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Abstract: Convolutional neural networks provide an ideal solution for hyperspectral image

(HSI) classification. However, the classification effect is not satisfactory when limited

training samples are available. Focused on “small sample” hyperspectral classification,

we proposed a novel 3D-2D-convolutional neural network (CNN) model named AD-HybridSN

(Attention-Dense-HybridSN). In our proposed model, a dense block was used to reuse shallow

features and aimed at better exploiting hierarchical spatial–spectral features. Subsequent depth

separable convolutional layers were used to discriminate the spatial information. Further refinement

of spatial–spectral features was realized by the channel attention method and spatial attention method,

which were performed behind every 3D convolutional layer and every 2D convolutional layer,

respectively. Experiment results indicate that our proposed model can learn more discriminative

spatial–spectral features using very few training data. In Indian Pines, Salinas and the University of

Pavia, AD-HybridSN obtain 97.02%, 99.59% and 98.32% overall accuracy using only 5%, 1% and 1%

labeled data for training, respectively, which are far better than all the contrast models.

Keywords: hyperspectral image classification; deep learning; 3D-2D-CNN; residual connection;

attention mechanism; spatial–spectral feature refinement

1. Introduction

Recently, deep learning methods represented by convolutional neural networks (CNNs) have

made a breakthrough in computer vision, showing great superiority in the image processing area [1–3].

Therefore, the research on the CNN models has attracted more and more attention, which also makes

the application of CNN penetrate into various subareas of image processing, for example, remote

sensing image processing area [4]. Hyperspectral image classification has always been one of the

hotspots in the remote sensing community. At present, the CNN based hyperspectral classification

methods are booming [5]. However, hyperspectral images suffer from a large number of spectral bands,

large data size, high redundancy, high nonlinearity and the “small sample problem”, the pixel-wise

classification of which is still challenging [6].

The convolutional neural network can automatically learn hierarchical abstract features from

the raw image, which provides an ideal solution for feature extraction in computer vision. In 2012,

a deep learning model named AlexNet [7] showed an excellent classification result in the ImageNet

dataset, which is a huge collection of natural images. Since then, innovative networks have emerged

in an endless stream, constantly inspiring the paradigm of feature extraction and reuse. In 2015,

He et al. [8] proposed ResNet, solving the training problem of deep networks by introducing a

residual connection. In ResNet, feature fusion is realized by pixelwise-addition of different feature
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maps. In 2017, Huang et al. [9] proposed DenseNet, which made it possible for feature reusing and

provided another way for feature fusion, which is realized by the concatenation of different feature

maps. In recent years, the above mentioned two feature fusion methods, which are proposed in

ResNet and DenseNet, that have been widely used in the tasks of image classification [10,11], semantic

segmentation [12,13], object detection [14,15], etc. Additionally, they are served as the standard patterns

of feature extraction based on CNN. As milestones in the design of CNN models, the ideas behind

ResNet and DenseNet are also radiating beyond the natural image processing area [16,17]. At present,

the research of feature extraction and feature fusion for specific task or specific data is still a hot topic

in the field of computer vision.

Hyperspectral image classification is the hotspot in remote sensing image interpretation and is of

great difficulty. Its purpose is to assign an accurate label to each pixel in the image and then divide the

image into areas with different ground object semantic identification [7]. Currently, the convolutional

neural network has been successfully applied to the tasks of hyperspectral image classification [18–21].

In hyperspectral image (HSI) classification, the convolutional neural network acts as an “information

distiller”, gradually extracting high-level abstract semantic features with the deepening of the network.

In this process, the hyperspectral images with a huge amount of data are transformed, the irrelevant

information is filtered out, and the useful information is enlarged and refined [22]. Prior to deep

learning methods, traditional methods mostly used a linear discriminant analysis [23], such as the

principal component analysis [24] and independent component analysis [25], to extract features.

Additionally, they used a shallow classifier [26–28] to complete classification. These methods rely

on manual designed features. For complex and diverse hyperspectral data, it is difficult to find a

universal feature extraction method using such a route. Convolution neural network, which can learn

features from HSI autonomously, provides a good solution for feature extraction. The HSI classification

models based on 1D-CNN [29] or 2D-CNN [30] can achieve considerable classification results by

automatically extracting features from hyperspectral images, but along with a degree of spatial or

spectral information loss. In order to fully utilize spatial and spectral information in hyperspectral

images simultaneously, the 3D-CNN, which is used to process video data before, is introduced to

HSI classification. Compared with 2D-CNN, 3D-CNN has a relatively large computation burden,

but can better learn spectral features within a hyperspectral image, which result in better classification

performance. Since then, 3D-CNN is widely applied on HSI classification, based on which many

improved models are proposed.

