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In recent years, matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry has

become a mature technology, allowing for reproducible high-resolution measurements to localize

proteins and smaller molecules. However, despite this impressive technological advance, only a few

papers have been published concerned with computational methods for MALDI-imaging data. We

address this issue proposing a new procedure for spatial segmentation of MALDI-imaging data sets.

This procedure clusters all spectra into different groups based on their similarity. This partition is

represented by a segmentation map, which helps to understand the spatial structure of the sample.

The core of our segmentation procedure is the edge-preserving denoising of images corresponding to

specific masses that reduces pixel-to-pixel variability and improves the segmentation map significantly.

Moreover, before applying denoising, we reduce the data set selecting peaks appearing in at least 1%

of spectra. High dimensional discriminant clustering completes the procedure. We analyzed two data

sets using the proposed pipeline. First, for a rat brain coronal section the calculated segmentation

maps highlight the anatomical and functional structure of the brain. Second, a section of a

neuroendocrine tumor invading the small intestine was interpreted where the tumor area was

discriminated and functionally similar regions were indicated.
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Introduction

For many years imaging of biological samples with mass

spectrometry has been the Holy Grail of mass spectrometry

research. Invention of such a technique would allow one

studying spatial chemicat composition of any biological sample.

Only in the late 90s of the previous century, development of

matrix-assisted laser desorption/ionization (MALDI)-imaging

mass spectrometry (IMS)1,2 has opened new horizons for mass

spectrometry in biology and medicine.3 Since then, MALDI-

imaging has become a mature technology, allowing for repro-

ducible high-resolution measurements to localize proteins and

smaller molecules for many purposes, in particular to detect

and discover new biomarkers with a major focus in cancer

research.4-7 At the present time, a variety of MALDI-imaging

instruments and preparation devices is manufactured and

offered by major producers of mass spectrometers (Applied

Biosystems, Bruker Daltonics, Shimadzu Biotech, and Waters).

Along with attempts to apply SIMS to biological samples,8

recently other IMS techniques have been developed and

successfully applied in biology, including desorption electro-

spray ionization (DESI),9 graphite-assisted laser desorption/

ionization (GALDI),10 laser ablation electrospray ionization

(LAESI),11 and nanostructure-initiator mass spectrometry

(NIMS).12 Surface enhanced laser desorption ionization

(SELDI)-IMS was shown to be useful in histological analysis.13

Despite the impressive technological advance of MALDI-

imaging and other IMS techniques, at the present time only a

few papers have been published concerned with computational

methods for MALDI-imaging data. In this paper, we contribute

to this area, considering the important issue of pixel-to-pixel

variability in MALDI-imaging data and proposing a new

method to reduce this variability. Upon the basis of this

method, we present a new pipeline for spatial segmentation

of a MALDI-imaging data set which compresses the full data

set into one image, a segmentation map.

Development of new computational methods for MALDI-

imaging is especially important since the state-of-the-art

throughput of MALDI-imaging allows it to be used in clinical

studies14 with one of the main fields of interest in discovery
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and validation of biomarkers of human tumors.4-7 This task

requires measuring, processing, and understanding large num-

bers of patient samples to compare cohorts at several time

points (see the review by McDonnell et al.).15 At present, the

most common way of examining MALDI-imaging data set is

the manual inspection of a mean spectrum of the data set,

selection of large peaks, and visual examination of molecular

images corresponding to the selected m/z-values. This rather

simple but straightforward approach allows for finding molec-

ular masses specific to certain tissue states. However, it comes

with several major drawbacks. First, the manual search of peaks

is time-consuming and, therefore, is not feasible in a clinical

study. Second, a molecular signal taking place in only a small

portion of spectra can be under-represented in the mean

spectrum and produce no visible peak. Third, all m/z-values

are examined independently, although their combination may

reveal more valuable information. Fourth, visual observation

allows one to detect the most visible patterns of spatial

localization, but fine details and differences between masses

can hardly be detected. Thus, it is highly desirable to simplify

complex MALDI-imaging data sets to allow for their interpreta-

tion in a reasonable time frame and, at the same time, retain

the most important molecular features.

For this aim, the use of multivariate statistical methods is

crucial. A widely used way of visualizing an IMS data set is to

plot loadings derived with principal component analysis

(PCA)16 or improved variants of PCA17 that provides images

showing the main structure of the data set. However, the PCA

loadings can hardly be interpreted from a mass spectrometric

point of view, since certain mass spectra negatively contribute

to the resulting image, that has no analytical meaning (see the

paper by Deininger et al. for a discussion on disadvantages of

PCA in the MALDI-imaging context).18 The use of probabilistic

latent semantic analysis (pLSA) remedies this problem19 since

pLSA loadings can be directly interpreted as contribution of

masses, and this allows for interpreting spectra that are formed

by a mixture of tissue types even if those are not spatially

resolved.

