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Methyl vinyl ketone (C4H6O) is a volatile, labile organic compound of importance in atmospheric chemistry.
We prepared a molecular beam of methyl vinyl ketone with a rotational temperature of 1.2(2) K and demon-
strated the spatial separation of the s-cis and s-trans conformers of methyl vinyl ketone using the electrostatic
deflector. The resulting sample density was 1.1 × 10

8 cm−3 for the direct beam in the laser ionization re-
gion. These conformer-selected methyl vinyl ketone samples are well suited for conformer specific chemical
reactivity studies such as in Diels-Alder cycloaddition reactions.

I. INTRODUCTION

Methyl vinyl ketone (MVK, 3-butene-2-one, C4H6O) is
the simplest α, β-unsaturated ketone and an important
oxygenated volatile organic compound. MVK results
from many sources such as vehicle exhaust,1,2 biomass
burning3 and the ozonolysis of isoprene.4 As a primary
first-yield product of isoprene oxidation in earth’s atmo-
sphere,5,6 MVK remains in the gas phase and is highly
reactive.7 As a result, MVK has an important impact
on the photochemical activity in the boundary layer, in
particular in forested areas,8 and contributes to the de-
struction of ozone due to its formation of species such
as formaldehyde and methylglyoxal.4,9 The atmospheric
lifetime of MVK is ∼10 h8,10 due to its fast reaction
with hydroxyl radicals under atmospheric conditions.11

On the other hand, in the troposphere isoprene reacts
with hydroxyl radicals and ozone molecules leading to a
significant yield of MVK,12 which is important for the
formation of secondary organic aerosols and the overall
NOx cycle.9,13 Moreover, MVK is a candidate for proto-
typical pericyclic reactions, such as the Diels-Alder (DA)
cycloaddition.14,15

The ultraviolet absorption,16 microwave17–19 and in-
frared20–23 spectra of MVK provided evidence for a
mixture of s-cis and s-trans MVK conformers and
showed that s-trans MVK is more stable than s-cis

MVK. Recently, the high-resolution rotational (7.5–
18.5 GHz),24 millimeter-wave,25 and infrared spectra
(540–6500 cm−1)26 of MVK were reported. By combin-
ing experimental data and high-level quantum-chemistry
calculations, the relative energy of s-trans MVK and s-

cis MVK was determined as 164±30 cm−1,25 yielding an
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equilibrium mixture of approximately 69 % s-trans MVK
and 31 % s-cis MVK at room temperature.25,26

The reactivity of different conformers, in spatially sep-
arated molecular beams, may vary significantly.27,28 Neu-
tral molecules can be manipulated in the gas-phase us-
ing the electrostatic deflection technique,29 which was
demonstrated for the separation of individual quantum
states,30–32 conformers,33–37 or molecular clusters.37–39

This separation can be exploited for the investigation of
the specific chemical reactivities of individual molecular
species.27,40–42

Here, we demonstrate the preparation of a cold and
dense molecular beam of MVK and the spatial separation
of the s-cis and s-trans conformers using the electrostatic
deflector. Furthermore, we determine the density of the
produced cold samples. The spatially separated conform-
ers of MVK could be used for non-species-specific exper-
iments, e. g., conformer-specific reactivity studies27,40 or
ultrafast structural imaging experiments.43–45

II. EXPERIMENTAL SETUP

The experimental setup was described previously.36,46

A homebuilt gas handing system with a rotating high-
pressure cylinder was added to fully and permanently
mix MVK (Sigma-Aldrich, 99 %, used without further
purification) and helium, see Fig. S1 in the supplemen-
tary information. The reservoir was filled with 2 ml of
MVK, de-aired down to ∼10

−2 mbar, and mixed with
helium gas at 20 bar. The gas mixture was supersoni-
cally expanded through a cantilever piezo valve47 oper-
ated at a repetition rate of 20 Hz. Two skimmers, placed
55 mm (∅ = 3 mm) and 365 mm (∅ = 1.5 mm) down-
stream of the valve were used to collimate the molecu-
lar beam, which was then directed through the electro-
static deflector29 before passing through a third skimmer
(∅ = 1.5 mm) 562 mm downstream of the nozzle. MVK
was ionized by a femtosecond laser with a wavelength cen-
tered at ∼800 nm and a pulse duration of 45 fs (full-width
at half maximum, FWHM) that was focused to 44 µm
(FWHM) in the interaction region by a f = 500 mm
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lens. The resulting ions were detected by a two-plate
time-of-flight (TOF) mass spectrometer (MS).48

III. RESULTS AND DISCUSSION

MVK is a liquid at room temperature and condenses
on the sample reservoir walls, resulting in fast demixing
of the prepared gas mixtures and corresponding fast de-
cays of the MVK density in the molecular beam. Demix-
ing was avoided through rotation of the sample reservoir
(vide supra) and Figure 1 shows the resulting stability of
the MVK signal following 20 h of sample rotation. Under
these conditions the sample density was stable over a few
hours and it decreased to 70 % over four days.

