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SUMMARY

We apply the “fused lasso” regression method of Tibshirani and others (2004) to the problem of “hot-
spot detection”, in particular, detection of regions of gain or loss in comparative genomic hybridization
(CGH) data. The fused lasso criterion leads to a convex optimization problem, and we provide a fast
algorithm for its solution. Estimates of false-discovery rate are also provided. Our studies show that the
new method generally outperforms competing methods for calling gains and losses in CGH data.
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1. INTRODUCTION

In this paper, we apply the fused lasso method (Tibshirani and others, 2004) to the “hot-spot” detec-
tion problem in comparative genomic hybridization (CGH) data. The CGH signal is approximated by a
piecewise function that has relatively sparse areas with nonzero values. Hence, the method is useful for
determining which areas of the signal are likely to be nonzero.

CGH is a technique for measuring DNA copy numbers of selected genes on the genome. In cells
with cancer, mutations can cause a gene to be either deleted from the chromosome or amplified, that is,
there are extra DNA copies of the gene. The CGH array experiments return the log2 ratio between the
number of DNA copies of the gene in the tumor cells and the number of DNA copies in the reference
cells. A value greater than zero indicates a possible gain in DNA copies of that gene, while a value less
than zero suggests possible losses.

The results of a CGH experiment are often interpreted by a biologist, but this is time consuming
and not necessarily very accurate. In recent years, a number of algorithms have been developed for au-
tomatic interpretation, including Fridlyand and others (2004), Olshen & Venkatraman (2004), Myers
and others (2004), Wang and others (2005), Lipson and others (2005), and Picard and others (2005); a
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Fig. 1. Fused lasso applied to some GBM data. The data are shown in the left panel, and the solid line in the right

panel represents the inferred copy number β̂ from the fused lasso. The grey line is for y = 0.

comprehensive comparison is given by Lai and others (2005). Approaches include successive top–down
splitting, bottom–up agglomeration along the chromosome, and hidden Markov models.

The left panel of Figure 1 shows an example. The data represent CGH measurements from 2 glioblas-
toma multiforme (GBM) tumors (see Section 4.2 for details).

In this paper, we apply the fused lasso method of Tibshirani and others (2004) to spatial smoothing
and the CGH detection problem. The solid line in the right panel of Figure 1 shows the result of the fused
lasso method applied to these data. The method has successfully detected the narrow regions of gain and
the wide regions of loss.

2. THE FUSED LASSO AND THE PROPOSED METHOD FOR HOT-SPOT DETECTION

The “fused lasso” (Tibshirani and others, 2004) is a generalization of the lasso (Tibshirani, 1996) and is
defined by

β̂ = argmin
∑

i

⎛⎝yi −
∑

j

xi jβ j

⎞⎠2

subject to
p∑

j=1

|β j | � s1 and
p∑

j=2

|β j − β j−1| � s2. (2.1)

The fused lasso is developed for the situations when xi1, xi2 . . . , xip have some kind of natural ordering.
The additional fused constraint encourages the flatness of the coefficient profiles β j as a function of j .

Here, we apply the fused lasso in the special case in which {xi j } is the identity matrix. Hence, we are
smoothing the sequence y1, y2, . . . , yn along the 1-dimensional index i .

Denote the log2 ratio measurement of a chromosome (or chromosome arm) as Y = {yi }n
i=1; we are

interested in finding coefficients β̂ = (β̂1, β̂2, . . . , β̂n) satisfying

β̂ = argmin

{∑
i

(yi − βi )
2

}
subject to

∑
j

|β j | � s1,
∑

j

|β j − β j+1| � s2, (2.2)
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and β̂ j is the inferred DNA copy number for gene j . Here, s1 controls the overall DNA copy number
alteration amount of the target chromosome (or chromosome arm), while s2 controls the frequency of the
alterations in the target region.

We investigated 2 different methods for estimating s1, s2 and calling gains and losses.