Later, partition of spatial points based on clustering of their

mass spectra was proposed.20 One can display the clustering

results as a spatial segmentation map, coloring identically

points grouped into one cluster. A segmentation map visualizes

a MALDI-imaging data set with just one image and highlights

regions of potential interest. Recently, hierarchical clustering

has been introduced18 and discussed21 for the analysis of

cancer data. The main advantage of hierarchical clustering in

this context is interactive analysis when one can split a region

of interest into subregions.

So far, all described statistical methods are purely based on

the similarities of mass spectra alone and do not take their

spatial relations into account. However, it is natural to expect

that multivariate analysis of imaging data sets can be improved

if spatial relations are considered.

In this paper, we propose a new approach to clustering

MALDI-imaging spectra which provides segmentation maps of

superior quality in terms of smoothness, lack of noise, level of

detail, and correlation with morphological structures of the

tissue. The core of this pipeline is based on the following

natural assumption: for many neighboring spatial points of a

morphologically defined area their spectra most likely represent

similar molecular composition and, thus, should be similar.

Our procedure consists of the following steps (Scheme 1).

First, the spectra are preprocessed with a baseline correction

algorithm. No normalization is done.22 Second, the peak

picking is done selecting a list of data set-relevant peaks. Third,

for each m/z-value from the selected peaks list, we consider

an image of intensities of all spectra at this m/z-value and

denoise it with locally adaptive edge-preserving image denois-

ing algorithm, which is the most important step of the

procedure. Finally, the reduced and processed spectra are

clustered, and the clustering results are displayed as a spatial

segmentation map in which spatial points whose spectra are

grouped into one cluster are identically colored.

Here, we describe the procedure for the first time and apply

it to two MALDI-imaging data sets. First, we analyze a rat brain

coronal section and compare the resulting segmentation map

to the anatomical structure of the brain. Brain tissue is a typical

model system in MALDI-imaging because of its clear and well-

studied anatomical structure, containing morphological fea-

tures of different levels of detail. Using this data set as an

example, we study the properties of MALDI-imaging mass

spectra, and especially the pixel-to-pixel variation of spectra

intensities. Second, we apply our procedure to a section of a

neuroendocrine tumor (NET) invading the small intestine

(ileum) proving the potential of our procedure for the analysis

of highly complex tumor tissue samples.

Methods

Samples Preparation and Mass Spectrometry Measu-

rements. Both for the rat brain and NET, cryosections of 10

µm thickness were cut on a cryostat (CM 1900 UV, Leica

Microsystems GmbH, Weltzar, Germany) and transferred to a

precooled, conductive indium-tin-oxide (ITO) coated glass slide

(Bruker Daltonik GmbH, Bremen, Germany). The acquisition

and evaluation were carried out using flexControl 3.0 and

flexImaging 2.1 software (Bruker Daltonik GmbH).

Rat Brain. The sections were washed twice for 1 min in 70%

ethanol, and once for 1 min in 96% ethanol and then dried in

a vacuum desiccator. The matrix (Sinapinic acid at 10 mg/mL

in 60% acetonitrile and 40% water with 0.2% trifluoroacetic

acid) was applied using the ImagePrep device (Bruker Daltonik

GmbH) following a standard protocol. Mass spectra were

acquired on a MALDI-TOF instrument (Autoflex III; Bruker

Daltonik GmbH) equipped with a 200 Hz smartbeam II laser.

MALDI measurements were performed in linear positive mode

at a mass range of 2.5 kDa to 25 kDa. The lateral resolution for

the MALDI image was set to 80 µm. A total of 200 laser shots

Scheme 1. Spatial Segmentation Procedure for

MALDI-Imaging Data
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were summed up per position. For data processing, we

considered only the mass range from 2.5 kDa-10 kDa.

Neuroendocrine Tumor (NET). The sections were washed

twice for 30 s in 70% ethanol, and once for 20 s in 96% ethanol,

and then dried in a vacuum desiccator. The matrix was applied

in the same way as for the rat brain sample. Mass spectra were

acquired on a MALDI-TOF instrument (Autoflex III, Bruker

Daltonik GmbH) equipped with a 200 Hz smartbeam II laser.

MALDI measurements were performed in linear positive mode

at a mass range of 1 kDa to 30 kDa with a lateral resolution of

50 µm and 300 laser shots per position. For data processing,

we considered only the mass range from 3.2-18 kDa. After

MALDI analysis, the matrix was washed off using 70% ethanol,

and a conventional Haematoxylin and Eosin (H&E) staining was

performed. The stained sections, coregistered with the MALDI-

imaging results, were evaluated histologically by an experienced

pathologist (GE) using a virtual slide scanner (MIRAX desk, Carl

Zeiss MicroImaging GmbH, Munich, Germany).

