are not accurate enough to partition
the bands. An unsupervised band selection method based on fuzzy c-means clustering (FCM)
was introduced to tackle this problem. However, FCM can easily obtain the local optimal solution
and take a long time to process high-dimensional data. Hence, this work applies kernel function
and a sampling strategy to reduce calculation time, and information entropy is used to initialize
the cluster center. A kernel FCM algorithm based on spatial sampling and a grouping information
entropy strategy is proposed and called SSGIE-KFCM. This method not only optimizes the calculation
process and reduces the amount of computation data, accelerating the calculation efficiency, but
also adopts grouping information entropy to improve the probability of obtaining a global optimal
solution. Classification experiments on two public HSI datasets show that: (1) The classification
performance of the whole band can be achieved or even exceeded by using only a small number
of bands to achieve the purpose of dimensionality reduction. (2) The classification accuracy can be
improved compared with the FCM method. (3) With the introduction of sampling strategy and kernel
function, the computational speed is at least 24 times faster than that of FCM. It has been proven that
the SSGIE-KFCM method can significantly reduce the amount of HSI while retaining the primary
information of the original data, which further promotes the research and application of HSI in the
remote sensing area.

Keywords: hyperspectral image; band selection; kernel fuzzy c-means clustering; spatial sampling
strategy; information entropy

1. Introduction

In recent years, hyperspectral image (HSI) processing has become a hot spot in the
remote sensing field [1,2]. Compared with multispectral images, HSI has a higher spectral
resolution and can obtain images with more channels. Spectral values at the exact location
can form continuous spectral curves to enhance the discriminatory ability of ground ob-
jects [3,4]. Due to subtle spectral resolution, more detailed spectral characteristics of the
pixels are obtained. As the amount of information of HSI increases, data transmission and
subsequent processing time increase, which reduces the application efficiency. Moreover, it
is necessary to reduce the dimension before using the HSI data because of the high correla-
tion and dependence among adjacent bands, resulting in large computational complexity
and the Hughes’ phenomenon [5].
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At present, two main methods of dimensionality reduction exist. One is feature
extraction, and the other is band selection [6], also known as feature selection. Feature
extraction converts the original data from high-dimensional data to low-dimensional
data through operations, such as principal component analysis (PCA) [7], independent
component analysis (ICA) [8], discrete wavelet transform (DWT) [9], etc., which changes
the physical information of the original data. However, this information plays an important
role in practical applications such as classification [10,11], target detection [12–15], anomaly
detection [16–18], spectral unmixing [19,20], hyperspectral image restoration [21–26], and
hyperspectral compressive sensing [27].Band selection involves selecting a certain number
of bands as a representative subset from all bands according to specific rules. These subsets
can represent the original HSI information. Relative to the feature extraction method, the
physical significance of each band value of the original data can be retained to meet specific
application needs.

Band selection can be divided into supervised, semisupervised, and unsupervised
methods according to the degree of prior information participation [28,29]. Labeled in-
formation is used by supervised and semisupervised methods to improve the quality of
selection results to some extent, but in practice, obtaining prior information is difficult, so
unsupervised methods are more feasible than the above two methods.

According to the algorithm principle, band selection can be divided into (1) the
sparse-based method, (2) the search-based method, (3) the ranking-based method, (4) the
clustering-based method, and (5) the mixing-based method, which combines the above
methods. The clustering-based method considers each band as an object and divides all
bands into several clusters, which maximizes the distance between the cluster centers and
minimizes the distance between objects within clusters. It then selects a representative
band from each cluster to form a subset, effectively reducing the similarity between the
extracted bands.

Furthermore, traditional clustering-based methods mostly comprise hard clustering,
i.e., when an object belongs to a particular class, it is in an either/or position. However, due
to the complexity of spectral information in HSIs, a band may belong to different clusters
concurrently. The hard clustering method is not accurate enough for object partitioning, but
the fuzzy clustering-based method, which calculates the object’s membership to each class,
can satisfactorily resolve this issue [30]. The fuzzy c-means clustering (FCM) [31] method
is an iterative soft clustering method. In the process of clustering, objects are not simply
divided into one class, but the probability of attributing objects to all classes is calculated,
allowing samples to belong to multiple clusters at different probabilities simultaneously.

Nevertheless, the whole computing procedure takes a long time for data with higher
dimensions to obtain results. Moreover, the random initialization process easily leads to
FCM falling into the local optimal solution. Havens and Bezdek et al. [32] employed the
kernel FCM (KFCM) method for very large data, transforming the data into reproducing
kernel Hilbert space (RKHS) to simplify the calculation process and improve efficiency.
Therefore, this paper adopts KFCM for band selection. In addition, it uses spatial sampling
and grouping information entropy strategies to simplify the input data and tackle the local
optimal solution problem, respectively. Finally, a novel method called SSGIE-KFCM is
presented. The contributions of this paper are given as follows:

(1) The KFCM algorithm is innovatively introduced into the field of hyperspectral
band selection, and FCM is modified using a kernel function to optimize the iterative
calculation process, reducing the computational complexity. To our knowledge, kernel
clustering has not yet been utilized in band selection.

(2) A simple and effective sampling strategy is proposed. Sampling HSI data in the
spatial dimension ensures that the spatial distribution remains approximately invariant. It
can reduce the amount of data by half and the calculation time with little or no influence
on the results.

(3) The information entropy of each band is calculated, and the bands with higher
information entropy values are selected by grouping instead of globally, which is used
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as the initial cluster center, further tackling the problem of trapping into local optimums
in FCM.

The rest of this article is arranged as follows. Section 2 describes the related work of
band selection methods. In Section 3, the process and details of the proposed method are
presented. The experimental results on the public HSI dataset are shown in Section 4, and
Section 5 summarizes this paper.

2. Related Work

The principle of matrix decomposition is used in the sparse-based method. First, the
three-dimensional HSI cube H is transformed into a two-dimensional matrix X. Then, X is
divided into matrix A and Z via sparse decomposition, where A is called the characteristic
matrix, also known as the dictionary, and Z is the coefficient matrix. Sparse coefficients
reveal the potential structure of HSI, so the final band subset can be found by computing
the coefficient matrix. In 2011, Li et al. [33] used the K-SVD algorithm to calculate the
characteristic matrix and the coefficient matrix, then sorted each column of the coefficient
matrix Z in descending order and selected the first k items of each column to form the
matrix Zs. The histogram of Zs shows the frequency of each band in Zs. The k most
frequently occurring indices are selected according to the histogram, and the corresponding
bands of the original HSI are selected as the final band subset. In the same year, Li
et al. [34] introduced the sparse non-negative matrix factorization (SNMF) method into
band selection, but the disadvantage of this method is that there is no unique solution
to the band index obtained. That is, the results are not the same each time. Moreover,
Sun et al. [35] proposed an improved sparse space clustering (ISSC) algorithm inspired by
sparse space clustering to optimize the sparse matrix through the L2 norm.

