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Abstract

We study spatial sampling design for prediction of stationary isotropic Gaussian processes with

estimated parameters of the covariance function. The key issue is how to incorporate the param-

eter uncertainty into design criteria to correctly represent the uncertainty in prediction. Several

possible design criteria are discussed that incorporate the parameter uncertainty. A simulated an-

nealing algorithm is employed to search for the optimal design of small sample size and a two-step

algorithm is proposed for moderately large sample sizes. Simulation results are presented for the

Matérn class of covariance functions. An example of redesigning the air monitoring network in EPA

Region 5 for monitoring sulfur dioxide is given to illustrate the possible differences our proposed

design criterion can make in practice.

KEY WORDS: Fisher information matrix, geostatistics, kriging, Kullback divergence, optimiza-

tion, simulated annealing



1 Introduction

A common problem in spatial statistics is to observe a random process Z at a set of sample locations

S = {s1, . . . , sn} ⊂ D, and then make inference about the unobserved Z(x) for x ∈ D, where D

is the region of interest. The network design problem of choosing the sample locations S ⊂ D so

that one can have the most accurate prediction (point prediction and/or prediction interval) in

D is of great importance in many applications such as soil science, agriculture, and air pollution

monitoring. Here we will use the redesigning of a Sulfur Dioxide (SO2) monitoring network in the

four mid-west states (IL, IN, OH, and KY) as a motivating example.

SO2 is produced during the burning of sulfur-containing fuels such as coal and oil, during metal

smelting, and by other industrial processes. It can affect the respiratory system, the functions of

the lungs and irritate our eyes, causing coughing, mucus secretion, aggravating conditions such as

asthma and chronic bronchitis and making people more prone to respiratory tract infections. The

highest concentrations of sulfur dioxide are generally found near large fuel combustion sources.

The EPA air quality standards for the annual mean of SO2 is 0.03 parts per million (ppm). The

standard also requires a maximum 24 hour mean less than 0.14ppm and maximum three hour mean

less than 0.5ppm. In our study we will only consider the annual mean.

EPA has a network for monitoring the level of SO2 in the aforementioned four states. The data

from this network can be used to find regions that do not comply with the EPA standards. It

can also be used in epidemiology studies to estimate the effects of SO2 on human health. In the

latter case it is of particular importance to give accurate predictions of the SO2 level at locations

with no monitoring stations, as well as accurate estimates of uncertainties in those predictions, in

order to correctly assess the health effects of SO2. The original network was designed to find the

nonattainment area; thus, there is a large concentration of monitoring stations in areas where the
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level of SO2 is expected to be high, such as along the Ohio river valley. In recent years, however,

there has been such a large reduction of SO2 levels that almost no county in this region is in

nonattainment, and it is of interest to reduce the monitoring network for SO2 while maintaining its

ability for accurate spatial prediction. We show in this paper how design criteria can be modified

to achieve good spatial prediction when the covariance parameters have to be estimated from the

same data, and develop efficient algorithms to find designs that are approximately optimal for such

design criteria. The designs we get are different from the usual space filling designs in that there

are small fractions of points that are closely located. Simulation studies show that such designs

tend to give more accurate estimates of prediction error variance, while the variance of the point

prediction error is similar to the traditional space filling designs.

A number of authors have investigated the problem of spatial sampling design assuming the

parameters of the correlation function known, see for example McBratney et al. (1981) and Yfantis

et al. (1987), who provide empirical evidence that when using kriging as the prediction method

and the average or maximum kriging variance as the criterion, the equilateral triangular grid is

apparently nearly optimal. Sacks et al. (1989) consider optimal sampling design for prediction in

the context of computer experiments. Their model assumes no measurement error and the region

of interest D is usually in a high dimensional space. Benhenni and Cambanis (1992) and Ritter

(1996) consider designs for predicting the weighted integral of a stochastic process in R and show

that sampling at the quantiles of a particular density yields asymptotically optimal predictors.

Stein (1995) considers the problem of estimating the weighted integral of an isotropic random field

Z(x) over D in more than one dimension based on locally lattice sampling designs. He finds the

asymptotically optimal cubature rules within the class of locally lattice designs and conjectures

that these rules, which are based on designs that are locally an equilateral triangular lattice, are
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asymptotically optimal with respect to all cubature rules based on point evaluations of Z.

In many applications, we have to use the same data for both estimation and prediction. Caselton

and Zidek (1984), Caselton et al. (1992), Guttorp et al. (1993), and Zidek et al. (2000) developed

the maximum entropy approach for designing monitoring networks by modeling observations at

different monitoring locations as multivariate time series. Caselton et al. (1992) use a prior on

the covariance matrix to incorporate the model uncertainty in the design criterion. However, since

the processes are modeled as a multivariate time series, it is not clear how such designs perform

for prediction at new locations. Wikle and Royle (1999) consider dynamic designs for space-time

models, assuming that one can change the design at each new time. They estimate prediction error

variances at time t + 1 using observations up to time t, and use it to construct designs at time

t + 1. Banjevic and Switzer (2002) consider designs for processes with unknown variance function

but known correlation function, and use a Bayesian approach to incorporate the uncertainty in

estimating the parameters of the variance function. Most recently, Wiens (2004) considers designs

that are robust against misspecified variance/covariance structures.