Chen et al. [18] constructed a 3D-CNN model composed of 3D convolutional layers and 3D

pooling layers, improving classification performance by means of deep exploration into spatial–spectral

features. Deeper networks enable deeper and more robust features and the network structure needs

careful designing to pretend the greatly rising of the parameters amount. Lee et al. [19] made good

use of residual connection in the spectral feature learning and built a deeper network (Res-2D-CNN)

by which deeper and more abstract features could be extracted. Liu et al. [31] introduce residual

connections to 3D-CNN and built Res-3D-CNN, which is aimed at enhancing spatial–spectral feature

learning. Zhong et al. [20] focused on the raw hyperspectral data without dimensionality reduction

and built SSRN (spectral–spatial residual network). They introduced residual connection into the

whole network and separate deep feature learning procedure into independent spatial feature learning

and spectral feature learning. More discriminative features were learned by SSRN and the separated

feature learning pattern has a significant impact on subsequent hyperspectral classification research.

Recently, dense connections have attracted more attention from hyperspectral researchers [32]. Dense

connection reduces the network parameters through a small convolution kernel number, and realizes

efficient feature reuse through feature map concatenation, both of which alleviates the problem of

model overfitting. Wang et al. [21] introduced a dense block into SSRN using dense connections

and built FD-SSC (Fast Dense Spectral–Spatial Convolution Network). With the help of a dense

connection, FD-SSC further enhanced the feature propagation and reuse, making it possible that

deeper hierarchical spatial–spectral features are extracted. Besides the rational use of different residual
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connections, structural innovation is also an important aspect of the network optimization of CNN

models for hyperspectral classification. Swalpa K et al. [33] proposed a novel hyperspectral feature

extraction pattern, HybridSN, based on the combination of the 3D-CNN and 2D-CNN. HybridSN takes

hyperspectral data after a dimensionality reduction as the input and has a relatively small computation

burden. It concatenates the feature maps extracted by three successive 3D convolutional layers in the

spectral dimension and then used a 2D convolutional layer to enhance the spatial feature learning.

HybridSN, which only has four convolutional layers, achieved extremely high classification accuracy,

demonstrating the great potential of the 3D-2D-CNN model in hyperspectral classification. Based on

the 3D-2D-CNN, Feng et al. [34] proposed R-HybridSN (Residual-HybridSN) by means of rational use

of non-identity residual connections, enriching the feature learning paths and enhancing the flow of

spectral information in the network. In particular, R-HybridSN was equipped with depth separable

convolution layers instead of traditional 2D convolutional layers, which further made it perform better

in the small sample hyperspectral classification. However, the shallow features in R-HybridSN are not

reused, so that the network structure of R-HybridSN can be further optimized.

Hu et al. [35] proposed squeeze-and-excitation networks and introduced the attention mechanism

to the image classification network, winning the champion of 2017 ImageNet Large Scale Visual

Recognition Competition. Recently, the attention mechanism [36] has been applied to the construction

of HSI classification models. The attention mechanism is a resource allocation scheme, through

which limited computing resources will be used to process more important information. Therefore,

the attention mechanism module can effectively enhance the expression ability of the model without

excessively increasing complexity. Wang et al. [37] constructed a spatial–spectral squeeze-and-excitation

(SSSE) module to automatically learn the weight of different spectral and different neighborhood

pixels to emphasize the meaningful features and suppress unnecessary ones so that the classification

accuracy is improved effectively. Li et al. [38] added an attention module (Squeeze-and-Excitation

block) respectively after the dense connection module used for shallow and middle feature extraction

to emphasize effective features in the spectral bands, and then feed it to further deep feature extraction.

The attention mechanism in the HSI classification model is used for finding more discriminative feature

patterns in spectral or spatial dimension. However, the specific use of the attention mechanism, such as

the location and calculation methods, has no mature theory and still needs further exploring.

Hyperspectral image labeling is laborious and time-consuming, therefore, labeled samples are

always limited in classification tasks. How to use as few labeled samples as possible to achieve

better classification results has been a research hotspot for a long time. Feng et al. [34] conducted

vast experiments using different amounts of training samples and found that the degradation of

the CNN model is very common when the sample size decreased. The main strategies for small

sample hyperspectral classification include generative adversarial networks [39,40], semi-supervised

learning [41,42] and network optimization [33,34]. The residual connection is the core of network

optimization, and the purpose of network optimization is to facilitate feature fusion and feature

reusing. Compared with the simple pipelined network, the well-designed model, which is more

like a directed acyclic graph of layers, usually has a better classification effect [34]. Song et al. [43]

proposed a hybrid residual network (HDRN), in which the residual connection is used in and between

residual blocks. The rational use of residual connection in the HDRN makes it better able to cope with

hyperspectral classification with limited training samples. Network optimization can be combined with

other methods. Liu et al. [44] proposed a deep few-shot learning method, which is focused on “small

sample” hyperspectral classification. The Res-3D-CNN model is utilized to extract spatial–spectral

features and to learn a metric space for each class of objects. Therefore, network optimization has

important research significance and constructing models with a more reasonable structure seems to be

an effective solution for the “small sample” hyperspectral classification.