2.1 Method 1

The first method estimates s1 and s2 from pre-smoothed version of the data, applies the fused lasso with
these values, and then thresholds the estimate to determine regions of gains or losses.

Since the overall DNA copy number alteration amount is contributed mainly by the large gain/loss
regions, we derive the value of s1 by using a heavily smoothed version of Y :

1) Apply “lowess” to Y with fraction parameter f = max(1/50, 50/p), where p is the length of Y .
(The lowess window will be at least 50.)

2) Denote the lowess result by Ỹ . Define ŝ1 = ∑
i |ỹi |.

On the other hand, s2 controls the frequency of the alterations in the target region. Thus, we use
moderately smoothed Y to infer s2:

1) Apply lowess to Y with fraction parameter f = min(1/20, 10/p). (The lowess window will be at
most 10.)

2) Denote the result as Y̆ . Let di = y̆i − y̆i+1 and calculate the median absolute deviation of {di }:

δ = median ({|di − µd |}i ) ,

where µd = median({di }i ).
3) It is reasonable to assume that di with absolute values greater than 4δ corresponds to copy number

alteration break points on the genome. Thus, we define ŝ2 = 2δ + ∑
i |di | · I (|di | > 4δ).

After we obtain ŝ1 and ŝ2, we apply the fused lasso to estimate the underlying signals β̂i , i =
1, 2, . . . , n. Finally, we threshold |β̂i | by a value θ to obtain the final regions of gain or loss. The choice
of θ is discussed in Section 2.3, where it is used to control the false-discovery rate (FDR).

2.2 Method 2

Here, we vary both s1 and s2 in a systematic way. Define S1(X) = ∑
i |xi |. We calculate s1 = S1(lowess(Y,

f = w/p)) and s2 = 2s1/w, where w represents the average length of alteration regions. The value of
w is varied and then the fused lasso is computed for the resulting values of s1 and s2. Figure 2 shows an
example with some simulated data from a normal and tumor array. As w increases, the estimate does a
better job of isolating the gain regions in the tumor sample. However, there is still a large region of low
but nonzero values that would require further thresholding before gains and losses can be called. Hence,
this approach seems too complicated, and we therefore settle on method 1.

2.3 Estimation of FDR

For 1 array, when we are trying to decide whether the i th gene/clone has significant DNA copy number
alteration, we are actually doing a hypothesis testing with

H0: Gene/clone i does not belong to any gain/loss region.
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Fig. 2. Simulated data: the effect of parameter w (the average length of alterations) on the fused lasso solution. The
panels of the left column represent a chromosome with no copy number alteration; the panels of the right column
represent a chromosome with an amplification region of genes 40–60. The solid lines illustrate the estimated copy
numbers of fused lasso; a horizontal line is drawn at y = 0.

Here, rises the issue of multiple hypothesis testing, for, in each array, tens of thousands of genes/clones
need to be considered simultaneously.

Although we do not have independent Hi for each gene in our problem, we can still use

F̂DR = number of genes picked under the null distribution

number of genes picked in the observed data
(2.3)

as a rough estimator for (FDR) (Benjamini & Hochberg, 1995; Chu and others, 2002; Storey, 2002;
Efron & Tibshirani, 2002). We assume that the denominator is greater than 0 with probability 1 (i.e. the
event that no significant genes are selected is rare).
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We estimate the FDR in 2 different ways according to the availability of normal reference arrays.

Estimation of FDR when normal reference arrays are available. Suppose there are M normal reference
arrays {Rm}M

m=1, where Rm = {rm
i }n

i=1. We first scale the normal reference arrays according to the target
tumor array and then use the copy number inferred from the reference arrays to approximate the null
distribution of {β̂i }i .