Mass Spectrometry Data Preprocessing. The preprocessing

of spectra was performed in ClinProTools 2.2 (Bruker Daltonik

GmbH). Spectra were baseline corrected with the TopHat

algorithm (minimal baseline width set to 10%, the default value

in ClinProTools). No normalization or binning was done. Then

spectra were saved into ASCII files and loaded in Matlab

R2007b (The Mathworks Inc., Natick (MA), USA) where the rest

of the processing was performed. The rat brain data set

comprises 20 185 spectra acquired within area of the sample,

each of 3045 data points covering the mass range 2.55-10 kDa;

the NET data set comprises 27 360 spectra each of 5027 data

points covering 3.2-18 kDa.

Peak Picking. In this step, we performed peak picking for

the whole data set generating a list of data set-relevant peaks.

The aim of this operation is to reduce the length of spectra

selecting only informative peaks and discarding m/z-values

which show no peaks in any spectra. First, we considered each

10th spectrum to speed up the procedure. For each of the

considered spectra, we selected 10 peaks.

Naturally, for processing of a still huge number of spectra

we need an efficient method, which disqualifies the use of

computationally inefficient methods as continuous wavelet

transformation or ridge lines. At the same time, peak picking

should be robust to strong noise, preventing the use of too

simple local maxima or signal-to-noise ratio methods, which

produce too many false positives. We used our original peak

picking method based on the orthogonal matching pursuit

(OMP) algorithm,23 which models each peak with a shape

function. Note that this approach is also used in the popular

mass-spectrometry processing software OpenMS30 and

MapQuant.31

In our approach, each spectrum is modeled as a sequence

of Dirac delta peaks convolved with the Gaussian kernel (as in

MapQuant31) plus noise. Assuming this model, the problem

of peak picking is equivalent to the problem of deconvolution.

For the deconvolution, we use OMP because it is simple, fast,

allows for specification of the number of sought-for peaks, and

is widely applied in signal processing. Denis et al. discussed

advantages of OMP over other deconvolution algorithms.23 To

the best of our knowledge, this publication is the first one

describing application of OMP-based peak picking to real-life

mass spectrometry data.

The Gaussian kernel is selected as a reasonable approxima-

tion of the peak shape (Figure 2). In our experience, the OMP

algorithm is robust to deviations in the shape and symmetry

of peaks. As a simplification, we assume the width of a peak to

be mass-independent and estimate it manually considering

several large peaks. The parameter sigma of the Gaussian kernel

is calculated with the two-sigma rule dividing the peak width

by four.

After collecting the peaks lists for all considered spectra, we

have a joint list of potential peaks. Among them, we select only

those consensus peaks which appear in at least 1% of consid-

ered spectra. This reasonable assumption allows us to omit

spurious peaks which take place in just a few spectra.

Edge-Preserving Denoising of m/z-Images. At this stage, we

consider a MALDI-imaging data set as a datacube with 3-co-

ordinates: x, y, and m/z (note that the data set is reduced in

the number of m/z-values by the peak picking). Given the m/z-

value, an image of intensities of all spectra at this m/z-value

can be reconstructed, which we call the m/z-image.

The core of our procedure is denoising of m/z-images. So

far, the existing procedures of clustering MALDI-imaging data

are prone to noise18-20 that complicates interpretation of their

results and hides structural details. This is explained by the

fact that MALDI-imaging data are contaminated with strong

noise. A typical tissue sample represents a highly complex

mixture of analytes with strong differences in abundance which

in itself has strong effects on analyte ionization, leading to

chemical noise. Na+ and K+ ions present in every tissue result

in adduct formation aside from the commonly observed

protonated analyte ions. In addition, a tissue section represents

a far from perfect surface for matrix crystallization as compared

to steel target plates commonly used in regular MALDI

measurements. In addition to forming a relatively uneven

surface from which ions are extracted, there are numerous

effects such as uneven crystallization of the matrix or charge

accumulation, which generally leads to reduced spectra quality

and increased noise levels.

Recently, the smoothing of the resulting classification map

was proposed,24 which, although it brings some improvement,

cannot reconstruct the details lost at the stage of data process-

ing. More natural would be to denoise each m/z-image.

However, the large variance of noise which, moreover, varies

inside each individual m/z-image and between different m/z-

images, makes denoising of m/z-images a challenging problem

(see discussion). Moreover, when performing denoising, the

aim is not to obscure the structure of an m/z-image by mixing

up intensities of two neighboring morphological regions. This

would smooth out the edges between regions and erode details,

which is not acceptable when the tissue has complex structure

with fine anatomical or histological details (e.g., tumor tissue).