The search-based method converts the band selection into an optimization problem
of a criterion function. Generally, it is difficult or impossible to solve a given criterion
function. A local or global optimal solution can be obtained if a search method is adopted
to optimize the criterion function. Therefore, the search-based approach has two critical
points: (1) criterion functions and (2) search strategies. Sequential forward search (SFS) [36],
proposed by Whitney in 1971, is an earlier method that searched for an additional band
based on the bands already selected. This method yielded a suboptimal solution and suf-
fered from the so-called “nesting effect” [37]. In 2016, Su et al. [38] used minimum estimated
abundance covariance (MEAC) distance and Jeffries–Matusita (JM) distance as objective
functions, respectively. Then, the Firefly algorithm, a swarm intelligence algorithm, was
used to search for the optimal solution, resulting in two band selection algorithms. All
the above methods optimize the single objective function. Subsequently, Gong et al. [39]
designed two conflicting objective functions, one for information entropy and the other for
the number of selected bands. Both are required to be minimized simultaneously in the
conflicted relationship. A multiobjective evolutionary algorithm (MOEA) is presented to
solve this problem. Within the framework of this model, band subsets of different band
numbers can be collaboratively optimized. They can communicate with each other by
interchanging bands and improve the quality of results by using the relationship between
the band subsets of different band numbers. This selection method is named multiobjective
optimization band selection (MOBS).

The basic idea of the ranking-based method is to use an evaluation criterion to score
each band, rank the score from high to low, and select the top bands as band subsets. In 1999,
Chang et al. [40] proposed a maximum-variance principal component analysis (MVPCA)
method for band selection based on the decomposition of matrix features (spectral). This
method calculated the variance of each band and selected several bands with the most
significant variance. However, the bands selected by this method have correlation, and
information is still redundant. Kim et al. [41] employed the covariance of the background
data to evaluate the effect of bands on the detection performance of the matched filter (MF)
and adaptive coherence estimator (ACE), and sorted and selected the band subset with
greater influence. Then, they applied it in near real-time target detection. Although the
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ranking-based method can select bands with a high amount of information, the selected
band subset may have correlation, and the characteristics of the clustering-based algorithm
can avoid this problem.

The earliest band selection methods based on the clustering idea are Ward’s linkage
strategy using mutual information (WaLuMI) and Ward’s linkage strategy using diver-
gence (WaLuDI), proposed by Adolfo et al. [42] in 2007, which is a hierarchical clustering
algorithm based on Ward’s linkage. In 2009, Qian et al. [43] designed an unsupervised
method, the affinity propagation (AP) algorithm; Su et al. [44] then developed a sample-
based semisupervised adaptive AP. Afterwards, Yang et al. [45] proposed a representative
band-mining method based on k-means clustering. Yuan et al. [46] extended the k-means
clustering algorithm to a dual-clustering method using context analysis. The above two
methods belong to hard clustering. In 2017, Zhang et al. [30] used the FCM method for
band selection. They introduced a particle swarm optimization (PSO) algorithm for the
local optimal solution problem to search globally and obtain a global optimal solution. The
experiments show that PSO can effectively improve the classification accuracy of selected
bands. Because the whole calculation process of PSO replaces one of the cluster centers,
it increases the amount of calculation, but finding the global optimal solution faster can
reduce the number of iterations. Consequently, in terms of execution efficiency, the intro-
duction of PSO does not guarantee that the entire time will be shortened. Even with a large
amount of HSI data, it may increase the running time too much.

This paper is also based on the FCM method for band selection, but unlike the idea in
ref. [30], we adopted the kernel function to modify the FCM. Before iterative optimization,
the spatial sampling strategy is employed to reduce the amount of data and improve the
operating efficiency. The initial cluster center is selected by using grouping information
entropy to address the issue of the local optimal solution.

3. Proposed Method

The flowchart of the proposed SSGIE-KFCM method is shown in Figure 1. To better
understand the calculation of hyperspectral band selection, we first define some of the
symbols used in this paper. Let H ∈ Ra×b×n represent HSI data, where a and b are the
number of rows and columns in the spatial dimension of a single-band image, and n
is the number of bands of HSI. Let hi ∈ Ra×b denote the ith band image. Usually, in
the calculation process, H is first converted into a two-dimensional matrix, denoted as
X ∈ Rg×n, where g = a × b, and xi ∈ Rg is the ith column vector of X (i.e., the ith band
vector).

3.1. Fuzzy C-Means Clustering Method

The FCM algorithm calculates the membership degree of each object in different
subsets and divides the object into the corresponding cluster with the most significant
membership value. The determination of each membership value can be defined as the
following optimization problem:

min
uij

J =
n
∑

i=1

m
∑

j=1
uq

ijd
2
ij

s.t.

{
uij ∈ [0, 1]
∑m

j=1 uij = 1, ∀i = 1, 2, . . . , n

(1)

dij =
∥∥cj − xi

∥∥ (2)

where n and m are the total number of clustering objects and clustering subsets; uij denotes
the membership degree of the ith object xi to the jth class. From the actual physical meaning,
the sum of the membership values of an object to all classes is 1. dij stands for the Euclidean
distance between the ith object xi and the jth cluster center cj, and q is the weighted index
of the controlling membership within the range [1, ∞), usually 2.
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For Equation (1), the Lagrange multiplier method can be used to solve this problem as
follows:

J =
n

∑
i=1

m

∑
j=1

uq
ijd

2
ij +

n

∑
i=1

λi

(
m

∑
j=1

uij − 1

)
(3)

The partial derivative of J with respect to uij is taken and made equal to 0. Then,
according to the constraints of uij, the formula for calculating membership values can
be derived:

uij =

 m

∑
o=1

(∥∥cj − xi
∥∥

‖co − xi‖

) 2
q−1
−1

(4)

Then, Equation (4) is brought into Equation (3). The partial derivative of J with respect
to cj is calculated and made equal to 0. The cluster center can be calculated and expressed as

cj =
∑n

i=1 uq
ijxi

∑n
i=1 uq

ij
(5)

Equation (4) shows that when calculating the membership degree, the coordinates
of the cluster centers need to be known, while when cj is calculated by Equation (5), uij
needs to be calculated first. Accordingly, a membership matrix U ∈ Rn×m that satisfies
the constraints of uij is randomly initialized, and then the cluster center matrix C =
[c1, c2, . . . , cm] ∈ Rg×m is computed. The iteration process is then performed until the
number of iterations is reached, or the convergence condition is satisfied, which is J(t+1) –
J(t) < ε or max |U(t+1) – U(t)| < ε, where ε is the tolerance, and superscript t represents the
tth iteration.