How to find the optimal static design for prediction with estimated covariance parameters re-

mains a largely unexplored topic and will be the focus of this paper. Zimmerman (2005) considers

designs that minimize the average approximate mean square errors of the empirical best linear

unbiased predictors, which account for covariance parameter estimation uncertainty in the point

prediction, but the impact on estimating the variance of prediction error is not addressed. We de-

rive appropriate design criteria that account for estimation uncertainty in both point and interval

prediction using asymptotic approximations. Simulation studies on small sample sizes demonstrate

the usefulness of these criteria. For moderate to large sample sizes, the numerical difficulty in

searching for the optimal spatial sampling design using any reasonable design criterion is over-
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whelming. Ko et al. (1995) and Lee (1998) discussed an exact algorithm for maximum entropy

sampling based on branch-and-bound methods that can find the exact solution that maximizes the

entropy, and successfully solved a problem of selecting 13 from 27 sites. However, it is difficult

to apply their approach to larger problems even if we could find a good bound for our criterion

function. Thus we seek an approximate algorithm that can find a good local minimum and call it

the best design instead of the optimal design. Simulated annealing (SA) is an optimization method

that has been successfully applied to similar problems by van Groenigen and Stein (1998), Lark

(2002), and Wiens (2004). However, the criterion we use for prediction with estimated parameters

is more computationally demanding and depends on the spatial locations of the sampling points in

a more complicated way. Although we have successfully implemented the SA algorithm for 30 ob-

servation designs, for sample sizes more than 100 SA cannot yield satisfactory results in reasonable

time. Motivated by this numerical challenge we developed the two-step algorithm, which can be

used for designs with moderately large sample sizes. It uses some of the sites to find the best design

for prediction with known covariance parameters and then, conditional on those sites, uses the rest

to find the best design for estimation of those covariance parameters. The proportion of the sites

assigned for the two components is then varied to find the ratio that is best for prediction with

estimated parameters. Using this method, the computationally more intensive criterion for predic-

tion with estimated parameters only needs to be evaluated for the one dimensional optimization of

the ratio, which dramatically simplifies the computation.

It is worth pointing out that the best designs found by the two-step algorithm are by no means

unique. By changing the starting value in the first step, we can get designs that have similar

criterion values but quite different spatial configurations, as long as the proportion of the sites

for parameter estimation is kept constant. One could use the two-step algorithm to find several
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designs for a given proportion, and then select a specific design based on other considerations, since

in practice, most designs have to address multiple objectives, not just spatial prediction.

Section 2 presents the theory and methodology, including the spatial model, the general estima-

tion and prediction methodology and the design criteria that will be used in later sections. Section

3 gives the two-step algorithm for finding approximately optimal designs, the numerical methods

for simulation, and the methods used to compare designs using simulation. Section 4 contains the

simulation results, Section 5 gives the air monitoring network example, and Section 6 discusses

possible further work.

2 Theory and Methodology

We first give the spatial model assumed for the data, then briefly introduce kriging, the spatial pre-

diction method, and Restricted Maximum Likelihood (REML), the parameter estimation method,

together with the plug-in method used in practice for spatial prediction, and its asymptotic mean

square prediction error (MSPE). At the end we introduce our design criterion for spatial prediction

with estimated parameters.

2.1 Spatial Model

We focus on spatial sampling design for a stationary isotropic Gaussian model specified as follows.

For si ∈ D and i = 1, . . . , n, let Z = (Z(s1), . . . , Z(sn))T and assume

Z ∼ N(Xβ,Σ(θ)), (1)

where X is a known matrix of regressors of dimension n × p, β is an unknown p × 1 vector of

regression coefficients, the i, jth element of Σ is σi,j(θ) = σ2ρ(si − sj ; ξ) + τ 2δ{si = sj}, δ being

an indicator function with value 1 if si = sj and 0 otherwise, and θ = (ξ, σ2, τ2). ρ(u; ξ) is
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the correlation function with unknown parameter ξ, and τ 2 is called the nugget variance in the

geostatistics literature.

To carry out all the computations, it is convenient to work with a specific parametric family of

correlation functions that is flexible yet simple. The Matérn family fits this description in that it

has only two parameters and, unlike most other families, it has a parameter ν that directly controls

the differentiability of the process. Larger values of ν correspond to smoother processes. The

process is m times mean square differentiable if and only if ν > m (Stein, 1999). The mean-square

differentiability of the process plays a crucial role in kriging prediction. Being able to estimate this

parameter from the data gives the model additional flexibility and strength in prediction.

The Matérn family includes the exponential family of correlation functions as a special case with

ν = 0.5 and the Gaussian family of correlation function as a limiting case with ν → ∞. There are

several suggested parameterizations of the Matérn family and we follow the one given by Handcock

and Wallis (1994):

ρ(u;ϕ, ν) =
1

2ν−1Γ(ν)

(
2ν1/2u

ϕ

)ν

Kν

(
2ν1/2u

ϕ

)
,

where ϕ and ν are parameters and Kν is the modified Bessel function of order ν as discussed by

Abramowitz and Stegun (1965), sec. 9. This parameterization has the nice feature that ϕ measures

how quickly the correlations of the random field decay with distance, and its interpretation is largely

independent of ν. Often ϕ is referred to as the range parameter in the geostatistical literature.

2.2 Kriging, REML, and plug-in method

Kriging is the name for best linear unbiased prediction (BLUP) in the geostatistics literature, see,

for example, Cressie (1993) or Stein (1999). When the data can be modeled as in (1) and the

parameters of the covariance model θ are known beforehand, the kriging predictor and kriging
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variance at location s is given by

Ẑ(s;θ) = λT (s,θ)Z =
(
Σ

−1
k + Σ

−1
X(XT

Σ
−1

X)−1(x− X
T
Σ

−1
k)
)T

Z, (2)

and

M(s;θ) = σ2 + τ2 − k
T
Σ

−1
k + (x− X

T
Σ

−1
k)T (XT

Σ
−1

X)−1(x −X
T
Σ

−1
k), (3)

where k is the n×1 vector of covariance between Z and Z(s), and x is the p×1 vector of regressors

at location s. The kriging predictor has the minimum mean square prediction error (MSPE) among

all linear unbiased predictors.