Based on the above observations, in order to explore a better topological structure, inspired by

R-HybridSN and the attention mechanism, we proposed a novel model named AD-HybridSN

(Attention-Dense-HybridSN) for “small sample problem” from the perspective of network optimization.
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Based on 3D-2D-CNN and the densely connected module, AD-HybridSN realized a more efficient

feature reuse and feature fusion. Moreover, the attention mechanism was introduced to the 3D

convolution part and 2D convolution part respectively so that the model can utilize the spectral features

and spatial features in a targeted refinement circumstance. With fewer parameters, AD-HybridSN

achieves better classification performance in the Indian Pines, Salinas and University of Pavia datasets.

2. Methodology

2.1. AD-HybridSN Model

Hyperspectral image classification is to assign a specific label to every pixel in hyperspectral

images. The convolutional neural networks based hyperspectral classification models take small

image patches as the input. Every hyperspectral image patch was composed of the spectral vectors

within a predefined range and its land-use type was determined by its center pixel. The hyperspectral

patch can be denoted as PL×W×S, where L ×W represents the spatial dimension and S represents

the number of spectral bands. In our proposed model, the input data was processed by principal

components analysis (PCA) in the spectral dimension, which greatly reduced the redundancy within

hyperspectral data. The number of spectral bands decreased from S to C, and a different value of

C has a great effect on the computational complexity. For the sake of equilibrium, we set L and W

as 15 and C as 16 in our proposed network. Figure 1 shows the network structure of the proposed

AD-HybridSN. AD-HybridSN is based on the 3D-2D-CNN feature extraction pattern and is composed

of 6 convolutional layers. A 3D-Dense block composed of 4 3D convolutional layers was used for

learning hierarchical spatial–spectral features. We introduced the channel attention method after every

3D convolutional layer to refine the extracted spatial–spectral features. Two subsequent depth separable

convolutional layers supported by the spatial attention method enhanced the spatial information in the

feature maps. Multiple residual connections were used in AD-HybridSN, which realized the feature

reuse and spectral information compensation.

 

𝑃௅×ௐ×ୗ 𝐿 × 𝑊 𝑆 
𝑆 𝐶 𝐶𝐿  𝑊𝐶

 

Figure 1. Illustration of the proposed Attention-Dense-HybridSN (AD-HybridSN).
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2.2. Convolutional Layers Used in Our Proposed Model

In the CNN based hyperspectral classification networks, the input hyperspectral image patch

contains abundant spatial–spectral information. As for feature extraction from the hyperspectral image

patch, different types of convolution have different characteristics. In 2D-CNN, the 2D convolution

kernels were used to carry out convolution operation in the spatial dimension of the feature maps,

and then the corresponding operation results of different channels were added by the pixel to obtain a

3D tensor. Assuming that the input data dimension was Z×Z×C, the 2D convolution kernel size was

M×M, the kernel number was N and padding was not used, then the 3D tensor of which its size was

(Z−M + 1)× (Z−M + 1)×N was obtained. The value of the (x, y) position on the jth feature map at

the ith layer, value
x,y

i, j
, was calculated by Formula (1),

value
x,y

i, j
= ϕ
(

bi, j +
∑

µ

∑

Wi−1
w=0

∑

Li−1
l=0
θw,l

i, j,µ
value

(x+w),(y+l)

(i−1),µ

)

(1)

where ϕ() represents the nonlinear activation function and Wi, Li represents the width and height of

the convolutional kernel; θw,l
i, j,µ

represents the weight parameter at the position (l, w) on the jth feature

map in the ith layer; value
(x+w),(y+l)

(i−1),µ
represents the value at the (x + w, y + l) position in the µth feature

map of the previous layer and bi, j represents the bias.