However, two problems exist with the clustering process of FCM. First, FCM has low
computational efficiency. The hyperspectral band selection converts the two-dimensional
image data of a single band into a one-dimensional vector, and each band vector is treated
as an object. The number of pixels in a single band is the feature dimension of the clustered
object. Consequently, for the HSI data, the clustered objects have a high feature dimension,
and the iterative calculation prolongs the running time. Secondly, it is not easy to obtain
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the global optimal solution for FCM. The clustering results depend to a certain extent on
the initialization effect of membership matrix U. Inappropriate initialization results will
lead to adverse clustering results, and due to the characteristics of the Lagrange multiplier
method, the results are often a local optimal solution.

In allusion to the above two issues, we introduce the kernel function and spatial
sampling strategy to reduce the amount of data and improve the calculation efficiency.
Meanwhile, the band with high information entropy is selected as the initial center of the
cluster to improve the accuracy.

3.2. Kernel Fuzzy c-Means Clustering Method

To mitigate the computational burden of FCM clustering, we resort to kernel func-
tion. For kernel clustering, the band vector xi can be mapped from the input space to the
feature space through a non-linear mapping function, such as polynomial kernel function

k
(
xi, xj

)
=
(
xT

i xj + 1
)d or Gaussian kernel function k

(
xi, xj

)
= exp

(
−‖xi−xj‖2

2σ2

)
. In addi-

tion, the mapping can also be performed by the linear kernel function k
(
xi, xj

)
= xT

i xj. The
kernel function can calculate the Euclidean distance based on the feature space without
knowing the feature transformation rules, and it provides a more general way of represent-
ing the elements of X, enabling the easy identification of clusters [47]. Given a set of n band
vectors, we can construct a kernel matrix K ∈ Rn×n, where each element Kij = k

(
xi, xj

)
.

Matrix K represents the transformed feature space. It can be seen that the dimension g
of the input space has no effect on the kernel matrix, and the trick of kernel function can
effectively cope with the high-dimensional input data.

Given the kernel function, for the kernel FCM, the cluster center cj in the objective
function in Equation (1) can be eliminated, and the optimization problem can be mini-
mized again:

J =
m

∑
j=1


n
∑

i=1

n
∑

s=1

(
uq

iju
q
sjdk(xi, xs)

)
2

n
∑

l=1
uq

lj

 (6)

where dk(xi, xs) = k(xi, xi) + k(xs, xs) − 2k(xi, xs) represents the kernel-based distance
between band vector xi and band vector xs, and Equation (4) is rewritten as.

uij =

 m

∑
o=1

(
dk
(
xi, cj

)
dk(xi, co)

) 1
q−1
−1

(7)

where the cluster center cj can still be calculated with Equation (5), but dk
(
xi, cj

)
cannot be

calculated directly. It can be defined with Equation (5) and kernel function as.

dk
(
xi, cj

)
= k(xi, xi) + k

(
cj, cj

)
− 2k

(
xi, cj

)
= Kii + ũT

j Kũj − 2
(

ũT
j K
)

i

(8)

where k
(
cj, cj

)
=

∑n
l=1 ∑n

s=1 uq
lju

q
sjk(xl ,xs)

∑n
l=1 u2q

lj

, k
(
xi, cj

)
=

∑n
l=1 uq

ljk(xl ,xi)

∑n
l=1 uq

lj
, and

~
uj is defined as:

~
uj =

uq
j

∑n
i=1

∣∣∣uq
ij

∣∣∣ (9)

uq
j =

(
uq

1j, uq
2j, . . . , uq

nj

)T
(10)

Equations (7)–(10) show that membership degree uij can be updated iteratively by
itself, so only the cluster center cj needs to be initialized and calculated by Equation (4).
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In subsequent iterations, cj can no longer be calculated and obtained, simplifying the
calculation procedures.

3.3. Spatial Sampling Strategy

For simple HSI scenes, such as the Indian Pines dataset, the same ground objects
are likely to be located over a large area, and similar objects theoretically share the same
spectral characteristics. Therefore, we designed a simple spatial sampling strategy to reduce
the number of pixels by spatial dimension sampling, using the sampled pixels to represent
the surrounding unsampled pixels. This strategy retains the spectral characteristics of the
objects while reducing redundant pixels. There are three sampling strategies: row, column,
and cross sampling, which are shown in Figure 2. We record the spatial sampling operation

as Sampling(·), and the band image
^
hi after sampling is expressed as:

ĥi = Sampling(hi) (11)
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3.4. Selection of Cluster Center Based on Grouping Information Entropy

Information entropy (also known as Shannon entropy) is an index to evaluate the
amount of information in an object. It is insensitive to noise. The higher the information
entropy value of a signal, the more information it contains. For HSI, the higher the
information entropy of a band vector, the richer the details of the corresponding image.
The information entropy of band vector xi can be defined as:

H(xi) = − ∑
ω∈Ω

p(ω) log p(ω) (12)

where Ω is the gray space, and p(ω) represents the probability that a pixel with a gray level
of ω appears in the image, which can be calculated from the gray histogram of the image.

According to the calculation results of information entropy and the number of bands
needed, the bands with the highest rank of information entropy are selected as the initial
centers of clustering, which can obtain the promising effect of band selection. However,
bands with high information entropy may be concentrated in a specific range for HSI,
resulting in the selected bands being continuous and not representing the global information
of the spectrum well, as shown in Figure 3. Therefore, we propose a grouping information
entropy strategy. Specifically, we divide the band information entropy into m groups
according to the number of selected bands, then obtain the index value based on the band
with the highest information entropy in each group and select the corresponding band
vector as the initial cluster center. The method in [48] also uses the concept of grouping,
and in the first step of coarse grouping, for the cases that cannot be grouped evenly, the

range of the jth group band index is
[

x
f loor( n×(j−1)

m )+1
, x

f loor( n×j
m )

]
and

[
x

f loor( n×(j−1)
m )+1

, xn

]
when j < m and j = m, respectively, where floor(·) denotes rounding down. We remark that
our approach is significantly different from [48], as the selection of the grouping strategy to
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obtain clustering centers is only an initial step in our method. This is to avoid the problem of
clustering center aggregation caused by the index sorted using global information entropy.
The core of our method lies in the KFCM, not in the grouping strategy. Even if a random
grouping operation is employed, the desired results can still be achieved under certain
circumstances. However, considering the procedure’s convenience when calculating, this
paper chooses even grouping. For bands that are not evenly grouped, the last part is
discarded so that the selected bands can be evenly grouped, so the band number in each
group is f loor

( n
m
)
. As shown in Figure 3, the red marks are the 5 selected bands. We specify

that iei = H(xi), the information entropy set of all bands is IE = {ie1, ie2, . . . , ien}, and GIEj
represents the set of information entropy of the jth group. The subscript i of iei within the
grouping still adopts the global index. Since we need to obtain the global index of the band,
rather than its position within each grouping, it can be expressed as:

I = max indexm
j=1(GIEj) (13)

Equation (13) indicates that the subscripts of the maximum values in the m sets or
vectors are obtained and formed into sets, and I represents the selected band indices.
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Pines; (b) Pavia University.