Thus, standard image-denoising filters (median or convolu-

tion filter) are inappropriate for denoising of m/z-images (see

discussion). We propose to exploit edge-preserving image

denoising. One of the most popular methods for this purpose

is the total variation (TV)-minimizing25 Chambolle algorithm.26

Informally speaking, TV is the sum of absolute differences

between neighboring pixels. Noise increases TV significantly

and TV-minimization algorithms, given an image, search for

its approximation with small TV. The Chambolle algorithm,

however, has the drawback that the level of smoothness of the

output image can be adjusted only globally by manually

choosing a parameter. We exploit a modification of the

Chambolle algorithm proposed by Grasmair that adjusts the

level of denoising to the local noise level and the local scale of

the features to be resolved.27 The Grasmair algorithm locally

adapts the denoising parameter of the Chambolle algorithm

Spatial Segmentation of Imaging MS Data research articles
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in an automatic way, increasing it in the areas with high noise

level and decreasing it in the areas with low noise level, thus

providing locally adaptive edge-preserving denoising. The main

parameter of the Grasmair method is the level θ of smoothness

of the resulting image (between 0.5 and 1; the higher, the

smoother); for other parameters, we used their default values.

Our own implementation was used.

Clustering. The peak picking reduces the full data set to

intensities at considered m/z-values. Then the edge-preserving

denoising is individually applied to each m/z-image replacing

it with its denoised version.

The final step of our segmentation procedure is to cluster

all reduced and processed spectra with a clustering algorithm.

We do not attempt to estimate the number of clusters from

the data (using, for example, the Akaike method), but rather

specify it a priori. This is more reasonable in a general study

because, first, in a state-of-the-art MALDI-imaging study one

is interested in a small numbers of clusters (up to 10), so

segmentation maps for all numbers of clusters can be com-

puted quite fast, and second, visual observation of a segmenta-

tion map by a histologist provides an all-purpose way of

evaluation and selection of the best number of clusters.

For the clustering we used the high dimensional discriminant

clustering (HDDC) method28 whose implementation is freely

available through the MATLAB Central File Exchange reposi-

tory. HDDC can be seen as a generalization of the linear

discriminant analysis, where each cluster is modeled by a

Gaussian distribution of its own covariance structure. The

efficient calculation of the Gaussian parameters is based on

the idea of modeling each cluster in its own subspace of

reduced dimension (its so-called intrinstic dimension). The

HDDC is developed for high-dimensional data (informally

speaking, the clustering problem is referred to be high-

dimensional if dimensionality of the data is larger than 10)

where the curse of dimensionality disqualifies simple clustering

methods.

Results

Rat Brain Data Set.

Peak Picking. The rat brain data set consists of 20 185

spectra, where for peak picking we considered only 2019 (10%

of all) spectra. The joint list of potential peaks, which includes

all peaks found in the considered spectra, contains 373 peaks

and 110 of them were selected as consensus peaks taking place

in at least 1% of spectra, that is, in 20 out of 2019 (Figure 1).

In Figure 2, we show two example spectra from the rat brain

data set (a representative spectrum with spatial coordinates x

) 56, y ) 105, and a noisy spectrum, with x ) 170, y ) 53)

together with the detected peaks 10 peaks per spectrum). One

can see that (1) OMP successfully detects the major peaks, and

(2) the Gaussian function provides reasonable approximation

of the peak shape.

Figure 1 shows that most of the discarded peaks, namely,

those appearing in less than 20 out of 2019 considered spectra,

are located in the low-mass range (38% in 2.5-3 kDa, 73% in

2.5-4 kDa). Although they might correspond to some rare low-

mass chemical compounds, we hypothesize that they are the

noise peaks. MALDI-imaging spectra normally have baseline

which is high in the low-mass region and then decreases taking

small values for large masses. As discussed below, the noise

variance is proportional to the peak intensity, which may lead

to high noise variance in the low-mass region and, correspond-

ingly, to high random spikes in this region falsely detected as

peaks.

Noise in MALDI-Imaging. The noise in MALDI-imaging

spectra is strong (Figure 3), and this issue needs to be

addressed. For a large peak, its intensity range can vary

significantly from spectrum to spectrum (i.e., from one spatial

point to another). The largest peak (at m/z 4963.5) takes values

from 0.4 to 153. The peaks intensities histograms are unimodal

and smooth which may indicate that peak intensities change

randomly (affected by noise). The presence of strong noise is

confirmed by visual observation of m/z-images corresponding

to the selected peaks (Figure 3B). Note that the noise variance

changes both within an image and between different images.