In the 3D-CNN based models, the convolution operation using the 3D convolution kernel not

only acts on the spatial dimension, but also obtains the correlation information between several

spectral bands. Suppose the dimension of the input hyperspectral image patch is Z× Z× C, and N

3D convolution kernels of which the kernel size is M×N ×D was used for convolution operation. If

padding is not used, then the output feature map is a 4D tensor and its dimension is (Z−M + 1) ×

(Z−M + 1) × (C−D + 1) ×D, the number of bands across the spectral dimension is fixed as D and

the final result is a 4D tensor with a size of (Z−M + 1) × (Z−M + 1) × (C−D + 1) × N. It is a

remarkable fact that the number of bands crossed in spectral feature learning is fixed as D, which

may be the limitation of the 3D convolutional kernel. Compared with the feature maps generated by

2D convolutional kernels, 3D convolutional kernel can better utilize spectral information. Therefore,

the 3D-CNN based methods are more suitable for the classification of hyperspectral images with rich

spectral information. In the 3D convolutional computation, the activation value at the (x, y, z) position

on the jth feature map in the ith layer can be is calculated by Formula (2).

value
x,y,z

i, j
= ϕ
(

bi, j +
∑

µ

∑

Wi−1
w=0

∑

Li−1
l=0
θw,l,d

i, j,µ
value

(x+w),(y+l),(z+d)

(i−1),µ

)

(2)

3D-CNN can make good use of the rich spectral information in hyperspectral data while extracting

spatial information. However, the 3D convolution kernel has an extra spectral dimension compared

with the 2D convolution kernel, which inevitably introduces more parameters and greatly increases

the computational complexity [27]. Inspired by HybridSN, in consideration of making better use of

the advantages of 3D-CNN and 2D-CNN respectively in feature extraction, we used the 3D-2D-CNN

as the feature extraction pattern. Inspired by R-HybridSN, we used depth separable convolutional

layers in AD-HybridSN. The depth separable convolution can be divided into depthwise convolution

and pointwise convolution. Compared with traditional 2D convolutional layers, the depth separable

convolutional layers have fewer parameters and less computational burden, which make it more

suitable for hyperspectral data processing [34].

2.3. Multiscale Feature Reuse Module

The residual connection used in ResNet realized feature fusion through pixel-wise addition of

feature maps at different layers, making it relatively easy to train deep networks. Based on the necessity

of feature fusion, in the DenseNet proposed by Gao Huang et al., the correlations between feature maps

are extended to some limitation by concatenating the outputs of any two layers in one dense block.
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On account of the feature fusion method of concatenating feature maps in the channel dimension,

the features extracted by the earlier convolutional layers are completely preserved, which makes it

possible for complete feature reuse. For a CNN model with t convolutional layers, the tth layer will

receive all characteristic information from the 0 layer to the t− 1 layer, as shown in Formula (3),

Xt = Ht([X0, X1, . . . . . . , Xt−1]) (3)

where Ht() represents the computation of the tth layer and [X0, X1, . . . . . . , Xt−1] represents the

concatenation result of all the previous layers in one dense block. This feature fusion method

effectively enhances the free flow of information in the model. However, current DenseNet based

models adopt local dense connections, which means dense connections only exist within each dense

block. This is inevitable because globally dense connections consume a lot of memory and have a

severe feature redundancy problem.

From the perspective of the receptive field of the feature maps, in AD-HybridSN, we used four

3D convolutional layers in one dense block and each layer included 12 convolutional kernels, with a

size of 3× 3× 3. With the convolution operation layer by layer, the spatial and spectral receptive fields

of each set of feature maps aggressively increase. For example, after the first convolution operation,

a set of feature maps, of which the receptive field was 3× 3× 3, were obtained. If there is no dense

connection, the receptive field of the subsequent output feature maps will be 5× 5× 5, 7× 7× 7 and

9× 9× 9. In fact, due to the reuse of shallow features, the actual receptive field will be smaller. At the

same time, multiscale features were sufficiently reused through dense concatenation operation in the

dense block.

2.4. Attention Mechanism

Currently, the attention mechanism has been successfully applied to the area of computer vision

based on convolutional neural networks. The attention mechanism can be used to readjust feature

maps generated by some layers of a neural network, which make it able to detect specific channel or

spatial features [45,46]. The attention mechanism can be roughly divided into spatial attention and

channel attention [34]. In our proposed model, channel attention was introduced to the refactor and

refines the spatial–spectral features extract by every convolutional layer in the dense block and spatial

attention was utilized to discriminate spatial information within the features generated by the depth

separable convolutional layers.

2.4.1. Channel Attention Module

As mentioned above, the feature map extracted by a single 3D convolution kernel is modeled

as a 3D cube, which can learn detailed features and correlation information across spectral bands of

hyperspectral data to some extent. Take the 3× 3× 3 convolutional kernel as an example, the same

parameters are used for single channel 3D hyperspectral data during which each convolution operation

covers three spectral bands. As the band span of the spectral features characterized by a single

convolutional layer is fixed, the spectral feature mining has been limited to some extent. Therefore,

in order to further refine the extracted spatial–spectral features, feature maps of all channels were

concatenated in the spectral dimension to form a 3D tensor. The reshaped 3D tensor had a large

channel number, which was equal to the original channel number times the original spectral band

number. Then channel attention was introduced to assign a specific weight for each channel.

