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Abstract: We study nonlinear light propagation in colloidal nanosuspen-
sions. We introduce a novel model for the nonlinear response of colloids
which describes consistently the system in the regimes of low and high light
intensities and low/large concentrations of colloidal particles. We employ
this model to study the light-induced instabilities and demonstrate the
formation of stable spatial solitons as well as the existence of a bistability
regime.
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1. Introduction

The effect of nonlinear interaction of light with suspensions of nanometer-sized colloidal di-
electric particles has been known for over two decades [1–4]. Yet, very recently the interest
in these systems has been revived [5–7], with several attempts to tackle the physics beyond
the simple Kerr limit [8–11]. The origin of relatively high optical nonlinearity, first predicted
by Palmer [1] in the case of aerosols of dielectric spheres, is due to the optical gradient force
acting on the dielectric particles. The effect of this force is to change the concentration of col-
loidal particles, increasing the refractive index contrast in regions of higher light intensity. It
was shown experimentally that the resulting self-focusing nonlinearity can lead to the beam
self-focusing, formation of solitons, four-wave mixing or optical phase conjugation [2–7].

To describe mesoscopic processes taking place in these systems, one has to employ the for-
malism of statistical physics. In the simplest case, the balance between the optical gradient force
and particle diffusion due to Brownian motion leads to the propagation equation in the form of
nonlinear Schrodinger equation (NLS) with Kerr nonlinearity [1–4]. It was shown recently that
inclusion of particle interactions can lead to spatially nonlocal equation describing light propa-
gation [8,9]. However, all these models treat the light force as a small perturbation, resulting in
a linear dependence of the nonlinear index change on the light intensity. The generalization of
the noninteracting particles model for the case of higher light intensities has been proposed very
recently by two independent groups [10, 11]. The resulting form of the nonlinearity was found
to be exponential leading, for instance, to unphysical catastrophic collapse phenomenon even
in the one-dimensional case. It is hence obvious that for high light intensity the noninteracting
particles approximation is no longer valid and better, physically justified model is required.

In this paper, we introduce, what we believe, is the first model of light propagation in col-
loids which takes into account particle interactions and therefore correctly describes colloidal
system in the regimes of low and high optical intensity and low and large particle concentra-
tions. We consider the case of particles interacting through the hard sphere potential [12]. We
show that our model correctly reproduces results of the exponential nonlinearity [10, 11] in the
relevant light intensity regime but also predicts the phenomenon of soliton bistability which can
be present in these systems in the one-dimensional geometry. This is confirmed by our semi-
analytical and numerical calculations. We also demonstrate soliton switching when slightly
perturbed solution from the unstable branch switches to the stable one which corresponds to
higher particle concentration.

2. Model

We assume that the dielectric colloidal particles interact with each other through a hard sphere
potential. In the steady state the colloidal particles satisfy the Maxwellian velocity distribution,
which follows from the phase space density in the canonical ensemble ρ ∼ exp(−E/k BT ). The
pressure exerted by colloidal particles can be obtained from the equation of state in analogy
with the hard sphere gas [12]

βP
ρ

= Z(η) , (1)

where β = 1/kBT , P is the pressure, ρ is the colloidal particle density, Z(η) is the compress-
ibility, and η = ρ/ρ0 is the packing fraction. In the case of ideal gas we have Z = 1. For a
hard sphere gas the Carnahan-Starling formula Z ≈ (1 + η + η 2 −η3)/(1−η)3 gives a very
good approximation up to the fluid-solid transition at η ≈ 0.5 [12]. This phenomenological for-
mula is in agreement with exact perturbation theory calculations as well as molecular dynamics
simulations.