In practice, however, it is rarely the case that the covariance model is completely known, and

often we need to estimate the parameters θ of the covariance model from the same data from

which the predictions are made. When the model completely specifies the likelihood, maximum

likelihood (ML) methods can be used to estimate θ. When the ML estimator is in the interior of

the parameter space, it is a solution of the score equations. Mardia and Marshall (1984) showed

the following result for a consistent sequence of solutions of score equations: When a stationary

Gaussian process on R
d is sampled on an n1 × . . . × nd regular lattice with n1, . . . , nd → ∞, and

ρ(u; ξ) satisfies certain regularity conditions,

I(θ)1/2(θ̂n − θ)
L

−→ N (0, I) , (4)

where n = n1 × . . . × nd, θ̂n is the ML estimator of θ based on Zn = (Z(s1), . . . , Z(sn))T , and

I(θ) = Eθ

(
∂

∂θ
log p(Zn;θ)

{
∂

∂θ
log p(Zn;θ)

}T
)

is the Fisher information matrix for θ when Zn is observed.

Here we use the REML method (Patterson and Thompson, 1971) to estimate θ, which is a ML

method based on the likelihood of the contrasts (linear combinations of the data whose mean is zero
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for all β), and has better finite-sample properties (Zimmerman and Zimmerman, 1991). Assuming

X is of full rank, it can be shown that Y = {I − X(XT
X)−1

X
T }Z forms a basis for all contrasts,

and McCullagh and Nelder (1989, p. 247) give the log likelihood for θ directly in terms of Y:

l(θ) = −
n − p

2
log(2π) −

1

2
log det{Σ(θ)} −

1

2
log det{XT

Σ(θ)−1
X} −

1

2
Y

T
P(θ)Y, (5)

where P(θ) = Σ(θ)−1 − Σ(θ)−1
X(XT

Σ(θ)−1
X)−1

X
T
Σ(θ)−1. The REML estimator of θ is ob-

tained by maximizing (5). Cressie and Lahiri (1993) showed that (4) holds for the REML estimator

under certain regularity conditions. Under model (1), the (j, k)th element of the Fisher information

matrix takes a fairly simple form:

Ij,k(θ) =
1

2
tr {P(θ)Σ(θ)jP(θ)Σ(θ)k} , (6)

where Σ(θ)j = ∂Σ(θ)/∂θj .

Let θ̂ be the REML estimator of θ based on Z and Ẑ(s;θ) = λT (θ)Z be the BLUP of Z(s), then

Ẑ(s; θ̂) is the plug-in kriging predictor (also called EBLUP for “empirical” or “estimated” BLUP).

We first consider the uncertainty in prediction for EBLUP and give an approximation to its MSPE

by taking into account the parameter uncertainty. Since we estimate θ using only contrasts of Z,

Ẑ(s; θ̂) − Ẑ(s;θ) is a function of contrasts of Z, which is independent of Ẑ(s;θ) − Z(s). We have

E(Ẑ(s; θ̂) − Z(s))2 = E(Ẑ(s;θ) − Z(s))2 + E(Ẑ(s; θ̂) − Ẑ(s;θ))2

= M(s;θ) + E(λT (s; θ̂)Z − λT (s;θ)Z)2, (7)

where M(s;θ) is the kriging variance given by (3) when the parameters are assumed known (Kackar

and Harville, 1984). Harville and Jeske (1992) and Zimmerman and Cressie (1992) suggested that

one can approximate the MSPE of the plug-in kriging predictor by

V1(s;θ) = M(s;θ) + tr

{

I−1(θ)

(
∂λ

∂θ

)T

Σ(θ)

(
∂λ

∂θ

)}

, (8)
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where ∂λ/∂θ is a matrix with ∂λi/∂θj as its i, jth element. Abt (1999) shows by simulation that

for exponential correlation functions it is much better than the plug-in estimator of the MSPE in

terms of approximating the true MSPE of the EBLUP, and finer approximations considering the

correlation between θ̂ and Z do not give better results.

2.3 Design Criteria

Our goal is good spatial prediction, including both the point prediction and the prediction interval,

over the whole region D. To construct a design criterion, we first construct a pointwise criterion

V (s, S) that measures how well we predict Z(s) conditional on observing the process on S. The

design criterion is then defined as a function of V (s;S) depending on the particular prediction

objectives. Two commonly used criteria are:

A(S) =

∫

D
V (s;S)w(s)ds (9)

M(S) = sup {V (s;S)w(s) : s ∈ D} (10)

where w(s) is the weight assigned to location s. In this paper we only consider the simple case

for which w(s) ≡ 1. When the covariance structure is completely known, the MSPE can be easily

evaluated by (3) and is usually used as the criterion. In this case, (9) and (10) are referred to

as average kriging variance (AKV) and maximum kriging variance (MKV), respectively. However,

when the covariance parameters have to be estimated from the data, it is more difficult to define

a criterion, as the use of estimated parameters introduces additional uncertainty in both the point

prediction and the estimation of the MSPE. The use of estimated parameters often has a larger

impact on the estimated MSPE and a lesser effect on the predicted values (Stein, 1999). We seek

good point predictions as well as good prediction intervals. Our objective is to find the sampling

design that will minimize some combination of the uncertainty in prediction and the uncertainty
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in the estimated MSPE, and the critical question is how to incorporate the parameter uncertainty

into our design criteria to achieve this objective.

It is obvious that the design criteria will depend on the kind of inference procedure we plan to

follow after collecting the data, i.e., the methodology for parameter estimation and prediction at

unknown locations. Here we derive design criteria for the “plug-in” method as described in previous

section, which is widely used in geostatistics: first estimate the parameter using REML, then “plug

in” the estimated parameter into the kriging formula to obtain the plug-in kriging predictor and

its MSPE. If we only want good point prediction, V1 in (8) can be used as the criterion, which is

called EK-optimal design in Zimmerman (2005). We will use the notation V1(s;S,θ) in the rest of

this section to emphasis the dependence of the criterion on the set of sampling locations S.

Next we consider the uncertainty in estimating the MSPE by approximating the variance of the

plug-in kriging variance using a second order Taylor expansion of M(s; θ̂):

Var
{
M(θ̂)

}
≈ Var

{
(θ̂ − θ)T ∂M(θ)

∂θ

}
≈

(
∂M(θ)

∂θ

)T

I−1(θ)
∂M(θ)

∂θ
= V2(s;S,θ). (11)

Some linear combination of V1(s;S,θ) and V2(s;S,θ) can be used as the design criterion for pre-

diction with estimated covariance parameters:

V3(s;S,θ, c1) = V1(s;S,θ) + c1V2(s;S,θ), (12)

but it is not clear how to choose the weight c1 appropriately. One can also use (8) as the design

criterion under the constraint that (11) is no greater than some chosen constant.