Based on the above process, the proposed SSGIE-KFCM algorithm adopts linear kernel
function, spatial cross sampling, and grouping information entropy strategies for band
selection. The detailed procedure is shown in Algorithm 1.
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Algorithm 1: Procedure of SSGIE-KFCM

Inputs: HSI data H ∈ Ra×b×n, the number of selected bands m, the weighted index q, the
tolerance ε, the number of iterations T.
Output:The selected band index I.

1 Generate the sampled data Ĥ from data H using Equation (11);
2 Convert three-dimensional cube Ĥ to two-dimensional matrix X̂.

3 Calculate the kernel matrix K̂ of data X̂ using the linear kernel function k
(

x̂i, x̂j

)
= x̂T

i x̂j;

4 Calculate the information entropy of each band using Equation (12);
5 Divide all bands into m groups;
6 Obtain the band index I0 with the highest information entropy in each group according to

Equation (13);
7 Select the band according to index I0 as the initial cluster center to form the cluster center

matrix Ĉ;
8 Calculate the membership matrix Û using Equation (4) and satisfy the constraints in

Equation (1);

9 while max
∣∣∣Û(t+1) − Û(t)

∣∣∣ < ε or T < t do

10 Update the membership matrix Û using Equation (7).
11 end
12 Obtain the band index I of the final Û according to Equation (13);
13 Return I;

4. Experimental Results and Analysis

This section demonstrates the superiority and effectiveness of the proposed SSGIE-
KFCM method in various aspects by comparing the experimental classification results of
two benchmark HSI datasets. First, the basic details of the two datasets are introduced.
Second, we describe the comparison methods and parameter settings. Then, the imple-
mentation details and results of classification experiments are discussed and analyzed. In
addition, the effects of different spatial sampling strategies on the band selection results are
compared. Meanwhile, the effects of information entropy and kernel function techniques
on the FCM method are analyzed. Finally, the computational times of different methods
are compared, and the advantages of sampling strategy and kernel function in reducing
time complexity are verified.

4.1. Experimental Datasets
4.1.1. Indian Pines

The Indian Pines dataset was collected in 1992 by an AVIRIS sensor at the Indian agri-
culture and forestry experimental farm in northwest Indiana. It consists of 145 × 145 pixels
with 224 spectral bands ranging from 0.4 to 2.5 µm, and its spatial resolution is 20 m. After
removing the bands (104–108, 150–163, and 220) that cover the water absorption area, the
number of remaining bands is reduced to 200. The actual objects can be classified into
16 categories. This scene is displayed in Figure 4.

4.1.2. Pavia University

The Pavia University dataset was captured from the ROSIS sensor in the city of Pavia,
northern Italy, in 2003, and it contains 610 × 340 pixels and 115 spectral bands varying
from 0.43 to 0.86 µm, with a spatial resolution of 1.3 m. Because of the noise band removal,
the number of bands used is 103. There are nine categories of ground objects. Figure 5
shows the pseudo-color image and ground object type image of this dataset.
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4.2. Comparison Methods and Experimental Settings

To illustrate the effectiveness of the proposed SSGIE-KFCM method, six comparison
methods were adopted, including: (1) sparse-based methods: improved sparse subspace
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clustering (ISSC) [35] and sparse band selection (SpaBS) [33]; (2) ranking-based methods:
maximum variance principal component analysis (MVPCA) [40] and ranking-based effi-
cient graph convolution self-representation (EGCSR-R) [49]; (3) a clustering-based method:
clustering-based efficient convolution self-representation (EGCSR-C) [49]; and (4) a search-
based method: orthogonal projection band selection (OPBS) [50]. The classification results
of all bands are added for comparison. The scalar regularization parameter of ISSC is
set to 0.001. The sparsity level of SpaBS is 0.05. The numbers of neighbors of EGCSR-R
and EGCSR-C are set to 10. The FCM algorithm can obtain the result after 30 iterations
according to [31], so we set the number of iterations of SSGIE-KFCM to 50, and the error
judgment uses the difference of membership matrix U. The tolerance ε and the weighted
index q are set to 0.0001 and 2, respectively.

4.3. Performance Comparison

Support vector machine (SVM) [51] and K-nearest neighbor (KNN) [52] are selected as
classifiers to evaluate the effect of band selection. The radial basis function (RBF) is adopted
as the kernel function of the SVM classifier, and the penalty coefficient C and the kernel
function coefficient gamma are determined by cross-validation with an error accuracy of
0.001. The number of neighbors for the KNN classifier is 3, and the distance measure
is Euclidean distance. We randomly selected 20% of the pixels of each class as training
samples. In addition, the classification results are primarily evaluated using the overall
accuracy (OA), average accuracy (AA), and Kappa coefficients, which are defined as

OA =
1
N

r

∑
i=1

yii (14)

AA =
1
r

r

∑
i=1

yii
yi+

(15)

Kappa =
N∑r

i=1 yii −∑r
i=1(yi+ × y+i)

N2 −∑r
i=1(yi+ × y+i)

(16)

where N and r denote the total number of sample pixels and sample types, respectively.
yii represents the value in the ith column and the ith row of the confusion matrix, yi+ is
the sum of the elements in the ith row of the confusion matrix, and y+i is the sum of the
elements in the ith column of the confusion matrix.

The number of bands selected for the Indian Pines dataset ranges from 4 to 40, with
a step length of 4. For the Pavia University dataset, the number of bands selected is 3
to 30, and the step size is 3. An average of 10 independent experiments was used as the
final result.

Figure 6 describes the classification accuracy of seven comparison methods using
two classifiers on the Indian Pines dataset with different band subset sizes. For the SVM
classifier, our proposed SSGIE-KFCM method obtains OA and Kappa values slightly lower
than ISSC using 32 selected bands, an AA value slightly lower than EGCSR-C using
4 selected bands, and the classification accuracy of other band subset sizes is the first.
More specifically, the performance of SSGIE-KFCM has apparent advantages over other
algorithms when selecting the number of bands [8,28]. The OA and Kappa values obtained
using 28 bands are similar to those of all bands, and significantly exceed the classification
accuracy of all bands at 36 and 40 bands. When the number of selected bands exceeds
16, this achieves an AA value significantly higher than that of the whole band, reaching
the maximum when using 40 bands and exceeding the result of 3.39% for all bands. ISSC
can also achieve OA and Kappa values using all bands when selecting 32 and 40 bands,
and exceed the AA value of the full band at 32, 36, and 40 bands. When using the KNN
classifier, the classification accuracy of SSGIE-KFCM is lower than EGCSR-C, OPBS, and
SpaBS at 4 bands, slightly lower than ISSC at 32 bands, and the performance corresponding
to the other number of bands is the first, which has obvious advantages compared with
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other methods. The classification accuracy of SSGIE-KFCM can exceed that of all bands
when selecting more than eight bands. OA and Kappa values are the highest at 40 bands,
exceeding 2.80% and 3.21% of the results using full bands, and the curve of AA reaches the
highest at 12 bands, and is 2.54% higher than that of all bands.
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Throughout these curves, OPBS achieves a more remarkable classification effect when
using four and eight bands, but then it stabilizes without a significant improvement. The
accuracy curve of SpaBS is not stable. Although EGCSR-C can continuously improve the
accuracy as the number of bands increases, a certain gap in the accuracy exists compared
with the proposed SSGIE-KFCM. The performance of EGCSR-R and MVPCA is similar and
has also been improving, but poor results have been achieved.