The normalized experimental vertical molecular beam
profiles of MVK for different backing pressures of 2, 4,
6, and 8 bar are shown in Fig. S5 in the supplemen-
tary information. The full width of the direct molecular
beam (0 kV) is 2 mm, determined by the skimmers and
the distance between the third skimmer and ionization
point. The deflected beam (10 kV) is deflected upward
by ∼0.8 mm when a pressure of 2 bar is applied to the
piezo valve. Increasing the pressure to 4 bar, 6 bar, and
8 bar the deflection of the beam increases to ∼1.0 mm,
∼1.1 mm, and ∼1.1 mm, respectively, which is due to
the correspondingly lower rotational temperature of these
beams.29,49

Figure 2 a shows the experimental and simulated
molecular beam profiles of MVK seeded in 8 bar of helium
for deflector voltages of 0 V and 10 kV. The mass spec-
trum of the direct (0 kV) and deflected (10 kV) molecular
beam are shown in Fig. S4 in the supplementary infor-
mation. The spectrum of the deflected beam mainly con-
tains signals from the MVK parent ion M+ (m/z = 70)
and from fragment ions [M-CH2=CH]+ (m/z = 43) and

Figure 1. MVK signal over time for the sample preparation
(200 ppm) of mechanical mixing by rotation of the sample
cylinder.

a

b

Figure 2. (a) Direct and deflected spatial beam profiles of
MVK and simulation results. (b) The fractional population
of the s-cis and s-trans conformer in the beam; the thin gray
line depicts the ratio at room temperature [25, 26].

[M-CH3]
+ (m/z = 55).

Solid and dotted lines in Figure 2 a show simulated
spatial profiles using the molecular parameters and calcu-
lations detailed in the supplementary information. The
effective dipole moments of the rotational states of s-

trans are larger than ones of s-cis and, therefore, s-trans

deflects further than s-cis. Assuming a thermal distri-
bution of the population of rotational states, the best fit
for the profile of MVK in Figure 2 was obtained for a
rotational temperature of 1.2(2) K. The deflection and
simulation profiles of MVK seeded in different pressures
of helium are shown in Fig. S3 in the supplementary in-
formation.

Although no full separation was possible, s-trans MVK
was deflected more than s-cis MVK. The fractional con-
tributions of the conformers across the vertical beam pro-
file are shown in Figure 2 b, assuming the same excitation
and ionization cross-sections for the two conformers.35

A beam of s-trans conformer with a purity higher than
90 % was obtained for vertical molecular-beam positions
y ≥ 1.9 mm.

The MVK sample densities in the experiments were
estimated based on a strong-field ionization model.50,51

Assuming an instrument sensitivity of 50 % for the MCP
detector52 the asymptotic slope of an integral ioniza-
tion signal with respect to the natural logarithm of peak
intensity can be expressed as S = ̺πσ2D,50,51 where
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Figure 3. The MVK signal count (per shot) versus the peak
intensity on a semi-logarithmic scale (dots). MVK samples
are seeded in 2 bar of He with ratios of 50 ppm (blue) and
140 ppm (red). The dashed lines are the linear fitting of the
asymptotic behaviour.

̺ represents the sample density, σ the standard devia-
tion of the transverse intensity distribution and D the
length of the focal volume in the molecular beam. The
MVK signal count versus the peak intensity are shown
on a semi-logarithmic scale in Figure 3, where the sum
of the signals of the parent ion (m/z = 70) and its
fragments (m/z = 43 and m/z = 55) was used. The
saturation onset was deduced for a laser peak intensity
Isat = 6.5× 10

13 W/cm2 for mixing ratios of MVK sam-
ple and helium of 50 and 140 ppm. For the known
laser focus σ = 22 µm and a molecular-beam diame-
ter of D = 2 mm, the sample densities in the laser
ionization region, ∼750 mm downstream the valve, were
2.4× 10

7 cm−3 and 1.1× 10
8 cm−3, respectively.