Alteronatively, one can quantify the uncertainty in spatial prediction using functionals of the

conditional distribution. Let p(Z(s)|Z;θ) and p(Z(s)|Z; θ̂) be the conditional density of Z(s) at

the true and estimated values of the parameter θ, respectively. When θ is known, p(Z(s)|Z;θ)

is used for inference about Z. The plug-in method uses p(Z(s)|Z; θ̂) to make inference when the
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parameter is unknown. In order for a design to be good for prediction using the plug-in method,

the spread of p(Z(s)|Z;θ) should be small so that the actual conditional variation of the random

field is small, and p(Z(s)|Z; θ̂) should be close to p(Z(s)|Z;θ) so that the uncertainty due to the

parameter estimation is small. The conditional variance of Z(s) given Z evaluated at θ (i.e., MSPE

of the BLUP) is a natural measure for the spread of p(Z(s)|Z;θ). The Kullback divergence of the

plug-in conditional density from the conditional density evaluated at θ,

D(θ, θ̂;Z(s)|Z) = E

{
log

p(Z(s)|Z;θ)

p(Z(s)|Z;θ̂)

}
,

can serve as a measure of the distance between the two densities. Define

I(θ;W|U) = Covθ

(
∂
∂θ

log p(W|U;θ),
{

∂
∂θ

log p(W|U;θ)
}T
)

.

We have

I(θ; (W,U)) = I(θ;U) + I(θ;W|U),

so that I(θ;W|U) is the increase in Fisher information for θ when W is observed in addition to

U. Assuming we use ML or REML to estimate θ, Stein (1999, p. 204) suggested the following two

approximations:

D(θ, θ̂;Z(s)|Z) ≈
1

2
tr
{
I(θ;Z)−1I(θ;Z(s)|Z)

}
(13)

≈
E{M(θ̂)−M(θ)}2

4M(θ)2 +
E{Ẑ(θ̂)−Ẑ(θ)}2

2M(θ) . (14)

We can use the first approximation to construct the design criterion

V4(s;S,θ, c2) = M(θ)
[
1 +

c2

2 tr
{
I(θ;Z)−1I(θ;Z(s)|Z)

}]
, (15)

where c2 is the turning parameter. Using the second approximation, we can see that only when

c1 = 1/(2M(s;θ)) and c2 = 2, V4 ≈ V3. The weight c1 = 1/(2M(s;θ)) makes the linear combination
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(12) invariant to scale transformations of θ and Z. We think c1 = 1/(2M(s;θ)) is a natural choice,

and will use it averaged over D as the design criterion in the simulation study:

EA(S;θ) =

∫

D
V3(s;S,θ, 1/(2M(s;θ))ds. (16)

We will refer to it as the estimation adjusted criterion (EA). In general, a large c1 yields designs

that have a heavier emphasis on parameter estimation and give more accurate prediction intervals,

while a small c1 yields designs good for point prediction with estimated parameters. When the

range of the covariance function is not too small, these designs are similar to the case in which the

parameters are assumed known. Incidentally, Smith and Zhu (2004) reveal a surprising relationship

between c1 and the length of a Bayesian predictive interval with certain coverage probability. For

c1 = 1/(2M(s;θ)), (16) is equivalent to the average length of the Bayesian predictive interval

with asymptotic coverage probability of 92%, with larger c1 corresponding to Bayesian predictive

intervals with larger coverage probability. For example, the average length of Bayesian predictive

intervals with 90% and 95% coverage probability are equivalent to (16) with c1 = 0.41 and 0.68

respectively. Thus, our choice of c1 also has a nice Bayesian interpretation. In practice, the choice

of the value of c1 depends on the particular inference one wants to make, and a different value may

be preferred depending on the application.

In practice the value of θ is not known. For fixed θ, we can use EA(S;θ) to find locally optimal

designs. When a prior on θ is available, one can use the following Bayesian design criterion:

EAB(S) =

∫

Θ
EA(S;θ)p(θ)dθ.

Alternatively, one can define the relative efficiency for EA criterion as

RE(S;θ) =
EA(S;θ)

EA(S(θ);θ) , (17)
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which measures the relative performance of design S with respect to the locally optimal design

S(θ) = arg minEA(S;θ) at θ, and find the minimax design SM such that

SM = arg min
S⊂D

max
θ∈Θ

RE(S;θ). (18)

Both approaches are rather computationally intensive. A simple example of minimax design is

given in Section 4.

3 Numerical Algorithms

In this section we first describe the two-step algorithm we developed to find the best spatial sampling

design for the EA criterion, followed by a discussion of the simulation method we used in our

simulation studies. At the end of this section we outline how we compare the effectiveness of

different designs.

3.1 Two-step Algorithm

In the spatial sampling design problems we consider, we need to choose n sample points from a

fine grid of allowable sampling locations D of size N that minimize some objective function. Since

the objective functions we consider have complicated functional forms and involve integrals that

cannot be explicitly evaluated, they are fairly expensive to compute. Furthermore, N is usually

large enough so that there is no exact algorithm available at present that could find the optimal

solution even if the objective function were easy to calculate.

For small sample sizes we can use heuristic algorithms such as SA (Zhu and Stein, 2005) to find

the optimal design. When the sample size is moderately large, the SA fails to deliver reasonable

results, and we propose a “two-step” algorithm for those occasions. Observing that for the problem

of finding designs for prediction with estimated parameters, the design criteria we propose are
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effectively some compromise between prediction and parameter estimation, we suggest using the

following algorithm to find an approximate solution of the original optimization problem:

• Step one: For a fixed proportion p ∈ (0, 1), find an optimal size (1− p)n design for prediction

with given parameters, and then choose pn additional points using SA so that the combined

sample of size n optimizes an estimation-based criterion.