Figure 2 is a schematic diagram of the channel attention mechanism used in this article. Let the

dimension of the feature map generated by 3D convolutional layers be B × L ×W × C ×N, where B

represents batchsize, L ×W represents the spatial dimension of the feature map, C represents the

spectral dimension and N represents the number of convolution kernels. In our proposed method,

the 5D feature map will be reshaped to be a 4D tensor and its dimension will be B × L ×W × (CN),

where CN is the new channel number. Then channel attention is applied to the new 4D tensor to
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generate a specific weight for each channel. Firstly, global average pooling was performed on the

4D tensor to obtain channel-wise representation. Then, after two fully connected layers, the latter of

which used sigmoid as the activation function, the channel-wise representation was converted to the

weights of different channel. Finally, the reshaped input feature map was multiplied by the obtained

weight vector to complete the refactoring of spatial–spectral features. Take the settings of the proposed

model as an example, the dimension of the feature map generated by the first convolutional layer was

15× 15× 16× 12. Twelve weights will be produced if the channel attention mechanism was directly

used but the number of weights increased to 192 after reshaping. Therefore, the feature map reshaping

was helpful to refine the spectral feature within the original feature maps.

 

𝐿 ×𝑊 × 𝐶 × 𝑁 𝐿 ×𝑊 × (𝐶𝑁).
𝐿 ×𝑊 × 𝐶 × 𝑁

F𝐵 × 𝐿 ×𝑊 × 𝐶
𝐹ᇱ = 𝑆𝐴(𝐹)𝐹 (4) 𝑆𝐴() 𝐹ᇱ
𝐵 × 1 × 1 × 𝐶

𝑆𝐴(𝐹) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑൫𝑓ସ×ସ(ሾ𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹);𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)ሿ)൯ (5) 𝑓ସ×ସ

Figure 2. The overall architecture of the channel attention mechanism used in AD-HybridSN.

The dimension of the input feature map is L ×W × C ×N (batchsize is not shown) and after the

reshaping operation, the dimension of the new feature map will be L×W × (CN). After global pooling

operation and two fully connected layers, specific weights are generated for every channel and

the weight vector will be multiplied with the reshaped 3D tensor to complete feature refinement.

After feature refinement, the 3D tensor will be reshaped to a 4D tensor, of which the dimension is

L×W ×C×N.

2.4.2. Spatial Attention Module

Figure 3 shows a schematic of the spatial attention module. Suppose F represents the reshaped

feature maps generated by the first depth separable convolutional layer, of which the dimension can

be denoted as B× L×W ×C. The processing process of the attention mechanism in this paper can be

summarized as Formula (4),

F′ = SA(F) ⊗ F (4)

where SA() represents spatial attention, ⊗ represents the matrix multiplication operation and F′

represents the refined feature maps. Take the first depth separable convolutional layer as an example,

global average pooling and global max pooling were performed after the convolutional operation and

the feature map dimension became B × 1 × 1 × C for each pooling operation. Then the two pooling

results were concatenated to build an efficient feature descriptor, namely the spatial attention feature

map. The spatial attention feature map will be further processed by a single convolutional kernel so
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that the location that needs strengthening or suppressing can be highlighted. The above computational

process can be summarized as Formula (5),

SA(F) = sigmoid
(

f 4×4([AvgPool(F); MaxPool(F)])
)

(5)

where [;] represents the concatenation operation of two feature maps, Avgpool () and MaxPool ()

represent the corresponding pooling operation, f 4×4 represents the convolutional operation and

sigmoid () is the activation function.

 

𝐿 × 𝑊 × 𝐶 1 × 1 × 2𝐶

 μm

 μm

Figure 3. The overall architecture of the spatial mechanism used in AD-HybridSN. The dimension of

the input feature map is L×W ×C (batchsize is not shown). After max pooling, average pooling and

concatenation operation, the dimension of the new feature map will be 1× 1× 2C. A convolutional

layer that has only one kernel with a sigmoid activation function is used to learn where more attention

is needed. The obtained weights are multiplied with the input feature map to complete spatial

feature refinement.

In our proposed model, the feature maps extracted by 3D convolutional layers contain abundant

spectral information. During the subsequent 2D operation, spectral information suffers some loss

while spatial information is strengthened, so residual connection was used to compensate spectral

information, which in fact constructed a dual-path feature learning pattern. However, this simple

dual-path feature extraction pattern was not able to learn the refined spatial feature. The convolutional

kernels in the depth separable convolutional layers could not cover the whole feature map, so we used

the spatial attention mechanism to refine the feature map point by point.