Figure 7 shows the classification accuracy obtained by different band selection methods
on the Pavia University dataset. For the SVM classifier, the effect of SSGIE-KFCM is lower
than that of EGCSR-C only when six and nine bands are selected, and the effect of the other
band subset size is the first. Furthermore, when using 18 bands, it achieves performance
close to all bands and remains so. For the KNN classifier, SSGIE-KFCM obtains an accuracy
lower than EGCSR-C at 6, 9, 18, 21, and 30 bands, lower than MVPCA at 27 and 30 bands,
and the accuracy is first at 3, 12, 15, and 24 bands. However, the accuracy curve of EGCSR-C
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has a large fluctuation, and the effect of MVPCA is still low when the number of bands
selected is small. The ISSC method that performed well on the Indian Pines dataset showed
a decrease in performance on the Pavia University dataset, and the overall trend was lower
than SSGIE-KFCM, OPBS, and EGCSR-C. OPBS performs better on this dataset than the
Indian Pines dataset and is close to our proposed algorithm. Although the performance of
MVPCA increases significantly with the number of bands when the number of bands is
less than 12, and it can approach or exceed the accuracy of all bands at 27 and 30 bands, the
overall results are unsatisfactory, just like the SpaBS and EGCSR-R methods.
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From the above analysis, we can see that, in most cases, our proposed SSGIE-KFCM
method can obtain the best classification performance, while it is not the best in a few cases.
Nevertheless, it can also rank second and third with little difference from the first. When a
few bands are selected, the effect of using all bands is achieved. Moreover, for the Indian
Pines dataset, the classification accuracy obtained after selecting a certain number of bands
is significantly better than that obtained by using all bands, effectively attaining the goal of
dimensionality reduction.
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4.4. Ablation Study and Sensitivity Analysis
4.4.1. Analysis of Different Training Sample Sizes

This section applies different band selection methods to extract the same number
of bands to analyze the relationship between different training sample sizes and band
selection results. It then uses the results to implement classification experiments under
different classifiers and different proportions of the training sample, in which 10% to 80%
of training samples are selected, and the step length is 10%. The experimental results in
Section 4.3 show that the classification accuracy of SVM is higher than that of KNN. For
the SVM classifier, when the band subset sizes are set to 28 and 18 for the Indian Pines
dataset and the Pavia University dataset, the classification performance obtained by some
methods is closer to that obtained by using all bands, and can obtain local optimal accuracy.
Therefore, this section adopts the number of bands mentioned above for the classification
experiments, and the classifier settings and evaluation indices are the same as those in
Section 4.3.

Figure 8 indicates the classification accuracy of two classifiers with different training
sample sizes using 28 bands given by different methods using the Indian Pines dataset. As
you can see from these curves, the proposed SSGIE-KFCM only obtains a slightly lower
OA and Kappa of KNN than ISSC using 30% training samples, and the rest are first. For
the KNN classifier, it can exceed the OA, AA, and Kappa values of all bands by up to
3.15%, 4.12%, and 3.62%, respectively. The classification accuracy of ISSC is also higher
than that of all bands and is almost the same as the OA and Kappa of SSGIE-KFCM.
When the proportion of training samples exceeds 50%, EGCSR-C achieves a slightly higher
performance than all bands.

Figure 9 illustrates the classification results using different training sample sizes
when 18 bands are selected on the Pavia University dataset. For the SVM classifier, the
classification accuracy of SSGIE-KFCM is slightly lower than that of OPBS when 70% of
the training samples are used, and the remaining cases are better than the other methods.
SSGIE-KFCM, EGCSR-C, and OPBS have a similar performance when the proportion of
training samples is from 50% to 80%. For the KNN classifier, SSGIE-KFCM ranks second
only after EGCSR-C. SpaBS and MVPCA have similar accuracy and poor results compared
with other methods. Due to its low performance, the EGCSR-R method is not within the
range of values on the AA and Kappa curves.

As shown in Figures 8 and 9, the classification accuracy increases with the increase in
training sample size, but the ranking of band selection methods has no apparent change. The
proposed SSGIE-KFCM method is robust to the number of training samples for classification.

4.4.2. Analysis of Different Spatial Sampling Strategies

To analyze and compare the effects of different spatial sampling strategies on band
selection results, we performed band selection and classification experiments under differ-
ent sampling modes, such as non-sampling, row sampling, column sampling, and cross
sampling.

Table 1 shows the classification results of our method using different sampling strate-
gies on the Indian Pines dataset. The highest values have been marked in bold letters (the
same below), and the same accuracy means that the bands selected are the same. It can
be seen that when the number of bands selected is 4, 8, 20, and 32, the band indices are
identical. For other cases, when 12 bands are used in the SVM classifier, the 3 sampling
strategies are 2.23%, 2.10%, and 2.57% higher than OA, AA, and Kappa of the non-sampling
operation. Moreover, most of the remaining differences are less than 1%.
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Figure 8. Classification accuracy of different band selection methods using the Indian Pines dataset
with 28 bands and different training sample sizes. (a,c,e) are SVM classifiers; (b,d,f) are KNN
classifiers.

The classification results on the Pavia University dataset are listed in Table 2. The
results are the same when using non-sampling, row sampling, and column sampling
strategies in three bands and non-sampling, row sampling, and cross sampling strategies
in six bands. The most significant difference is that when 12 bands are used in the SVM
classifier, the cross-sampling strategy results in 1.98%, 1.97%, and 2.72% higher values
than the OA, AA, and Kappa values of the non-sampling strategy, and the rest also barely
exceed 1%.

The above analysis of the results shows that the use of the spatial sampling strategy
will not cause a greater performance loss than non-sampling, or even improve the accuracy.
There is no apparent superiority or difference between the three sampling strategies. For
the datasets, the Indian Pines scene is more straightforward where any ground object takes
up a larger area, and sampling does not have a significant impact on spatial distribution.
Hence, it is more likely to select the same band using non-sampling or any sampling
strategy than Pavia University.



Remote Sens. 2022, 14, 5058 16 of 24Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 26 
 

 

 
Figure 9. Classification accuracy of different band selection methods on the Pavia University dataset 
with 18 bands and different training sample sizes. (a,c,e) are SVM classifiers; (b,d,f) are KNN clas-
sifiers. 

As shown in Figures 8 and 9, the classification accuracy increases with the increase 
in training sample size, but the ranking of band selection methods has no apparent 
change. The proposed SSGIE-KFCM method is robust to the number of training samples 
for classification. 