1) The contiguous genes/clones with the same β̂i are defined as 1 segment. Suppose there are K seg-
ments resulting from {β̂i } and denote them as Sk = {ik−1 +1, . . . , ik}. We then calculate the within-
segment standard deviation of the target array

σ̂ = 1

n

∑
k

∑
i∈Sk

(yi − µk)
2,

where µk = mean(yi : i ∈ Sk).
2) Normalize each reference array according to σ̂ :

R̃m = σ̂ · Rm/sd(Rm).

3) Estimate s1 and s2 for each R̃m and then apply fused lasso on it. Denote the resulting coefficients
by {β̃m

i }i .
4) For a given threshold θ , FDR of the procedure is estimated as a function of θ :

F̂DR(θ) =
1
M

∑
m

∑
i I (β̃m

i > θ)∑
i I (β̂i > θ)

. (2.4)

Usually, the data analyst pre-chooses a target FDR and vary θ over a range to seek the solution with
F̂DR(θ) closest to the target.

Estimation of FDR when normal reference arrays are not available. In real experiments, there are often
situations where appropriate normal reference arrays are not available due to sample/lab limitations. Thus,
there is a need to control the FDR in the absence of reference arrays.

We approach this by considering segments as the hypothesis unit first. For 1 segment Sk , the hypothesis
of interest can be stated as

Hk
0 : µk, the mean of {yi }i∈Sk , is equal to 0.

This makes it natural to examine statistics zk =
∑

i∈Sk
yi√

nk σ̂
, where nk is the size of Sk . To take advantage of

the inferred copy number {β̂i }i , we further define ẑk =
∑

i∈Sk
β̂i√

nk σ̂
.

We approximate the null distribution of ẑk with standard normal and define pk = P (Z > |̂zk |), where
Z ∼ N (0, 1).

If we assume ẑk are independent from each other, then, for a given q ∈ (0, 1), a conservative estimator
of the genome-wide FDR in (2.3) is

F̂DR(q) = Kq · 1
K

∑
k nk∑

k nk · I (pk � q)
= n · q∑

k nk · I (pk � q)
. (2.5)

Here, genes/clones in the segments with pk � q are considered to have copy number alterations.
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Fig. 3. Number of CPU seconds required for the fused lasso algorithm as a function of the number of clones.

Again, data analyst can vary q over a range and choose the solution with F̂DR(q) closest to the
preselected value.

2.4 Computational considerations

The optimization problem for the fused lasso is a quadratic programming problem. Criterion (2.1) leads
to a quadratic programming problem. For large n, the problem is difficult to solve and special care must
be taken to avoid the use of p2 storage elements. We use the approach for the general fused lasso problem
outlined in Tibshirani and others (2004): the 2-phase active set algorithm “sqopt” of Gill and others
(1999), which is designed for quadratic programming problems with sparse linear constraints.

Figure 3 shows a log-log plot of the number of seconds required for the computation as a function
of the number of clones (genes), on a Linux computer. We simulated 10 data sets of each size, and the
figure shows the mean plus or minus standard error; the computation took on average about 30 s for 4000
clones. Beyond n = 1000 clones, the plot is roughly linear with a slope of about 2. This suggests that the
computation is of order n2. The estimated computation time for a data set with 100 000 clones is about
135 min.

While this may be sufficiently fast for practical use, clearly it would be preferable to reduce the
computation time for large data sets. We are currently working with Jerome Friedman and Trevor Hastie
on specialized algorithms for the fused lasso, and the initial results show considerable promise.