3. Datasets and Contrast Models

To observe the performance of the proposed model, three datasets: Indian Pines, Salinas and the

University of Pavia were used in our experiment. Indian Pines was collected by the AVIRIS sensor

in Indiana. The image had 145 pixels × 145 pixels and contained 224 bands. Apart from 24 bands

absorbed by water vapor, 200 bands were available for classification. The spatial resolution of the

image was 20 m, and the spectral coverage was 0.4–2.5 µm. The number of labeled samples was 10,249,

which were divided into 16 categories, including crops and natural vegetation such as soybean, corn,

wheat, alfalfa and pasture. The Salinas dataset was acquired in California by the AVIRIS sensor and

contained 204 bands for classification without water vapor absorption bands. The image size was

512 × 127 and the spatial resolution was 3.7 m. It contained 16 types of ground objects in total, and the

spectral coverage was the same as Indian Pines. The dataset mainly included vegetables, bare earth

and vineyards. The University of Pavia dataset contained nine classes, with a total sample size of

42,776. It contained 610 pixels × 340 pixels, with a spatial resolution of 1.3 m and a spectral coverage

range of 0.43–0.86 µm. The dataset was collected in urban areas, mainly including trees, asphalt roads,

bricks, pastures, etc. Figures 4–6 show the distribution of each ground objects on the Indian Pines,

Salinas and University of Pavia.
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Figure 4. False-color image and color coding for Indian Pines.

 

Figure 5. False-color image and color coding for Salinas.

 

Figure 6. False-color image and color coding for the University of Pavia.
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In our experiments, for each image we divided all the pixels into three parts: training set, test set

and validation set. The proportion of the training set and validation set of the Indian Pines, Salinas

and University of Pavia datasets was 5%, 1% and 1% respectively and the remaining pixels served as

a test set. The sample distribution of the three datasets for each class of ground object is shown in

Tables 1–3. We used the HybridSN [32], R-HybridSN [33], Res-3D-CNN [31] and Res-2D-CNN [19] as

contrast models to verify the classification performance of AD-HybridSN.

Table 1. Training, validation and testing sample numbers in Indian Pines.

Number Name Training Validation Testing Total

1 Alfalfa 2 3 41 46
2 Corn-notill 71 72 1285 1428
3 Corn-min 42 41 747 830
4 Corn 12 12 213 237
5 Grass/Pasture 24 24 435 483
6 Grass/Trees 36 37 657 730
7 Grass/Pasture-mowed 2 1 25 28
8 Hay-windrowed 24 24 430 478
9 Oats 1 1 18 20
10 Soybean-notill 48 49 875 972
11 Soybean-mintill 123 122 2210 2455
12 Soybean-clean 30 29 534 593
13 Wheat 10 10 185 205
14 Woods 63 63 1139 1265
15 Building-Grass-Trees-Drives 19 20 347 386
16 Stone-steel Towers 5 4 84 93

Total 512 512 9225 10,249

Table 2. Training, validation and testing sample numbers in Salinas.

Number Name Training Validation Testing Total

1 Brocoli_green_weeds_1 20 20 1969 2009
2 Brocoli_green_weeds_2 37 37 3652 3726
3 Fallow 20 20 1936 1976
4 Fallow_rough_plow 14 14 1366 1394
5 Fallow_smooth 27 27 2624 2678
6 Stubble 39 40 3880 3959
7 Celery 36 36 3507 3579
8 Grapes_untrained 113 112 11,046 11,271
9 Soil_vinyard_develop 62 62 6079 6203

10 Corn_senesced_green_weeds 33 33 3212 3278
11 Lettuce_romaine_4wk 11 10 1047 1068
12 Lettuce_romaine_5wk 19 20 1888 1927
13 Lettuce_romaine_6wk 9 9 898 916
14 Lettuce_romaine_7wk 11 10 1049 1070
15 Vinyard_untrained 72 73 7123 7268
16 Vinyard_vertical_trellis 18 18 1771 1807

Total 541 541 53,047 54,129
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Table 3. Training, validation and testing sample numbers in University of Pavia.

Number Name Training Validation Testing Total

1 Asphalt 66 66 6499 6631
2 Meadows 186 186 18,277 18,649
3 Gravel 21 21 2057 2099
4 Trees 30 31 3003 3064
5 Metal sheets 14 13 1318 1345
6 Bare soil 50 50 4929 5029
7 Bitumen 14 13 1303 1330
8 Bricks 37 37 3608 3682
9 Shadows 9 10 928 947

Total 427 427 41,922 42,776

4. Experimental Results and Discussion

In our experiment, training sets of HybridSN, R-HybridSN, Res-3D-CNN and Res-2D-CNN,

such as window size, training epoch, etc., were consistent with the corresponding papers. In addition,

we used the Adam optimizer and the learning rate was set to 0.001. In order to observe the performance

of our model, we trained 100 epochs and used ReLU as an activation function in AD-HybridSN.