Figure 3C illustrates this observation, showing the histograms

of intensity values in four spatial areas for the m/z-image at

4963.5 (the largest peak in the mean spectrum), two areas of

high intensity (A1, A4) and two areas of low intensity (A2, A3).

The histograms demonstrate that in the highly intense areas,

the variance of noise is higher. This effect is also observed in

other m/z-images. Note that in the highly intense areas (A1,

A4) the peak intensities range down almost to zero, thus making

the variance of large peaks extremely high. Finally, Supple-

mentary Figure 1, Supporting Information shows that the noise

variance at a spatial point linearly depends (with correlation

coefficient 0.96) on the mean intensity around this point that

may point out the Poisson distribution of the noise. Thus, we

conclude that (1) the noise is strong, (2) the noise variance

changes within an m/z-image and between different m/z-

images, (3) the noise variance is linearly proportional to the

peak intensity.

Edge-Preserving Denoising. After selecting 110 peaks, we

apply the edge-preserving denoising to m/z-images corre-

sponding to these peaks. Examples of m/z-images and their

denoised versions are shown in Figure 4. The Grasmair method

efficiently removes the noise while not smoothing out edges.

Segmentation Map. The segmentation map after clustering

with edge-preserving denoising is presented in Figure 5 to-

gether with an optical image of the analyzed rat brain section

and a schematic of the anatomical structure. The major

anatomical regions are well represented. When judging the

quality of the representation, it is important to consider that

only mass spectral information was used to recreate anatomical

features in a completely automated way with no prior knowl-

edge about the sample being utilized. Cortex (pale green,

Figure 1. The data set-relevant peaks for the rat brain data set.

Brown: the mean spectrum. Blue: the frequency of a peak

(number of spectra in which the peak is detected); high values

correspond to most observable peaks. Red triangles: potential

peaks (found in at least one spectrum). Green triangles: selected

consensus peaks peaks (found in at least 1% of spectra).
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dorsal), hippocampus (brown and light blue), thalamus (orange,

in the central part), hypothalamus (dark blue, ventral), amygda-

la (red), and the paraventricular nuclei (light blue) are all well

represented. It is of particular interest that both the dorsal and

Figure 2. Two example spectra from the rat brain data set and selected peaks for them. (A) A representative spectrum, (B) its zoomed

region, (C) noisy spectrum without prominent peaks, (D) spatial positions of the spectra. The reconstructions (red curves) are created

summing up the Gaussian kernels found by the deconvolution.

Figure 3. Noise properties for the rat brain data set. (A) The mean spectrum and histograms (rotated 90° clockwise for illustrative

purposes) of intensities for peaks at m/z 4281.0, 4963.5, 6274.7, and 8563.8. (B) m/z-images for the same peaks. (C) m/z-image for

4963.5 and histograms of its values in four spatial areas. The areas A1, A4 (A2, A3) of high (low) intensity are selected manually.

Spatial Segmentation of Imaging MS Data research articles
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ventral parts of the hippocampus have been correctly assigned

to the same clusters (CA2 region in brown, CA3 region in light

blue) although they are not interconnected in the section

shown. From the optical image, it is obvious that the ventral

part of the hippocampus is larger and better represented on

the right-hand side of the section, which explains the clearer

representation in corresponding area on the segmentation map.

The corpus callosum and the internal capsule are two promi-

nent anatomical structures which are directly interconnected.

They are not separated on the segmentation map (both shown

in light green), which can be explained by their functional

similarity. Both are part of the white matter and therefore

contain numerous axonal fibres. It is not surprising that

funtional similarities are represented in the similarity of profile

spectra, which in turn results in spectra from both anatomical

regions ending up in the same cluster.

Both the lateral and the third ventricles are well visible on

the optical image but not picked up by the segmentation map.

Figure 4. Two example m/z-images from the rat brain data set. For each m/z-image, results of weak (θ ) 0.6), moderate (θ ) 0.7) and

strong (θ ) 0.8) edge-preserving image denoising are shown.

Figure 5. The rat brain data set. (A) Optical image. (B) Segmentation map (10 clusters, θ ) 0.7). (C) Schematic of the anatomical structure

of the rat brain corresponding to coronal section ∼4.16 mm from Bregma. (D) The matrix showing distances between clusters (dark

color of an element of the matrix means that clusters corresponding to the row and column of this element are similar).
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We suppose that they were not smoothed out during denoising

but characterized by a low signal intensities, as ventricles

represent cavities in the brain. The clustering selects major

features in the spectra (by intensity and number of spectra)

and for this reason misses the ventricles.

Note that although the segmentation maps look coarser than

the anatomical structure, they are able to detect thin features

of one-two pixels width. So, the spatial resolution of the

segmentation map is mainly restricted by the spatial resolution

of the MALDI-imaging data set.