4.4.2. Analysis of Different Spatial Sampling Strategies 
To analyze and compare the effects of different spatial sampling strategies on band 

selection results, we performed band selection and classification experiments under dif-
ferent sampling modes, such as non-sampling, row sampling, column sampling, and cross 
sampling.  

Table 1 shows the classification results of our method using different sampling strat-
egies on the Indian Pines dataset. The highest values have been marked in bold letters (the 
same below), and the same accuracy means that the bands selected are the same. It can be 
seen that when the number of bands selected is 4, 8, 20, and 32, the band indices are iden-

Figure 9. Classification accuracy of different band selection methods on the Pavia University dataset
with 18 bands and different training sample sizes. (a,c,e) are SVM classifiers; (b,d,f) are KNN
classifiers.

4.4.3. Analysis of the Grouping Strategy

To compare the effect of different grouping strategies on the classification accuracy of
selected bands, we have analyzed the results of truncation grouping in this paper, even
grouping in [44], and random grouping strategies for selecting bands. We reiterate that the
same precision means the same band is selected. From Table 3, it can be seen that when 4,
8, 20, and 40 bands are selected, the bands can be evenly grouped and the corresponding
bands selected are the same. Overall, the truncation strategy is better than the even strategy
and the random strategy, but its predominance is not outstanding, and most of the accuracy
difference is less than 1%. In Table 4, the result comparison of the three strategies does not
highlight the advantages of one strategy over the other two, which is the same as Table 3,
with most accuracy differences being less than 1%.

According to the data of these two tables, the band index selected by different grouping
strategies has a slight effect on the final result. In addition, selecting a certain number of
bands by grouping is only the initialization step of our proposed SSGIE-KFCM method.
Subsequently, it is necessary to optimize the selected results using KFCM.
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Table 1. Classification results of using different sampling strategies on the Indian Pines dataset.

Classifier Metric Sampling Strategy 4 8 12 16 20 24 28 32 36 40

SVM

OA

non 61.92 78.24 78.94 81.86 82.44 83.49 83.95 84.03 84.43 84.84
row 61.92 78.24 81.17 82.01 82.44 83.78 83.95 84.03 84.41 84.74
col 61.92 78.24 81.17 81.70 82.44 83.78 83.76 84.03 84.48 84.84

cross 61.92 78.24 81.17 81.86 82.44 83.49 83.77 84.03 84.48 84.84

AA

non 49.48 75.05 75.92 81.03 81.70 81.85 82.34 82.05 82.41 82.86
row 49.48 75.05 78.02 80.54 81.70 81.96 82.34 82.05 82.33 82.72
col 49.48 75.05 78.02 80.16 81.70 81.96 82.24 82.05 82.46 82.86

cross 49.48 75.05 78.02 81.03 81.70 81.85 82.67 82.05 82.46 82.86

Kappa

non 55.12 75.00 75.83 79.24 79.91 81.13 81.66 81.75 82.22 82.69
row 55.12 75.00 78.40 79.40 79.91 81.46 81.66 81.75 82.20 82.58
col 55.12 75.00 78.40 79.04 79.91 81.46 81.45 81.75 82.29 82.69

cross 55.12 75.00 78.40 79.24 79.91 81.13 81.46 81.75 82.29 82.69

KNN

OA

non 55.87 70.41 71.28 71.77 72.04 72.40 72.95 72.62 73.37 73.55
row 55.87 70.41 71.69 71.76 72.04 72.65 72.95 72.62 73.20 73.42
col 55.87 70.41 71.69 71.45 72.04 72.65 72.94 72.62 73.38 73.55

cross 55.87 70.41 71.69 71.77 72.04 72.40 72.63 72.62 73.38 73.55

AA

non 50.48 65.35 67.32 66.88 66.79 66.92 68.09 67.07 67.34 67.54
row 50.48 65.35 67.61 65.95 66.79 67.20 68.09 67.07 67.22 67.48
col 50.48 65.35 67.61 65.70 66.79 67.20 68.10 67.07 67.35 67.54

cross 50.48 65.35 67.61 66.88 66.79 66.92 67.60 67.07 67.35 67.54

Kappa

non 49.47 66.16 67.15 67.72 68.02 68.43 69.07 68.70 69.55 69.76
row 49.47 66.16 67.61 67.69 68.02 68.73 69.07 68.70 69.36 69.61
col 49.47 66.16 67.61 67.34 68.02 68.73 69.05 68.70 69.56 69.76

cross 49.47 66.16 67.61 67.72 68.02 68.43 68.69 68.70 69.56 69.76

Table 2. Classification results of using different sampling strategies on the Pavia University dataset.

Classifier Metric Sampling Strategy 4 8 12 16 20 24 28 32 36 40

SVM

OA

non 61.92 78.24 78.94 81.86 82.44 83.49 83.95 84.03 84.43 84.84
row 61.92 78.24 81.17 82.01 82.44 83.78 83.95 84.03 84.41 84.74
col 61.92 78.24 81.17 81.70 82.44 83.78 83.76 84.03 84.48 84.84

cross 61.92 78.24 81.17 81.86 82.44 83.49 83.77 84.03 84.48 84.84

AA

non 49.48 75.05 75.92 81.03 81.70 81.85 82.34 82.05 82.41 82.86
row 49.48 75.05 78.02 80.54 81.70 81.96 82.34 82.05 82.33 82.72
col 49.48 75.05 78.02 80.16 81.70 81.96 82.24 82.05 82.46 82.86

cross 49.48 75.05 78.02 81.03 81.70 81.85 82.67 82.05 82.46 82.86

Kappa

non 55.12 75.00 75.83 79.24 79.91 81.13 81.66 81.75 82.22 82.69
row 55.12 75.00 78.40 79.40 79.91 81.46 81.66 81.75 82.20 82.58
col 55.12 75.00 78.40 79.04 79.91 81.46 81.45 81.75 82.29 82.69

cross 55.12 75.00 78.40 79.24 79.91 81.13 81.46 81.75 82.29 82.69

KNN

OA

non 55.87 70.41 71.28 71.77 72.04 72.40 72.95 72.62 73.37 73.55
row 55.87 70.41 71.69 71.76 72.04 72.65 72.95 72.62 73.20 73.42
col 55.87 70.41 71.69 71.45 72.04 72.65 72.94 72.62 73.38 73.55

cross 55.87 70.41 71.69 71.77 72.04 72.40 72.63 72.62 73.38 73.55

AA

non 50.48 65.35 67.32 66.88 66.79 66.92 68.09 67.07 67.34 67.54
row 50.48 65.35 67.61 65.95 66.79 67.20 68.09 67.07 67.22 67.48
col 50.48 65.35 67.61 65.70 66.79 67.20 68.10 67.07 67.35 67.54

cross 50.48 65.35 67.61 66.88 66.79 66.92 67.60 67.07 67.35 67.54

Kappa

non 49.47 66.16 67.15 67.72 68.02 68.43 69.07 68.70 69.55 69.76
row 49.47 66.16 67.61 67.69 68.02 68.73 69.07 68.70 69.36 69.61
col 49.47 66.16 67.61 67.34 68.02 68.73 69.05 68.70 69.56 69.76

cross 49.47 66.16 67.61 67.72 68.02 68.43 68.69 68.70 69.56 69.76
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Table 3. Classification results of using different grouping strategies on the Indian Pines dataset.