In all experiments, we monitored the validation accuracy and saved the model with the highest

verification accuracy.

4.1. Experimental Results

Three indexes were used to measure the accuracy of models, namely, overall accuracy (OA),

average accuracy (AA) and Kappa coefficient (Kappa). OA represents the proportion of the number

of samples that were correctly classified by the model. AA stands for the average precision of all

land objects. KAPPA is an accuracy measure based on the confusion-matrix, which represents the

percentage of errors reduced by classification versus a completely random classification.

In order to avoid fluctuations caused by accidental factors as far as possible, we conducted

20 consecutive experiments. Tables 4–6 show the average indices and standard deviation of each model

on three datasets. Figures 7–9 show the false-color map, the ground truths and the classification results

of each model for three datasets. We can tell by the data and predicted maps that the classification

result of AD-HybridSN was more detailed and accurate in Indian Pines, Salinas and University of

Pavia. Among the contrast models, the OA of Res-2D-CNN on the three datasets were lower than

the other contrast models, indicating that the 2D-CNN model was not suitable for small sample

hyperspectral classification. Secondly, the classification result of Res-3D-CNN was higher than that of

Res-2D-CNN, indicating that the 3D-CNN model could explore spatial–spectral features of training

samples more effectively. R-HybridSN was superior to the HybridSN in Indian Pines and University of

Pavia, and the two models had a higher classification accuracy than Res-3D-CNN, to a certain extent,

it proved that, compared with the model that used the 3D convolution kernel or 2D convolution kernel

alone, the 3D-2D-CNN model was more suitable for the classification under the condition of small

samples, and the reasonable use of the residual connection could effectively improve the classification

performance of the 3D-2D-CNN model. In particular, the classification accuracy of R-HybridSN in

Salinas was slightly lower than HybridSN and our proposed model AD-HybridSN effectively solved

this problem. Among the three 3D-2D-CNN models, our proposed AD-HybridSN achieved the highest

classification accuracies in three datasets. For example, the OA of AD-HybridSN was 0.26% and 2.71%

higher than R-HybridSN and HybridSN in Indian Pines.
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Figure 7. The classification maps of Indian Pines. (a) Ground truth. (b–f) Predicted classification maps

for Res-2D-CNN, Res-3D-CNN, HybridSN, R-HybridSN and AD-HybridSN respectively.
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Figure 8. The classification maps of Salinas. (a) Ground truth. (b–f) Predicted classification maps for

Res-2D-CNN, Res-3D-CNN, HybridSN, R-HybridSN and AD-HybridSN respectively.
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Figure 9. The classification maps of the University of Pavia. (a) Ground truth. (b–f)

Predicted classification maps for Res-2D-CNN, Res-3D-CNN, HybridSN, R-HybridSN and

AD-HybridSN respectively.
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Table 4. Classification results of different models in Indian Pines.

No.
Training
Samples

Res-2D-CNN Res-3D-CNN HybridSN R-HybridSN AD-HybridSN

1 2 12.07 27.07 61.10 45.73 49.02

2 71 78.46 83.45 92.20 95.44 94.79

3 42 60.00 75.37 96.48 97.41 98.21

4 12 42.84 56.06 77.11 93.17 96.46

5 24 81.87 92.90 94.30 96.71 96.94

6 36 92.30 96.50 97.27 99.30 98.20

7 2 27.40 67.80 89.00 98.60 100.00

8 24 99.44 98.27 97.97 100.00 99.90

9 1 3.61 60.28 83.89 64.44 65.28

10 48 74.42 83.22 95.18 96.01 95.57

11 123 82.74 89.38 97.78 98.31 99.03

12 30 57.36 63.55 86.25 91.95 90.57

13 10 84.19 88.43 89.00 98.70 98.32

14 63 92.57 97.89 98.23 99.43 98.85

15 19 64.65 81.57 83.04 90.94 98.24

16 5 81.85 92.98 85.42 96.13 98.04

KAPPA 0.754 ± 0.030 0.840 ± 0.025 0.935 ± 0.008 0.963 ± 0.005 0.966 ± 0.004
OA (%) 78.48 ± 2.58 86.04 ± 2.19 94.31 ± 0.65 96.76 ± 0.44 97.02 ± 0.30
AA (%) 64.74 ± 3.16 78.42 ± 2.87 89.01 ± 1.23 91.39 ± 2.09 92.34 ± 1.41

Table 5. Classification results of different models in Salinas.