Importance of Edge-Preserving Denoising. Figure 6 shows

segmentation maps produced without denoising of m/z-images

as well as with simple median denoising. In the segmentation

map calculated without denoising, most major anatomical

regions can still be recognized, but their borders match the

actual anatomical features not as well as in the segmentation

map for denoised data (Figure 5B). More importantly, although

using the same number of clusters (10), the assignment of the

major anatomical features into independent clusters is not as

good for the denoised data. For example, both thalamic and

cortical areas (blue in Figure 6A) as well as hippocampal and

hypothalamic areas (dark yellow in Figure 6A) have been

assigned to the same cluster. Cortex and amygdala are not

clearly defined but mixed up in two clusters (red and light blue

in Figure 6A).

Use of simple and well-known median filtering algorithm

instead of edge-preserving denoising leads to inferior results.

With a 3 × 3 size (Figure 6B), the paraventricular nuclei (light

blue in Figure 5B) are not visualized and the general preserva-

tion of edges is much worse. With a 5 × 5 size (Figure 6C)

although the amygdala (orange in Figure 6C) and the paraven-

tricular nuclei (red in Figure 6C) are somewhat visible, the

hippocampal area is almost completely disintegrated and mixed

up with other regions. Another asymmetric cluster (light green

on the right in Figure 6C) could not be matched with an existing

anatomical feature; as a result, simple filtering methods do not

appear as useful as edge-preserving filtering.

Co-Localized Masses. Finally, after spatial segmentation of

a data set, one might be interested in finding masses the most

colocalized with a specific segment. In particular, these masses

can be used to identify proteins (or peptides) using tandem

mass spectrometry that can be done either from the extract of

a full tissue sample (for abundant proteins), from microdis-

sected cells (low-abundant proteins), or using tandem MS

imaging.29 Figure 7 shows the most colocalized masses for six

clusters of the segmentation map from Figure 5B. The colo-

calization is measured by the correlation with the spatial mask

specified by the cluster.

The Role of Parameters.

Peak Picking. The peak picking does data reduction and

significantly speeds up further analysis. At the same time, note

that large peaks usually express spatially structural information.

Thus, peak picking simplifies the problem of clustering remov-

ing masses mostly representing noise. The three main param-

eters used in addition to the peak width are (1) portion of

spectra considered for peak picking (selection of each 10th

spectrum is recommended), (2) the number of peaks selected

for an individual spectrum (10 is recommended), and (3) the

percentage of spectra where a peak is to be found to be selected

in the final consensus peak list (1% is recommended). Figure

8 shows segmentation maps for different values of the second

and third parameters. One can see that the results are robust

to changes of these parameters. The numbers of selected peaks

(Figure 8, Supplementary Figure 2, Supporting Information)

show that these two parameters are coupled in a way that an

increase of the first parameter can be compensated by higher

values of the second one. However, an increase of each of them

slows down the procedure (by requiring more iterations of OMP

and/or by selecting more peaks at the end). In our experience,

the combination of 10 and 1% works well for many MALDI-

imaging data sets (results not shown). Supplementary Figure 2,

Supporting Information shows results when each 5th and 20th

spectrum is considered for peak picking and reveals that this

parameter does not affect the number of selected peaks.

Denoising and the Number of Clusters. Let us consider the

segmentation maps for the rat brain data set produced with

three levels of denoising (weak, θ ) 0.6; moderate, θ ) 0.7;

and strong, θ ) 0.8) and three numbers of clusters (6, 8, and

10), Figure 9. As expected, a decrease in the number of clusters

merges together some features separated before. At the same

time, a similar effect is observed when denoising gets stronger

since some neighboring details are oversmoothed. As a result,

the level of denoising should not be increased too much in

order to get smooth-looking images, especially in case of

structures with fine details, such as tumor sections.

Human Neuroendocrine Tumor Data Set. Notwithstanding

that the brain data set is complex, a brain section shows a clear

anatomical structure that can be compared with a text-book.

In contrast, tumor sections do not show a standard structure;

that is, every tumor section is different and requires consider-

able expertise to be evaluated. In the context of clinical

research, clustering methods are of particular interest to

facilitate the interpretation of tumor data sets. Therefore, we

have applied our method to the analysis of a human neuroen-

docrine tumor section.