IV. CONCLUSION

We demonstrated the use of a rotating-sample reservoir
for the production of a dense and cold molecular beam
of MVK with stable molecular densities over more than
a day and a rotational temperature of 1.2(2) K. This
allowed for the spatial dispersion and partial separation
of the s-cis and s-trans conformers of MVK using the
electrostatic deflector. The achieved direct-beam density
in the detection zone was experimentally determined to
be 1.1× 10

8 cm−3.

We plan to exploit these conformer-selected MVK sam-
ples for reactivity studies, e. g., with the ions of MVK
(self-reaction), methyl vinyl ether, and further dienophile
cations, to investigate the mechanism and conformational
specificities of ionic Diels-Alder (DA) cycloaddition re-
actions.53 Furthermore, the reactivity of the conformers
in reactions with neutral atmospheric molecules, such

as OH, would be extremely interesting for atmospheric
chemistry applications.

SUPPLEMENTARY MATERIAL

See the supplementary material for a schematic of the
gas panel, the direct and deflected molecular beam pro-
files of MVK for different backing pressures, the mass
spectra obtained in the direct and the deflected molecu-
lar beams, the rotational constants and dipole moments
of the MVK conformers, their Stark energies, and the de-
flection and simulation profiles of MVK seeded in helium
of different pressures.
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I. SAMPLE PREPARATION

MVK is a liquid with a relatively high vapor pressure
of ∼130 mbar at room temperature and its vapor/air
mixtures are explosive. Figure S1 shows the schematic of
the gas panel for sample preparation. This includes the
pumping system, pipes, the MVK reservoir, and a rotat-
ing sample cylinder. The sample cylinder is mounted on a
rotating motor (DGM130R-AZAC, Oriental Motor) and
is connected by soft PEEK tubes. The 2 ml MVK sample
is filled into the MVK reservoir and de-aired. First, the
whole gas line is evacuated (HiCube Eco, Pfeiffer Vac-
uum) to ∼ 10

−2 mbar, then MVK vapor is leaked into
the sample cylinder to the designed pressure, and sub-
sequently filled with helium to 20 bar. The cylinder is
closed and rotated. To minimize corrosion the MVK sam-
ple is removed from the gas lines and the sample reservoir

Figure S1. Schematic of the gas handling system, see text for
details.
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when not used.

II. STARK ENERGY CALCULATIONS AND NUMERICAL

SIMULATIONS

The Stark energies for all rotational states of both con-
formers of MVK up to J = 15 were calculated in a basis
of all field-free rotational states with J ≤ 30 using the
freely available CMIstark software package.? The ro-
tational constants and dipole moments of s-cis MVK and
s-trans MVK? ? are summarized in Table S1. The Stark
curves of the lowest-energy rotational states are shown in
Figure S2.

Figure S3 shows the normalized experimental and sim-
ulated vertical molecular beam profiles of MVK seeded
in 2, 4, 6, and 8 bar of helium, for voltages to the de-
flector of 0 V and 10 kV. The mixing ratio MVK/helium
of the sample was 200 ppm. Solid and dotted lines in
Figure S3 show simulated spatial profiles of the individ-
ual conformers. We simulated ×10

5 classical trajectories
for every quantum state with J ≤ 14 and the experimen-
tal parameters.? ? Assuming a Boltzmann population
distribution of rotational states, the rotational tempera-
tures of MVK seeded in helium of different pressures (2,
4, 6, 8 bar) were fitted to be 7.5, 3.5, 1.5, and 1.2 K.

s-cis-MVK

s-trans-MVK
s-cis-MVK

s-trans-MVK

Figure S2. The calculated adiabatic Stark energies of the
lowest-energy rotational states (J = 0 . . . 2) of MVK in a dc
electric field.
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Figure S3. Experimental and simulated deflection profiles of MVK seeded in helium at different pressures of (a) 2 bar, (b)
4 bar, (c) 6 bar, and (d) 8 bar.

Table S1. Rotational constants and dipole moment compo-
nents? ? used for the Stark effect calculations.

s-cis conformer s-trans conformer

A (MHz) 10240.938 8941.590

B (MHz) 3991.6351 4274.5443

C (MHz) 2925.648 2945.3315

µA (D) -0.57 2.53

µB (D) 2.88 -1.91

µC (D) 0 0
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Figure S4. Mass spectrum of the direct (0 kV) and deflected
(10 kV) molecular beam, corresponding to the positions at
0 mm and 1.65 mm in Figure 2 in the main manuscript. The
spectra were normalized to the monomer ion signal (m/z =

70). No ion signal was found above m/z = 100.

Figure S5. Vertical profiles of the direct (0 kV) and deflected
(10 kV) molecular beam of MVK for different backing pres-
sures applied to the piezo valve.