In the presence of slowly varying external potential, such as that induced by the presence
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of optical beam, the particle velocity distribution is locally Maxwellian. The gradient of the
density ρ(r) is assumed to be locally parallel to x̂, and we consider a small box of volume
dV = dxdS, with length dx and normal surface dS. The difference in pressure exerted on the
right and left surface dP gives rise to an effective force acting on the colloidal particles F int. It is
equal to the external force that is necessary to sustain the density gradient, and dP =−F int/dS =
− fintρdV/dS = − fintρdx, where fint is the average force acting on a single particle. Using
Eq. (1) we get d(ρZ)/dx = − f intρβ . The particle current density is equal to

−→
j = ρμ(−→f ex +−→

f int) = ρμ−→f ex −D∇(ρZ) , (2)

where μ is the particle mobility, and D = μ/β is the diffusion constant. In the ideal gas limit,
this equation becomes Eq. (3) of [11]. Let m = n p/nb be the ratio of the colloidal particle
refractive index to the background refractive index. Polarizability of a sphere is given by

α = 3Vpε0n2
b

(
m2 −1
m2 + 2

)
, (3)

where Vp is the sphere volume. If we look for the steady state (−→j = 0) in the presence of optical
field gradient (

−→
f ex = (α/4)∇I, where I = |E|2) we obtain

ρ
αβ
4

dI
dx

=
d(ρZ)

dx
, (4)

which can be solved analytically to give the dependence I(η)

αβ
4

I(η) = g(η)−g(η0) , (5)

where g(η) = (3−η)/(1−η)3 + lnη , and η0 is the background packing fraction. For small η
this result is equivalent to an exponential dependence derived in Refs. [10, 11]

η = η0 exp

(
αβ
4

I

)
. (6)

Our model neglects nonlocal effects that were considered earlier by other authors [8, 9]. It was
pointed out that in the case of interaction trough the hard sphere potential the nonlocality is
negligible [9].

The effect of Rayleigh scattering, although always present, can be greatly reduced in the case
of small colloidal particles, since it is proportional to the third power of the particle radius for
a given packing fraction [4].

Assuming relatively low packing fraction, the corresponding nonlinear refractive index
change can be approximately calculated using the Maxwell–Garnett formula [13]

εeff = εb +
3ηεb

(
εp − εb

)
[εp + 2εb −η

(
εp − εb

)
]
. (7)

For low refractive index contrast (εp/εb ≈ 1) we have

εeff ≈ εb +
3εb

(
εp − εb

)
(εp + 2εb)

η = εb + δη . (8)

Note that signs of α and δ are the same. Substituting this formula to the Helmholtz equation
∇2E + k2

0n2
effE = 0, we obtain propagation equation for slowly varying envelope of the electric
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Fig. 1. Packing fraction η of colloidal particles vs. the light intensity (solid line). The
dashed line shows the dependence of the exponential model, see Eq. (6).

field defined by E = uexp
[
ik0 (εb + δη0)

1/2 z
]

i
∂u
∂ z

+
1
2

∇2
⊥u± (η −η0)u = 0 , (9)

in normalized units, where ± correspond to the case of positive or negative (m−1), and

|u|2 = ±[g(η)−g(η0)] . (10)

Notice that since g(η) is monotonically increasing, the nonlinearity is always self-focusing
independently of whether m > 1 or m < 1 [11]. In the following, we will focus on the case of
m > 1 (+), which was realized in number of experiments with polystyrene colloids [2–7].

Typical dependence η(|u|2) in this case is shown in Fig. 1. In the low intensity limit, the
nonlinear index change is Kerr-like (proportional to intensity). For higher intensities, it is well
described by the exponential model of [10, 11]. Finally, for higher densities the particle hard-
sphere interactions become significant and the nonlinearity saturates as the exponential model
breaks down. One can show that for high background packing fraction η 0 the exponential
regime can be absent, with direct transition from the Kerr-like to saturated regime.

3. Modulational instability

Continuous wave solutions to the Eq. (9) have the form u = |u s|exp(iηsz + iφ), where the
relation (10) holds between us and ηs. We calculate the growth rate of linear perturbations
around this solution by substituting

u =
{
|us|+a(t)eikx +b(t)e−ikx

}
eiηst , (11)

and expanding η ≈ ηs + η ′(|us|2)(|u|2 − |us|2). The perturbations a(t) and b(t) grow as
exp(iωt), where

ω2 = k2
(

k2

4
∓η ′(|us|2)|us|2

)
. (12)
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Fig. 2. Profile of colloidal particle packing fraction (solid) and light intensity (dashed) of a
soliton solution for parameters η0 = 10−3, κ = 0.1, P = 35, m > 1.