The H&E stained tissue section was annotated by an

experienced pathologist (GE), indicating different functional

areas of the tissue (Figure 10A). The segmentation map

represents histological structures in detail (Figure 10B,C). The

tumor area and all main structural components of the small

intestine wall could be allocated entirely. Functional processes/

structures are highlighted in Figure 10A. The segmentation map

Figure 6. Segmentation maps for the rat brain data set. (A) No denoising. (B) Median filtering, 3 × 3 window. (C) Median filtering, 5 ×

5 window.
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displays the same segments (orange, dark orange) for surface

(S) and mucosal stroma (St) of the small intestine. This may

result from resorption and transport of the same low-molecular

protein substance (for instance food component) from the

intestinal surface to the mucosal stroma and lymphatics and

reflect a physiological function of the small intestine. The tumor

area is segmented into two main clusters (dark blue and red,

Figure 10B). For this differentiation no clear morphologic or

functional correlation was found in the optical image. Higher

optical magnification (not shown) of the tumor area shows the

heterogeneous composition of this tissue consisting of at least

three components: (i) small neuroepithelial tumor cell nests,

(ii) tumor stroma and pre-existent structures of the intestinal

wall especially smooth muscular tissue, and (iii) connective

tissue. The segmentation map with weak denoising (Figure 10C)

also shows heterogeneous composition, although we do not

have evidence that it is tumor specific.

Finally, we found for the NET data set four masses the most

colocalized with dark blue and red regions (corresponding to

tumor based on histological analysis) of the segmentation map

shown in Figure 10B, which are 3791.1, 5920.8, 7550.0, and

13976.9 Da (Figure 11). Interestingly, while the first three

Figure 7. The most colocalized masses for six clusters of the segmentation map (Figure 5B) for the rat brain data set. Two-colored

image shows the spatial mask (cluster), and the next image shows m/z-image of the colocalized mass.

Figure 8. Segmentation maps for the rat brain data set for different parameters of peak picking: number of peaks selected for an

individual spectrum (first column: 5, second column: 10, third column: 20 peaks) and different percentage thresholds for the consensus

peaks (first row: 0.1%, second row: 1%, third row: 5%). The moderate level of denoising (θ ) 0.7) is used; each 10th spectrum is

considered for peak picking; see also Supplementary Figure 2, Supporting Information.
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masses have low intensity in the nontumor area, the last mass

shows high intensity also in the most part of the data set except

for the mucosal stroma, that highlights that the corresponding

molecular compound is common for all (neuro-)epithelial cells.

Discussion

Peak Picking. Given a set of spectra, the most popular

approach of peak picking, also used in the ClinProTools

Figure 9. Segmentation maps for the rat brain data set for different numbers of clusters (first column: 6, second column: 8, third

column: 10 clusters) and for different levels of edge-preserving denoising (first row: weak, second row: moderate, third row: strong

denoising).

Figure 10. The human neuroendocrine tumor data set. (A) 3D-structure of the tissue used for MALDI-imaging measurement and optical

image of the H&E stained section with main functional structures. (B) Segmentation map, strong denoising, 10 clusters. (C) The matrix

showing distances between clusters for panel B. (D) Segmentation map, weak denoising, 10 clusters.
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software, is to select peaks based on the data set-mean

spectrum. However, as discussed in the introduction, the mean

spectrum of a MALDI-imaging data set can show no high peak

for a mass localized only in a small spatial area. Thus,

heterogeneity of a MALDI-imaging data set poses a new

challenge and requires new approaches to peak picking. Our

approach allows for selection of peaks which are observed only

in a small portion (at least in 1%) of all spectra. To the best of

our knowledge, this approach has not been described yet.

Edge-Preserving Denoising. At the present time, there is

only one study32 published where denoising of m/z-images (a

moving average filtering of 3 × 3 pixels) was used to reduce

the pixel-to-pixel variation. In another study,24 denoising was

applied posthoc in order to improve the classification map. We

suppose that the concept of denoising m/z-images has not yet

been exploited to its full extent due to mathematical complexity

of this problem.

Clustering Methods. The problem of clustering has a long

history, and at the present time there are many methods and

approaches of clustering. We have selected HDDC since it is

developed for high dimensional data. In our experience, HDDC

leads to better results if compared to simple methods such as

k-means (small features are resolved, k-means sometimes splits

the large anatomical parts of the rat brain into several seg-

ments, strong smoothing seems to affect k-means results

leading to additional anatomically not reasonable layers along

edges; results not shown), although HDDC is significantly

slower.

Currently, hierarchical clustering (HC) is used in MALDI-

imaging,18,21 in particular, because it is available in the flex-

Imaging software (Bruker Daltonik GmbH). The main feature

of HC in this context is an interactive analysis of the HC-

dendrogram and manual splitting of the sample into regions

based on this analysis. In contrast, our approach automatically

divides the data set into the given number of clusters.

However, when using hierarchical clustering, one should

keep in mind the following. First, it requires more memory for

storing the full distance matrix although there are memory-

optimized methods like BIRCH.33 Second, at each step (in-

creasing the number of clusters) one cluster is split into two

parts. Not the same in HDDC or k-means, where for each

number of clusters an optimal partition of the full data set is

searched for. From one side, hierarchical partitioning can be

better interpreted (at each step an already established cluster

is split into two subclusters). However, it leads to not optimal

partitioning for the fixed number of clusters, in contrast to

HDDC or k-means.