• Step two: For different values of p, compute the EA values for the combined samples of size

n thus obtained, and find the one that minimizes the EA criterion.

The computational advantages this algorithm has over direct minimization of the original objective

function are: first, the design criteria for prediction or estimation alone are much easier to compute

than the design criteria for prediction with estimated parameters. Second, when (1 − p)n is large,

based on theoretical and simulation studies, we know that a regular design is good for prediction.

So in practice it is usually enough to find the optimal design for prediction among a sequence of

regular designs, which can dramatically reduce the computational time. Last, our limited experi-

ence indicates that the designs that minimize the objective function usually have p ≪ 1/2 for n

moderately large, thus we only need to consider size pn designs for estimation with pn ≪ n, which

usually can be handled by SA rather efficiently. In the simulation studies we use the AKV of the

prediction as the design criterion for prediction and the logarithm of the determinant of the inverse

of Fisher information matrix (LDF) as the design criterion for estimation.

3.2 Simulation Method

We use the following setting in our simulation studies: The region of interest is taken to be the unit

square [0, 1]2. The allowable sampling grid D in most cases is {0, 0.01, . . . , 1}2. The evaluation grid

E, on which the objective function is evaluated, is {0.005, 0.015, . . . , 0.995}2, which is the center of
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each of the smallest squares in grid D. In some cases when the sample size is not large, a subset of

E is used instead to speed up the computation.

Two algorithms are used to find the optimal designs. For small sample size we use SA. For

moderately large to large sample size designs for prediction with unknown parameter vector, we

use the two-step algorithm. For each design the objective function is evaluated at the evaluation

grid E and the integral in (9) is approximated by summation.

We use simulations to compare designs obtained by different criteria to demonstrate the effec-

tiveness of the criterion. The random samples are simulated using model (1) with mean zero and

Matérn family of correlation function with preselected parameters. The Choleski decomposition

method is used to simulate the data with correct covariance structure as specified by the model.

Only those process values on the design sites are simulated. We then use the REML method to

estimate the parameters from the simulated data and use the plug-in method to obtain the krig-

ing predictors Ẑ(s; θ̂) and kriging variances M(s; θ̂) at the evaluation grid E using the estimated

parameters. The numerical algorithm for obtaining the REML estimates is based on the method

described in Mardia and Marshall (1984) with some modification. See Zhu and Stein (2005) for

more details.

3.3 Design Evaluation

To compare the effectiveness of designs, we need to consider both the accuracy of the predictions

(usually measured by the true mean square error) on the evaluation grid E and the accuracy of

the estimated MSPEs of the predictions. The distribution of the random process on the evaluation

grid E, conditional on the observed data at the design sites S, is normal with conditional mean

and variance given by, respectively, the kriging predictor Ẑ(s;θ) and kriging variance M(s;θ)
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evaluated at the true parameter values. The true conditional mean square prediction error for the

ith simulation at site s is MSPE(i)(s) = (Ẑ(i)(s; θ̂
(i)

) − Ẑ(i)(s;θ))2 + M(s;θ), where Ẑ(i) and θ̂
(i)

are the kriging predictor and the REML estimator of θ for the ith simulation respectively. Thus we

can average MSPE(i)(s) across simulations to get the true MSPE of the plug-in kriging prediction.

Note that there is no need to simulate Z(s) at locations outside the design sites to evaluate the

conditional MSPE. Some weighted average of the true MSPE thus obtained over E can be used as

a measure of the accuracy of prediction for a certain design. Simulation from an estimated model

can also be used to obtain a more accurate assessment of MSPE in a prediction problem and is

usually referred to as parametric bootstrapping (Davison and Hinkley, 1997).

Measuring the accuracy of the estimated MSPE deserves more consideration. The measures we

considered for the accuracy of MSPE estimator M(s; θ̂) are:

1. MSE of M(s; θ̂): E(M(s; θ̂) − M(s;θ))2

2. MSE of Ratio: E(M(s; θ̂)/M(s;θ) − 1)2

3. Mean Square Log Ratio (MSLR): E
(
log(M(s; θ̂)/M(s;θ))

)2

4. Gamma Deviance: E
(
− log(M(s; θ̂)/M(s;θ)) + (M(s; θ̂) − M(s;θ))/M(s;θ)

)

The MSE of the MSPE is a commonly used measure, which measures the average squared

distance of the estimated MSPE to the true MSPE. However, we believe it penalizes overestimates

of MSPE more heavily than it does underestimates of MSPE. For example, if the variance of M(s; θ̂)

compared to the magnitude of the MSPE is small, then the maximum penalty for underestimating

the MSPE is about M(s;θ)2, while for overestimating the MSPE the penalty is unbounded.

The MSE of the ratio M(s; θ̂)/M(s;θ) does not depend on the magnitude of the MSPE of

prediction, and the value can be interpreted as the percentage difference between M(s; θ̂) and

MSPE. However, it also penalizes overestimation more severely than underestimation.
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The MSLR does not depend on the magnitude of the MSPE of prediction, and it penalizes

overestimation and underestimation equally on the log scale. We have observed empirically that the

MSLR has approximately a Gaussian distribution. However, its interpretation is less transparent.

The gamma deviance is used because of the empirical observation that M(s; θ̂) has approxi-

mately a gamma distribution.

Among these criteria, (2) and (4) are locally equivalent (i.e., when M(s; θ̂) is close to MSPE,

the difference between (2) and (4) is of higher order in terms of 1 − M(s; θ̂)/M(s;θ)). There is

no compelling reason to prefer any one of the above measures, and in the simulation studies we

conducted all measures yield similar results. We will present the results using MSE of the ratio as

the measure of accuracy of M(s; θ̂).