Classifier Evaluation
Indicators

Grouping
Strategy 4 8 12 16 20 24 28 32 36 40

SVM

OA
truncate 61.92 78.24 81.17 81.86 82.44 83.49 83.77 84.03 84.48 84.84

even 61.92 78.24 81.17 82.50 82.44 83.33 83.57 83.24 84.09 84.84
random 61.92 78.18 79.77 81.80 82.24 82.88 82.99 83.50 83.24 83.64

AA
truncate 49.48 75.05 78.02 81.03 81.70 81.85 82.67 82.05 82.46 82.86

even 49.48 75.05 78.02 80.02 81.70 81.56 82.34 80.28 81.95 82.86
random 49.48 75.28 77.37 79.89 80.14 80.23 81.14 81.23 80.76 81.26

Kappa
truncate 55.12 75.00 78.40 79.24 79.91 81.13 81.46 81.75 82.29 82.69

even 55.12 75.00 78.40 79.96 79.91 80.95 81.23 80.85 81.83 82.69
random 55.12 74.91 76.81 79.17 79.68 80.43 80.56 81.15 80.86 81.32

KNN

OA
truncate 55.87 70.41 71.69 71.77 72.04 72.40 72.63 72.62 73.38 73.55

even 55.87 70.41 71.69 72.95 72.04 72.34 72.50 71.79 72.42 73.55
random 55.87 69.93 70.77 71.81 71.79 71.76 72.09 72.01 71.83 72.05

AA
truncate 50.48 65.35 67.61 66.88 66.79 66.92 67.60 67.07 67.35 67.54

even 50.48 65.35 67.61 66.60 66.79 66.74 67.55 66.02 66.70 67.54
random 50.48 65.26 65.56 66.05 65.69 65.58 65.82 65.72 66.02 65.73

Kappa
truncate 49.47 66.16 67.61 67.72 68.02 68.43 68.69 68.70 69.56 69.76

even 49.47 66.16 67.61 69.07 68.02 68.36 68.55 67.73 68.46 69.76
random 49.47 65.61 66.58 67.76 67.73 67.70 68.08 67.99 67.79 68.04

Table 4. Classification results of using different grouping strategies on the Pavia University dataset.

Classifier Evaluation
Indicators

Grouping
Strategy 3 6 9 12 15 18 21 24 27 30

SVM

OA
truncate 82.64 86.54 89.53 92.70 93.04 93.71 93.38 93.55 93.47 93.88

even 82.64 86.54 89.60 92.70 92.96 93.31 93.58 93.76 93.62 93.71
random 82.64 86.67 89.90 91.93 92.86 92.86 93.60 93.68 93.91 93.90

AA
truncate 78.89 82.57 87.10 90.60 91.00 91.98 91.45 91.86 91.78 92.26

even 78.89 82.57 87.11 90.46 91.12 91.44 91.73 92.03 91.96 92.06
random 78.89 82.57 87.54 89.78 90.83 90.97 91.83 91.93 92.15 92.20

Kappa
truncate 76.00 81.72 85.91 90.29 90.75 91.64 91.21 91.43 91.32 91.88

even 76.00 81.72 86.03 90.29 90.64 91.11 91.47 91.71 91.53 91.65
random 76.00 81.93 86.44 89.23 90.51 90.50 91.49 91.61 91.91 91.90

KNN

OA
truncate 81.11 84.04 85.72 85.92 86.08 87.03 86.89 87.13 87.23 87.60

even 81.11 84.04 85.65 86.47 86.67 86.32 87.19 87.07 87.41 87.05
random 81.11 84.17 85.96 85.92 86.29 86.54 87.18 87.29 87.60 87.37

AA
truncate 79.16 80.72 83.15 83.06 83.13 84.20 84.18 84.51 84.76 84.97

even 79.16 80.72 82.83 83.58 83.99 83.61 84.45 84.36 84.81 84.32
random 79.16 80.59 83.42 83.09 83.38 83.76 84.47 84.57 84.99 84.76

Kappa
truncate 74.48 78.52 80.78 81.01 81.21 82.51 82.34 82.66 82.80 83.29

even 74.48 78.52 80.66 81.77 82.02 81.55 82.74 82.56 83.03 82.54
random 74.48 78.70 81.10 81.01 81.50 81.85 82.73 82.87 83.30 82.98

4.4.4. Analysis of Information Entropy and Kernel Function

Ablation experiments are performed to study and analyze the effects of grouping
information entropy and kernel functions on the FCM algorithms. All methods are listed
in this section, including FCM, no-grouping information entropy (NGIE), grouping infor-
mation entropy (GIE), kernel FCM using spatial sampling strategy and randomly selected
bands as initial cluster centers (SSR-KFCM), kernel FCM using the spatial sampling strategy
and grouping selected bands as initial cluster centers (SSG-KFCM), kernel FCM using the
spatial sampling strategy and NGIE (SSNGIE-KFCM), and the proposed SSGIE-KFCM. The
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number of iterations, the tolerance ε and the weighted index q of the FCM are the same as
those of SSGIE-KFCM. Figures 10 and 11 describe the ablation results on the two datasets.
The GIE uses even grouping in [44].
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classifiers.

For the Indian Pines dataset, the FCM method is not stable enough or satisfactory.
Furthermore, SSGIE-KFCM has a higher classification performance and stability than
FCM. When 12 bands are selected on the SVM classifier, OA, AA and Kappa have the
most significant enhancement effects: 3.33%, 3.37% and 3.88%, respectively. SSR-KFCM
and SSG-KFCM have almost the same accuracy in OA and Kappa with 4 to 28 bands
on both classifiers, but SSG-KFCM has a large drop in the three curves with the KNN
classifier and the curve of AA with the SVM classifier at 28 to 32 bands. SSGIE-KFCM
has obvious advantages over the two methods, indicating that the bands selected by the
grouping information entropy strategy as the initial cluster centers can offer a promising
band subset. NGIE achieves a poorer classification result than the other methods because
the bands with higher information entropy mentioned in Section 3.4 are concentrated in a
particular range, and the selected band range cannot cover the global information. Similar
to the performance of MVPCA in Section 4.3, this band selection method, which adopts
evaluation criteria to score bands, does not perform well in ranking selected bands in global
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information. This is also why SSNGIE-KFCM has a poorer result than SSGIE-KFCM, where
the initial cluster centers are clustered together. Although GIE achieves a good classification
performance on the SVM classifier with fewer bands, it decreases when the three accuracy
indices reach their higher positions at 12 bands, tending to stabilize. The classification
accuracy of SSGIE-KFCM at 20 bands exceeds that of GIE and increases with the number of
bands, gradually exceeding the accuracy of all bands. GIE has higher OA and Kappa values
on the KNN classifier than SSGIE-KFCM, but it is not stable on the AA index. This grouping
information entropy strategy of grouping first and then selecting representative bands in
each group, which is consistent with the idea of clustering methods, can be regarded as a
simple clustering method. Compared with NGIE, it proves the superiority of the clustering
method over the ranking-based method.
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KNN classifiers.