Fig. 3. Soliton power against the propagation constant for η0 = 10−3 in (a) logarithmic
scale (b) square root scale up to κ1/2 = 0.06. Solid line shows the value of the integral (15)
and circles correspond to stable numerical solutions of the Eq. (9). The dashed line in (b)
is a linear fit to the Kerr-like dependence for low κ .

The CW solution will be modulationally unstable if ±η ′(|us|2) > 0. We can calculate this
derivative using (10)

± dη
d|u|2 = ±

(
d|u|2
dη

)−1

=
[

1
η

+ 2
4−η

(1−η)4

]−1

. (13)

It is easy to see that instability always occurs for both m > 1 and m < 1. The wavevector
corresponding to maximum growth rate I (ωm) = η ′|u|2 is km =

√
2η ′|u|2. Notice that for low

light intensity regime this formula leads to the result of El-Ganainy [14].

4. Soliton solutions and bistability

We are looking for soliton solutions in the form u(r) = A(r⊥)exp(iκz) in the case m > 1. In the
one-dimensional geometry, which was realized in the recent experiment [6], this leads to

−κA+
1
2

d2A
dx2 +(η −η0)A = 0 . (14)

This equation can be immediately integrated once leading to the first-order differential equation
for η(x), which can be subsequently solved numerically for given η 0 and κ . In Fig. 2, we
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Fig. 4. Propagation of a perturbed unstable soliton for η0 = 10−3, κ = 9×10−3, P = 41,
m > 1: (a) increasing the soliton power by 1% results in switching to a stable soliton after
losing about 10% of the beam power to radiation; (b) decreasing the soliton power by 1%
leads to diffraction rather than switching to the first stable branch.

plot an example of the soliton profile for the parameters η 0 = 10−3, κ = 0.1, and m > 1. For
experimental parameters λ = 1064 nm, particle diameter d = 40 nm, n p = 1.56, nb = 1.33, this
soliton peak intensity reaches ≈ 200 MW/cm2, and the total beam power is about 1W. At the
same time, Rayleigh losses after 1mm of propagation are equal to 12%, while the characteristic
nonlinear length is about 10 μm due to high nonlinear index contrast. The soliton power can be
calculated as

P =
∫ +∞

−∞
A2dx = 2

∫ ηmax

η0

A2(η)
(

dη
dx

)−1

dη , (15)

where ηmax is the value at which dη/dx = 0, and it corresponds to the soliton maximum. An
example of the dependence P(κ) for η0 = 10−3, m > 1 is shown in Fig. 3.

For comparison, numerical solutions of Eq. (9) obtained with the numerical imaginary-time
method are depicted by circles. Using the Vakhitov-Kolokolov criterion for the soliton stabil-
ity [15], namely dP/dκ > 0, we conclude that there exists a region of bistability for the beam
powers corresponding to P ≈ 35− 50 [16]. This observation is confirmed by direct numeri-
cal simulations of Eq. (9) by monitoring stability of slightly perturbed soliton solutions. This
bistability phenomenon is present only for the background packing fraction η 0 < ηb ≈ 0.5%.

The two branches of stable solitons are separated by an unstable branch. We investigate a
possibility of switching of unstable solitons by slightly perturbing its amplitude. The corre-
sponding results are shown in Fig. 4. If the soliton amplitude is slightly increased, the soliton
evolves into a stable solution corresponding to the larger values of the propagation constant of a
higher branch. On the other hand, decreasing the soliton amplitude leads to the beam diffraction
rather than its switching to a lower branch of stable solitons.

5. Conclusions

We have analyzed the light localization in colloidal suspensions composed of dielectric
nanospheres. We have derived a new model of the nonlinear response of colloids which takes
into account particle interactions through the hard-sphere potential. We have demonstrated that
this model leads to nonlinearity saturation at higher light intensities or large particle concentra-
tions. We have revealed that this nonlinear response leads to bistable soliton solutions.

Acknowledgments

M. M. acknowledges support from the Foundation for Polish Science.

#89760 - $15.00 USD Received 14 Nov 2007; revised 19 Dec 2007; accepted 13 Jan 2008; published 17 Jan 2008

(C) 2008 OSA 21 January 2008 / Vol. 16,  No. 2 / OPTICS EXPRESS  1376