We do not perform comparison of clustering methods

because the focus of this paper is on improving clustering

results with the use of spatial information through edge-

preserving denoising of m/z-images. Note that after edge-

preserving denoising is applied, any clustering method instead

of HDDC (e.g., hierarchical clustering) can be exploited.

Importance for Cancer Studies. As shown, the computed

segmentation maps are able to reveal the morphological

composition of analyzed tissue (Figure 10). Moreover, a seg-

mentation map can highlight functional similarity of morpho-

logical structures (like the similarity of intestinal surface and

mucosal stroma shown in the segmentation map, as discussed

in the results for NET) that can lead to understanding of

functional processes in tissue.

When compared our MALDI-imaging segmentation maps

with standard histological tools in cancer studies such as H&E

and immunohistochemistry, where tissue is stained with

Figure 11. The spatial mask (corresponding to the dark blue and red segments in Figure 10B) and four m/z-images mostly colocalized

with this mask. The colocalization is measured by the correlation coefficient (shown in the image title).

Figure 12. A part of the human neuroendocrine tumor data set. (A) Optical image of the H&E stained section. (B) Segmentation map

with weak denoising. We hypothesize that the porous (blue-red) segmentation in the tumor area is due to heterogeneous nature of the

tumor.
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antibodies with respect to a specific protein, our map (1) takes

into account the full range of proteins insides tissues, (2) is

not a targeted but a data-driven approach that finds regions

of similar molecular composition, (3) pictures the tissue with

several colors. Thus, our segmentation map represents a

proteomic functional topographic map on the basis of tissue

morphology that cannot be reached by any other method.

Naturally, interpretation of a segmentation map showing the

complex proteomic diversity in one image and allocation of

the derived segments to single structures requires histological

expertise and depends on the spatial resolution. The state-of-

the-art spatial resolution of MALDI-imaging (20 µm) is much

less than that of microscopy used in histological studies. We

believe that with improvement of its spatial resolution (to 10

µm or lower) this technology will become a histological tool

along with H&E and immunohistochemistry.

Let us consider the segmentation map produced with weak

denoising (Figure 12), which is clearly less homogeneous,

especially in the tumor area. It needs to be evaluated whether

this reflects the functional heterogeneity of the tissue or is

caused by noise. However, we have found evidence (unpub-

lished results) that inflammatory infiltrates or the enrichment

of serum components in the stroma of head and neck cancer

can lead to localized changes in protein concentrations and

compositions that can be represented by such heterogeneous

segmentation.

Although interpretation of segmentation maps is a challeng-

ing task, these maps provide a unique way to depict the

complex functional proteomic heterogeneity of a tissue in one

image. Therefore, integral aspects of tissue functions could be

explored under diverse conditions such as tumor proliferation,

invasion, and drug metabolisation.

Relation to Supervised Methods. Note that in this study we

are interested in unsupervised processing of MALDI-imaging

data. Supervised processing, when several regions of interest

or microdissected cells are intercompared, is better developed

in the context of MALDI-imaging.4-7 We believe that our

segmentation approach also can be useful in a supervised

framework.

First, the produced segmentation regions can be taken as

regions of interest with subsequent intercomparison of spectra

from these regions. This makes sense when, even after histo-

logical analysis, the regions of interest cannot be determined

precisely enough. In biomarker discovery studies, this plays an

especially important role, due to the heterogeneous structure

of tumor tissue, insufficient spatial resolution of MALDI-

imaging, and the recently discovered molecular exchange

between tumor and the surrounding tissue.34

Second, our segmentation map provides a way to establish

discriminative information that can be found in the spectra

also answering the question at which level of detail the regions

of interest should be selected. As demonstrated, in the neu-

roendocrinal tumor data set the outline of the tumor can be

found as well as fine substructures inside the tumor itself. If

these features can be found in an unsupervised manner, they

are prominent enough to be investigated with a supervised

approach.

Application to other IMS Modalities. Besides MALDI-IMS,

we have applied our segmentation pipeline to other IMS data,

among others to DESI-, LDI-IMS, and SIMS (results not shown).

LDI and SIMS data sets are quite similar to MALDI, and the

pipeline shows good segmentation results. SIMS has a higher

dynamic range, but our peak picking is able to detect small

peaks if they have the proper shape. DESI technology is

particular; because of using the spray for desorption and no

matrix, there is much less pixel-to-pixel variation and original

m/z-images look quite smooth. The edge-preserving denoising

improves the segmentation maps but not as considerably as

for MALDI, LDI, and SIMS.
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