4 Simulation Results

In this section we present the results of our simulation studies. In the first simulation study, SA is

used to find the best spatial designs, and our results show that designs using EA criterion (DEA)

give much better estimators of MSPE than those using AKV criterion (DAKV ), while the true

MSPE for the two types of designs are similar. A minimax version of DEA is also compared with

DAKV , and the results are similar. In the second simulation study, we compare the performance

of the two-step algorithm with SA for finding best DEA with sample size n = 100. The two-step

algorithm finds better designs in shorter time.

In all the simulation studies we assumed that the random processes have mean zero, and focused

on the more interesting problem of accounting for uncertainty in the estimation of the covariance

parameters θ on the prediction of Z(s).
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4.1 Simulation for Prediction with Unknown Parameters: Small Sample Size
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ν = 0.5, τ2 = 0.01 ν = 1, τ2 = 0.01 ν = 3, τ2 = 0.01

ν = 0.5, τ2 = 0.1 ν = 1, τ2 = 0.1 ν = 3, τ2 = 0.1

Figure 1: Plots of designs for prediction with unknown parameters. For all the plots ϕ = 0.5 and

σ2 = 1.

In this simulation study the parameters are assumed unknown and have to be estimated from

the data. The region of interest is the unit square [0, 1]2 and the objective is to predict the random

field on the evaluation grid E. We considered cases where the sample size n = 30, and the true

parameter values were ϕ = 0.5, ν ∈ {0.5, 1, 3}, σ2 = 1 and τ 2 ∈ {0.01, 0.1}. We used the EA

design criterion (16) evaluated at the true parameter value. SA was used to search for the optimal

sampling design. The resulting designs are plotted in Figure 1, which shows that the designs exhibit

some clustering in addition to a rather regularly spaced design, and the amount of clustering is

dependent on the true parameter values.
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Table 1: Comparison of DEA (estimation adjusted, (16)) and DAKV (average kriging variance)
designs using simulation

(ν, τ2) (0.5, 0.01) (1.0, 0.01) (1.0, 0.10) (3.0, 0.10)
Design DEA DAKV DEA DAKV DEA DAKV DEA DAKV

True MSPE 0.111 0.108 0.109 0.115 0.260 0.253 0.167 0.167
MSE of Ratio 0.273 1.273 0.438 1.318 0.217 0.317 0.159 0.270

Notes: Results are based on 500 simulations. For all designs ϕ = 0.5, σ2 = 1 and the sample size n = 30.

Table 2: Comparison of Minimax and DAKV designs using simulation

ν = 1.0, τ2 = 0.01 ν = 1.0, τ2 = 0.10 ν = 3.0, τ2 = 0.10
Design Minimax DAKV Minimax DAKV Minimax DAKV

True MSPE 0.112 0.117 0.258 0.254 0.167 0.167
MSE of Ratio 0.365 1.299 0.275 0.362 0.222 0.262

Notes: Results are based on 500 simulations. For all designs ϕ = 0.5, σ2 = 1 and the sample size n = 30.

To compare the practical performance of the designs, we simulated 500 Gaussian random fields

with the Matérn correlation function for each parameter combination in the study using the loca-

tions shown in Figure 1 as well as in a DAKV design (not shown here). For each simulation, the

parameters were estimated using REML using observations in either the DEA design or the DAKV

design. We then use the plug-in procedure to obtain the plug-in kriging predictor and the plug-in

kriging variance at the evaluation grid E. The true MSPE of the plug-in kriging prediction and the

MSE of the ratio M(s; θ̂)/M(s;θ) are shown in Table 1. The table shows that the true MSPE of

the plug-in prediction for DEA and DAKV designs are very close, but the DEA designs give better

estimates of MSPE. The improvement is always substantial and sometimes dramatic.

In practice, the true parameters of the process are unknown and it is desirable to have a design

that has good performance for a range of parameters. As a simple example, we calculated the

relative efficiency for the six parameter combinations considered in Figure 1, and found that the

design for ν = 0.5 and τ 2 = 0.01 minimizes the maximum relative efficiency among the six designs,

which we will refer to as the minimax design. The maximum relative efficiency is 1.045, meaning
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Table 3: Comparison of Two-step algorithm and SA using different design criteria

Design: Two-step SA
p 100.0 % 20.0% 13.3% 10.0% 6.7% 3.3% 0.0% NA

EA 304.9 127.3 126.8 125.2 122.0 121.6 3908.2 118.0
n = 30 AKV 273.7 110.0 104.3 102.3 99.3 96.3 93.2 101.1

LDF -17.6 -16.0 -15.7 -15.4 -15.1 -14.4 -7.3 -14.8
p 100.0% 10.0% 7.0% 5.0% 3.0% 1.0% 0.0% NA

EA 95.5 42.9 42.3 41.9 42.2 45.0 84.6 42.5
n = 100 AKV 93.1 41.3 40.5 39.9 39.5 39.1 38.9 40.2

LDF -21.9 -20.4 -20.1 -19.8 -19.4 -18.4 -16.2 -19.6

Notes: EA refers to the EA criterion (16); AKV represents Average Prediction Variance assuming the parameters are
known; LDF represents Logarithm of the Determinant of the Fisher information matrix. The value of both EA and
AKV are multiplied by 1000. All of them are evaluated at the true parameter values. p is the percentage of points
assigned for parameter estimation in DTS designs.

that, in the worst case, the EA criterion for the minimax design is 4.5% larger than that for

the best design we obtained for the true parameter values. In Table 2, simulation results for the

minimax design are compared with the DAKV design for several different parameters. In all cases

the minimax design gives substantially better estimates of the MSPE while the MSPE of prediction

is similar to that of the DAKV design.