3. COMPARISON TO OTHER SMOOTHING METHODS

General smoothing methods are not typically used for analyzing CGH data because their results
can be difficult to interpret (Lai and others, 2005). This is illustrated in Figure 5, where 2 popular
smoothing methods—lowess (Becker and others, 1988) and penalized smoothing splines (Ruppert and
others, 2003)—are applied to the example data (see Section 4.2 for details). We used R function lowess
(smooth window = 10) and “spm” (default parameters) to compute the results. As we can see from the
figure, the 2 smoothing methods do not provide direct calls for copy number gains/losses, and thus re-
quire additional thresholding for identifying regions with significant alterations. In addition, the smooth-
ing curves do not catch the piecewise constant shape of copy number changes, which raises additional
challenges for controlling the FDR. Moreover, copy number alterations can be both large chromosome
segmentation gain/loss and also abrupt local amplification/deletion. Therefore, different degrees of
smoothness are needed for different chromosome regions, which adds another layer of complexity to
the kernel- and spline-based approaches.
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In the fused lasso, the fused term in the loss function can be viewed as the first derivative of the
coefficient profiles, and thus the method can also be deemed as a “smoothing” approach. However, the
use of L1-norm on the fused penalty term enables the method to capture both the piecewise flatness
patterns and the abrupt local jumps at the same time (see Figure 5). In addition, the control on the overall
sparsity of the coefficient solution helps to screen away the “cold”-spot regions. These make the fused
lasso a more attractive approach for analyzing CGH data.

4. SOME RESULTS

4.1 Simulated data

We apply the proposed method on artificial chromosomes simulated by Lai and others (2005) (down-
loaded from http://www.chip.org/∼ppark/Supplements/Bioinformatics05b.html). We consider the most
challenging situation where the signal-to-noise ratio is equal to 1. For each of the 4 different aberration
widths (5, 10, 20, and 40 probes), there are 100 independently simulated chromosomes with 100 probes
in total.

We first compare the inferred copy number {β̂i }i by fused lasso with the estimated copy numbers
from 3 other popular programs “CGHseg” (Picard and others, 2005), “CBS” (Olshen & Venkatraman,
2004), and “CLAC” (Wang and others, 2005). The receiver operating curves of different methods shown
in Figure 4 suggest that fused lasso better captures the true DNA copy number alterations than the other 3
methods, especially when the aberration width is small.

We then investigate the 2 FDR estimators proposed in Section 2.3. F̂DR(θ) is computed based on
10 simulated reference arrays with no copy number alterations (i.i.d. from N (0, 1)). We then control
F̂DR(θ) and F̂DR(q) at the level of 0.01 and calculate the true FDR for the selected solutions. The result
is summarized in Table 1. Overall, when we control F̂DR(θ) = 0.01, 80.75% simulated cases have true
FDR less than 0.01; when we control F̂DR(q) = 0.01, 84.5% simulated cases have true FDR less than
0.01. Generally, F̂DR(q) is more conservative than F̂DR(θ), for the former is derived on the assumption
that segments are independent from each other.

4.2 GBM data

The glioma data from Bredel and others (2005) contain samples representing primary GBMs, a particular
malignant type of brain tumor. We investigate the performance of various methods on the array CGH
profiles of the GBM samples examined in Lai and others (2005). To generate a more challenging situation
where both local amplification and large region loss exit in the same chromosome, we paste together the
following 2 array regions: (1) chromosome 7 in GBM29 from 40 to 65 Mb and (2) chromosome 13 in
GBM31. The performance of different methods on this pseudo chromosome is illustrated in Figure 5. We
can see that the proposed method using fused lasso successfully identified both the local amplification and
the big chunk of copy number loss.

4.3 Breast tumor data

In the study conducted by Pollack and others (2002), cDNA microarray CGH was profiled across 6691
mapped human genes in 44 breast tumor samples and 10 breast cancer cell lines. The scanned raw data
were downloaded from the Stanford Microarray Database (http://smd.stanford.edu). We pick the breast
cancer cell line (MDA157) as an example, which has a large degree of copy number alterations, and
apply our proposed method as well as the other 3 methods on it to estimate the underlying copy number
changes. From the results shown in Figure 6, we can see that fused lasso successfully recognized varies
copy number alterations.
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Fig. 4. TPR = (the number of probes within the aberration width that is above a threshold)/(the total number of probes
within the aberration width); FPR = (the number of probes outside the aberration width that is above a threshold)/(the
total number of probes outside the aberration width).