As seen from Figure 11, like the results on the Indian Pines dataset, NGIE has poorer
classification results. SSR-KFCM and SSG-KFCM still have some differences from SSGIE-
KFCM, but SSG-KFCM has a better performance than SSR-KFCM on this dataset, indicating
that these bands cover the global segmented selection and are used as the initial cluster
centers to achieve better results. GIE performs better on this dataset than the Indian dataset
and has a similar performance to SSGIE-KFCM on the SVM classifier. However, it is
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superior to SSGIE-KFCM only when 3, 6, and 27 bands are selected, and both classifiers
have a significant drop at 9 bands. SSGIE-KFCM works better when there are fewer bands,
and SSNGIE-KFCM works better when there are more than 21 bands. For the SVM classifier,
FCM has almost the same classification accuracy as SSGIE-KFCM, and FCM has a higher
classification accuracy with the KNN classifier.

4.5. Computational Time Complexity Analysis
4.5.1. Comparisons of Computation Times

The running time metric is used to assess the computational complexity of different
methods, and the number of bands selected on the Indian Pines and Pavia University
datasets is also 28 and 18. Table 5 lists the operating time of seven methods on two
datasets. All experiments were based on Python 3.9 and run on the same PC with an Intel
i9-10900X CPU with 64-GB RAM to ensure fairness. MVPCA runs the fastest among these
methods, with less than 1 s of computing time, followed by EGCSR-R. However, it should
be noted that these two methods perform poorly in classification accuracy and are not
recommended, even though they have faster running speeds. OPBS and EGCSR-C have
similar computation times on the Indian Pines dataset, but EGCSR-C has less running
time on the Pavia University dataset. SpaBS takes more time and has a higher cost than
the other algorithms. The proposed SSGIE-KFCM method takes less time than MVPCA
and EGCSR-R and runs for less than 1 s on the Indian Pines dataset, but it has higher
classification accuracy and obvious advantages compared to the latter.

Table 5. Calculational time (in seconds) of different methods.

Dataset ISSC EGCSR-R EGCSR-C OPBS SpaBS MVPCA SSGIE-KFCM

Indian Pines 9.471 0.125 4.040 4.231 127.130 0.030 0.506
Pavia University 40.635 0.543 2.189 11.221 542.487 0.142 1.066

4.5.2. Effectiveness of Sampling Strategy and Kernel Function

This section will analyze the effectiveness of the sampling strategy and the kernel
function used in this paper in reducing the computational complexity. Specifically, the
computational time of FCM, SSGIE-KFCM and the method without spatial sampling (GIE-
KFCM) is counted. To better compare the running time gaps between the three methods,
we recorded the calculational time of selecting 10 to 50 bands on the two datasets with a
step of 10 and calculated the ratio of FCM and GIE-KFCM to SSGIE-KFCM.

Table 6 gives the calculational time of selecting different band subset sizes for these
methods. It can be seen that the time consumed increases with the number of bands. With
the same number of bands, the Pavia University dataset takes longer to compute than
the Indian Pines dataset because the Pavia University dataset has a wider spatial range
and a larger number of pixels. The introduction of kernel function greatly accelerates the
computational efficiency, while the sampling strategy can further shorten the time, making
the running time of SSGIE-KFCM the shortest. Compared with FCM, SSGIE-KFCM is at
least 24.1 times more efficient for the Indian Pines dataset and 102.1 times more efficient for
the Pavia University dataset. On the Pavia University dataset, SSGIE-KFCM has a greater
degree of computational complexity reduction than GIE-KFCM, which is also due to the
larger spatial scale and the more pronounced effect of sampling strategies.
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Table 6. Calculational time (in seconds) of different methods.

Dataset Number of
Bands

Computational Times Time Ratio

FCM GIE-KFCM SSGIE-KFCM FCM/SSGIE-
KFCM

GIE-KFCM/SSGIE-
KFCM

Indian Pines

10 7.541 0.408 0.313 24.1 1.3
20 11.885 0.498 0.370 32.1 1.3
30 19.700 0.718 0.521 37.8 1.4
40 23.799 0.859 0.633 37.6 1.4
50 32.207 0.989 0.673 47.9 1.5

Pavia University

10 85.184 2.016 0.835 102.1 2.4
20 174.567 3.504 1.146 152.4 3.1
30 266.661 3.855 1.461 182.5 2.6
40 348.403 5.773 1.767 197.2 3.3
50 434.991 5.758 2.072 210.0 2.8

5. Conclusions

In this paper, we proposed a novel band selection algorithm—SSGIE-KFCM—by
applying kernel function, spatial sampling, and a grouping information entropy strategy to
the FCM algorithm to address the feature redundancy problem of HSI data. This method
optimizes the iterative process of FCM and obtains better initial cluster centers by using
grouping information entropy. Then, it reduces the amount of computational data via
the spatial sampling strategy and employs the kernel function to improve the execution
efficiency. The experimental results on two publicly available datasets indicate that adding
the sampling strategy and kernel function effectively improves the computational efficiency
of FCM. The more significant the amount of data and the more bands selected, the more
pronounced the improvement effect is. Meanwhile, adopting grouping information entropy
improves the effect of band selection. Compared with the FCM method, the classification
accuracy of OA is improved by 3.33%, AA by 3.37%, and Kappa by 3.88%, at most. The
bands selected by the SSGIE-KFCM method can reach or even exceed the classification
performance of all bands, and OA is improved by 2.80%, AA by 3.39%, and Kappa by
3.20%, at most, which achieves the purpose of dimensionality reduction.

Compared with other methods, our proposed SSGIE-KFCM obtains better classifica-
tion accuracy and stability with less running time and is more robust to different classifiers
and parameter settings. The linear kernel function utilized in this paper has no parameters.
In FCM, the weighted index q is usually 2, the number of iterations is 50, and the tolerance ε
is set to 0.001 or 0.0001. Hence, our method does not need to adjust parameters and is more
convenient to use than ISSC, EGCSR-R, EGCSR-C, or SpaBS. In a nutshell, the comparison
and analysis of the experiments verify that SSGIE-KFCM is competitive.

The proposed SSGIE-KFCM method has achieved remarkable results in improving
computational efficiency, but there is still room for improvement in accuracy, which will be
our future research content. In addition, this paper only studies the effect of linear kernels.
In the future, we will discuss the impact of different kernels on this method and the reasons.
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