4.2 Simulation for the Two-step Algorithm

In this section we study the two-step algorithm as described in Section 3.1 and compare them with

SA. The DAKV and DLDF (designs for parameter estimation using LDF as the criterion) designs

are two extreme cases in the two-step algorithm with p = 0 and 1, respectively, which are also

included in the comparison. Sample sizes n = 30 and n = 100 were considered in this study. For

both n = 30 and n = 100, ten other designs were considered besides the DAKV and DLDF designs

in the second step, with the number of points assigned to parameter estimation ranging from one

to ten, respectively. For each of these designs, we first find a size (1−p)n design for prediction with

given parameters using SA and a regular design as starting point. Then we fix these (1−p)n points

and use SA to add pn points that minimize the LDF of the combined size n design. We ran SA
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50 times using different random starting points and chose the best one from them. Some of these

designs are compared with designs found by SA in Table 3. In all the designs the true parameter

values were assumed to be ϕ = 0.5, ν = 1, σ2 = 1 and τ 2 = 0.01. From the table we can see that

for n = 30, assigning one point for estimation (p = 3.3%) gives the best DEA design, which is still

worse than the design found by SA. Since the two-step algorithm searches over a smaller design

space, when the sample size is small and SA can find designs very close to optimal, we expect the

design found by the two-step algorithm to be worse. Nevertheless the difference between these two

is not big.

For n = 100, assigning 5 points for estimation (p = 5%) minimizes the EA criterion, which

maintains a balance between prediction and parameter estimation. From Table 3 we can see that

this design is even slightly better than the design found by SA. This is because for even moderately

large sample size, the optimization problem becomes so complex that SA with multiple random

starting designs may not be able to find designs that are very close to optimal. The two-step

algorithm, which exploited the special structure of this problem, can find good designs by searching

a much smaller design space. Furthermore, the time it takes is only a fraction of that of SA. In

our simulation study, it takes 245,069 seconds (about 68 hours) to run the SA once on a Pentium

IV 1.7G PC, while it only takes 55,061 seconds (about 15 hours) to run the two-step algorithm

with the second step using multiple starting designs. Figure 2 gives two DEA designs found by

the two-step algorithm for sample size n = 30 and n = 100 respectively. From it we can see that

the second step adds points that are very close to each other, which is a typical feature in designs

for parameter estimation and is helpful for estimating both the nugget effects and the smoothness

parameters. Note that the designs found by both SA and the two-step algorithm are dependent

on the initial design and are by no means unique. For different initial designs, both algorithms
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can give designs with quite different spatial configurations, while in terms of criterion value the

two-step algorithm is less sensitive to the initial designs.
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Figure 2: Plot of DEA designs found by the two-step algorithm with sample size n = 30 and n = 100
respectively.

For n = 100, six of the designs in Table 3 were compared using simulation in a similar manner

as in Table 1; the results are in Table 4. The DEA found by the two-step algorithm (p = 5.0%)

has the smallest average MSPE and estimates MSPE better than the DEA found by SA or DAKV

(p = 0%). This is consistent with the ordering of the EA criterion value given in Table 3, giving

some evidence that it is a reasonable design criterion to use. It also confirms the effectiveness of

the two-step algorithm as an alternative to SA. Compared to DAKV designs, not only can assigning

a small proportion of points for parameter estimation substantially improve the MSPE estimators,

but it can even reduce the prediction error of the plug-in kriging predictors.

MSE of the ratio, the measure of the accuracy of MSPE, has the same relative ordering as the

relative ordering of the LDF value for each design (see Table 3). Since the relative ordering of LDF

has been shown to represent the variance of the estimated parameters, these results offer evidence
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Table 4: Comparison of designs found by two-step algorithm and SA using simulation

Design: Two-step SA
p 100.0% 10.0% 5.0% 1.0% 0.0% NA

MSPE of Prediction 0.0941 0.0425 0.0407 0.0413 0.0417 0.0408
MSE of Ratio 0.0500 0.0693 0.0858 1.0122 1.7711 0.4769

Notes: Results are based on 100 simulations. Sample size n = 100. p is the percentage of points assigned for
parameter estimation in DTS designs.

that parameter estimation is closely related to the estimation of MSPE.

5 Example: Redesigning an Air Monitoring Network

In this section, we consider the problem of optimally reducing a SO2 monitoring network to maintain

accurate spatial prediction. The monitoring network we consider covers the geographic area of IL,

IN, OH, and KY, with 101 stations monitoring SO2 in this area in 2002. The locations of these

stations are shown on the left of Figure 3. We sought the best way to reduce the network to 50

stations which gives the best spatial prediction in terms of both MSPE and the variance of the

estimated MSPE. The data we used to fit the spatial model are the 2002 annual mean of the SO2

level in the unit of parts per billion, downloaded from http://www.epa.gov/air/data/index.html.

Baumgardner et al. (1999) and Baumgardner et al. (2002) provide descriptions of the measurement

methods used and some summary statistics. Recent research on SO2 data have focused on the

estimation of the temporal trend (Malm et al., 2002; Mueller, 2003; Holland et al., 2004), and very

few attempts have been made to fit spatial models for SO2 concentration data. Holland et al. (2004)

use a spatial model for estimating the regional trend of SO2, in which their response variable is the

estimated site-specific trend rather than the concentration. Here we are interested in the spatial

prediction of the annual mean of SO2 concentration. Preliminary data analysis shows that there

is a high concentration along the Ohio river valley, and a logarithmic transformation makes the

distribution of the data closer to normal. We first fit model (1) to the logarithm of 2002 annual

23



mean of the SO2 level in the unit of parts per billion, with the mean assumed to be a polynomial

function of the longitude (s1) and latitude (s2) of the locations of the stations, and covariance

function from the Matérn family of covariance functions with nugget. Only s1, s2, and s2
2 turn

out to be significant in the mean model, and the variogram of the residuals shows no evidence

of nonstationarity or anisotropy. The REML estimator of ν tends to infinity, indicating that the

Gaussian covariance function C(u;θ) = σ2 exp(−u2/ϕ2) + τ2 is appropriate here. As a result we

use the following model:

log SO2(s) = β0 + β1s1 + β2s2 + β3s
2
2 + ǫ(s),

where ǫ(s) is a stationary Gaussian random field with isotropic Gaussian covariance function. Using

restricted maximum likelihood we obtained the estimates ϕ̂ = 0.28, σ̂2 = 0.093 and τ̂ 2 = 0.045.