Table 1. The median, 75% quantile, and 90% quantile of the true FDR values

Window size F̂DR(θ) = 0.01 F̂DR(q) = 0.01

Median 75% 90% Median 75% 90%

5 0 0 0.499 0 0 0
10 0 0 0 0 0 0
20 0 0 0.108 0 0 0.09
40 0 0.037 0.133 0 0.03 0.29

CGHseg appears to be very sensitive to outlier measurements and thus will be more suitable for detect-
ing single-gene copy number mutations of high-quality arrays. CLAC is conservative in handling outliers
with opposite signs in 1 alteration region and therefore tends to break large alteration segments into small
blocks. CBS provides clean solutions for segmentations but has the limitation to detect break points whose
alteration signals are weak (e.g. chromosome 7 and 15 of the selected cell line).
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Fig. 5. Chromosome 7 and chromosome 13 from 2 GBM tumors.

5. DISCUSSION AND FUTURE WORK

The fused lasso can be generalized to other analysis besides the calling of gains and losses in CGH
data. For example, biologists have great interest in understanding the interactions between copy number
alterations and mRNA expression levels. To study this, a commonly used method is to identify gene
pairs, of which one gene’s copy number and the other gene’s expression level are significantly correlated.
However, genome-wide screening for such pairs is quite challenging: (1) the large dimensionality of
the problem raises the requirement of controlling the sparsity in the solutions; (2) the strong spacial
correlations of gene copy number changes need to be taken into account. The fused lasso can be used
again to tackle these challenges.
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Fig. 6. Array CGH profile of 10 chromosomes of breast cancer cell line MDA157. Panels in the same row are for the
same chromosome. The integers at the beginning of each row are chromosome indexes. The dark black line in each
panel represents the estimated copy number of a particular method, whose name is shown on the top of each column.
The black horizontal line in each panel represents y = 0.

Denote the expression measurements of a target gene as Y = (y1, y2, . . . , yJ ), where J represents
the total number of samples. Denote the CGH measurement of the i th gene across the J samples as
Xi = (xi

1, . . . , xi
J ). Suppose Y and {Xi } have all been normalized to mean 0 and variance 1. cor(Y, Xi ) is

then exactly the least-squares coefficient of the linear model Y ∼ βXi . Thus, we can infer the correlation
coefficients by solving

{β̂} = argmin

{∑
i

‖Y − βi X i‖2

}
subject to

∑
j

|β j | � s1,
∑

j

|β j − β j+1| � s2, (5.1)

where a nonzero β j suggests that Y and Xi are significantly correlated.
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In addition, for CGH data, our paper focuses on the calling of gains and losses from a single array.
Typically, the researcher collects data on a few dozen arrays, often divided into normal and diseased
groups. Ideally, one would like to carry out a joint analysis of the data set, finding regions of gains and
losses that occur commonly among the patients and also ones that occur differentially in the normal
and diseased groups. One interesting proposal along these lines is the STAC procedure of Diskin and
others (2006). This method projects the calls of gains and losses for individual arrays along chromosome,
measuring the frequency and “footprint” of calls in each local region. The STAC procedure could be
applied to the gains and losses called by the fused lasso. However, a more integrated approach might be
possible. For example, given data on arrays j = 1, 2, . . . , J , one could first apply the fused lasso to the
data from each array. Suppose that we parse the resulting coefficient vectors into a collection of nonzero
basis functions β̂ik , k = 1, 2, . . . , K . Each function is nonzero over a single interval of the real line.
Then, we can do some kind of joint regression of the data from all arrays on this collection, allowing the
arrays to share the basis functions as efficiently as possible. This would reveal basis functions (areas of
the chromosome) that are common among many or all arrays and also those that are unique to only a few.
This is a topic for further study.

An R language package for the fused lasso will be freely available at http://www.stat.stanford.edu/
∼tibs/cghFLasso.
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