These estimated parameter values are used to evaluate the design criteria, so the design we have here

is a locally optimal design, assuming that the covariance parameters will not change dramatically

from year to year. Only the most recent year’s data were used to estimate the parameters, because

we do not want to assume the covariance structure is fixed in time. It is possible to fit multiple

years of data with a spatial-temporal model allowing a dynamic change of the covariance parameters

and use it to predict the covariance parameters of the current year. Though this method has the

potential of offering better estimates of the covariance parameters for evaluating the design criteria,

we did not pursue it because of the purely spatial emphasis of this paper. It is also conceivable

that a spatial non-stationary model might give a better fit to this data. Given that the region we

considered only covers four states with similar geographical features, though, it is unlikely to make

a significant difference, and we do not pursue this possibility here. It is worth pointing out that if

the design were for a larger geographical area, the use of non-stationary models would need to be

considered.
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Figure 3: Plot of air monitoring network in EPA Region 5 (Left), DTS design (middle), and DAKV

design (right). DTS and DAKV designs are of size n = 50. In the DTS design, the triangles are the
10 sites chosen to optimize the LDF criterion.

Using the two-step algorithm described in Section 3.1, we found the DTS design plotted in

the middle of Figure 3, in which 40 sites are used to optimize the prediction-based criterion AKV

(black dots), and ten sites are used to optimize the estimation-based criterion LDF (triangles),

which gives the smallest value for the EA criterion. Among the ten sites for estimation, there are

two sites very close to each other in both south IL and south IN, and another three very close sites

at the bottom of Lake Michigan. For comparison purposes, we also find the DAKV design that

minimizes AKV, assuming that the covariance parameters are known, which is plotted on the right

in Figure 3. Note that in the DEA design, the ten sites selected for estimation are either very close

to each other or close to an existing site; these sites yield important information for estimating the

covariance parameters, while the DAKV design minimizing AKV is rather similar to a space-filling

design. There are relatively more points near the boundary in both designs though, because of the

mean structure we have in the model.

Table 5 gives the comparison between the DEA design and the DAKV design we found for
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Table 5: Comparison of DTS and DAKV design of air monitoring network

Design MSPE of Prediction MSE of Ratio
DEA 0.147 0.061

DAKV 0.149 0.103

Notes: Results are based on 100 simulations. For all designs bϕ = 0.28, bσ2 = 0.093 and bτ 2 = 0.045.

reducing the air monitoring network. Although both designs give point predictors with similar

accuracy, with the MSPE for DEA design slightly better, it is in the area of estimating MSPE that

the DEA design really makes a difference, with the MSE of ratio much smaller than that of the

DAKV design.

6 Discussion

We propose using a new EA design criterion for prediction with estimated parameters and the

two-step algorithm to find a design that optimizes this criterion approximately when the sample

size is moderately large. Our simulation studies show that when we have to use the same data for

both estimation and prediction, the DEA designs that minimize the EA criterion assign a small

proportion of points (3 − 10% in our examples) for estimation, and it is better than the regular

square/triangular designs that are optimal for prediction with known parameters. The improvement

is very limited in terms of the prediction error, but can be large in terms of estimating MSPE.

The plug-in method is considered in this paper as the inference procedure because it is a very

common method in practice, and the plug-in estimator of the kriging variance is used to estimate

the MSPE. Zimmerman and Cressie (1992) propose to use a different estimator for estimating the

prediction error when the spatial correlation is known to be weak, and Diggle and Ribeiro (2002)

among others promote the use of Bayesian inference. It would be interesting to study what effect

different inference procedures may have on the sampling design and whether our design criterion is
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good for inference procedures other than the plug-in method.

In particular, Bayesian prediction provides a natural way to account for the effect of parameter

uncertainty on prediction uncertainty by averaging over the posterior distribution of parameters to

get the predictive distribution. It would be interesting to derive design criteria based on functionals

of the Bayesian predictive distribution. It is, however, computationally infeasible to carry out a

brute force Bayesian calculation in this context, as there is no closed form solution for the predictive

distribution and some MCMC method or numerical integration has to be used. We need to generate

the predictive distributions for a large number of sites in the region D to adequately evaluate the

performance of different designs. Furthermore, generally many designs have to be evaluated before

a good design can be found. Since one needs to be able to examine many designs quickly, it is not

feasible to use a long MCMC to evaluate a single design. Some type of asymptotic approximation

to the predictive distribution is needed to make progress.

In our simulation studies, the design criteria are always evaluated at the true parameter values

used for simulation, as our design criteria are dependent on the parameter values. A minimax

criterion can be used on a discretized parameter space instead. If one can appropriately put a prior

on the parameter space, one can use our criterion averaged over the prior distribution as the final

design criterion. We have to be very cautious about how to choose the prior though, as it will have

a huge influence on the design and there is no data available to lessen its effect. Both approaches

are more computationally intensive than what we have done here.

In this paper we discuss the spatial sampling design problem under the assumption that the

data can be modeled as observations from a Gaussian random field with stationary covariance

structure. Both Gaussian and stationarity assumptions may not be satisfied in practice. It is of

interest to investigate designs for non-Gaussian random fields and for non-stationary covariance
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structure. For non-Gaussian random fields, one can make inference using the spatial generalized

linear mixed model (Diggle et al., 1998). Unlike in the Gaussian case, there is no closed form

formula to calculate the MSE even when the covariance parameters can be assumed known, and

some approximation is needed to derive appropriate design criteria parallel to the Gaussian case.

We intend to study this in a seperate paper. When the covariance structure is non-stationary, the

design problem becomes more complex, as the estimation of the non-stationarity structure adds yet

another source of uncertainty. Müller-Gronbach and Ritter (1998) show that nonadaptive designs

are less efficient than adaptive designs for prediction of one dimensional Gaussian random processes

with inhomogeneous local smoothness. Unless the nature of the nonstationarity is known ahead of

time, some adaptive design scheme may be necessary for such problems.
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