No.
Training
Samples

Res-2D-CNN Res-3D-CNN HybridSN R-HybridSN AD-HybridSN

1 20 59.97 97.63 99.90 99.99 99.81
2 37 99.48 99.82 100.00 99.97 100.00
3 20 60.01 92.35 99.48 99.54 99.98
4 14 98.27 98.87 98.59 99.13 99.17
5 27 94.80 96.85 99.08 98.92 99.50
6 39 99.89 99.98 99.59 99.93 100.00
7 36 97.21 98.80 99.96 99.70 99.97
8 113 83.53 87.19 99.13 98.44 99.70
9 62 99.26 99.55 99.97 99.99 100.00
10 33 84.95 93.58 98.70 97.84 98.96
11 11 90.00 91.44 98.34 99.04 99.22
12 19 97.15 99.26 99.68 99.89 99.92
13 9 95.74 97.74 97.21 94.93 95.59
14 11 94.84 98.29 97.58 93.51 97.49
15 72 72.28 78.62 98.45 96.84 99.57
16 18 91.12 87.12 99.85 99.45 99.00

KAPPA 0.862 ± 0.015 0.918 ± 0.010 0.992 ± 0.003 0.986 ± 0.003 0.995 ± 0.001
OA (%) 87.61 ± 1.38 92.68 ± 0.87 99.25 ± 0.31 98.74 ± 0.24 99.59 ± 0.10
AA (%) 88.66 ± 2.32 94.82 ± 0.98 99.09 ± 0.49 98.57 ± 0.42 99.24 ± 0.20

Table 6. Classification results of different models in the University of Pavia.

No.
Training
Samples

Res-2D-CNN Res-3D-CNN HybridSN R-HybridSN AD-HybridSN

1 66 91.32 89.83 91.78 96.79 97.28
2 186 97.50 96.54 99.77 99.74 99.87
3 21 18.51 70.08 92.24 91.44 95.75
4 30 95.09 95.99 91.01 94.18 93.11
5 14 99.19 99.72 97.76 99.82 98.16
6 50 89.59 80.84 99.38 99.31 99.96
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Table 6. Cont.

No.
Training
Samples

Res-2D-CNN Res-3D-CNN HybridSN R-HybridSN AD-HybridSN

7 14 42.90 69.64 96.83 95.52 98.07
8 37 87.04 80.31 90.72 93.55 96.53
9 9 97.75 96.70 72.17 93.86 96.31

KAPPA 0.854 ± 0.012 0.870 ± 0.019 0.946 ± 0.013 0.969 ± 0.005 0.978 ± 0.004
OA (%) 89.025 ± 0.89 90.19 ± 1.42 95.94 ± 0.95 97.64 ± 0.38 98.32 ± 0.28
AA (%) 79.877 ± 2.75 86.63 ± 1.82 92.41 ± 2.14 96.02 ± 0.83 97.23 ± 0.61

We further compared the experiment results of the three 3D-2D-CNN based models and drew the

following conclusions. Firstly, unlike R-HybridSN, which had inferior classification accuracy than

HybridSN on Salinas, the classification accuracy of AD-HybridSN was relatively balanced on three

datasets. It further demonstrated the strong feature extraction ability of the dense block and the necessity

of feature refinement module. What is more, AD-HybridSN had an uneven classification accuracy on

different datasets. Using a similar amount of training samples in three datasets, the classification effect

of Salinas was far better than Indian Pines. Thus, the generalization ability of AD-HybridSN needs to

be further analyzed. Thirdly, compared with the other two 3D-2D-CNN models, AD-HybridSN had

a tremendous improvement in small sample classes, such as the Stone-steel Towers in Indian Pines

and Shadows in the University of Pavia. However, the classification accuracy of AD-HybridSN on

some ground objects, such as oats and alfalfa in Indian Pines and Lettuce_romaine_7wk in Salinas,

which was over that of R-HybridSN, was still lower than HybridSN, which needs to be further studied.

4.2. Discussion

It is proved that the classification performance of AD-HybridSN was superior to R-HybridSN,

HybridSN and other contrast models through vigorous experiments. Therefore, the network structure

of AD-HybridSN was conducive to improving classification accuracy, which needs to be further

discussed. From the perspective of the network structure, the HybridSN is a 3D-2D-CNN model with a

relatively concise structure, which contains only four convolutional layers; R-HybridSN has a relatively

deeper and more complex structure, which is based on the non-identity residual connection and depth

separable convolutional layers. It can be speculated from the experimental results that R-HybridSN

had a better spatial–spectral feature learning ability. At the same time, the features extracted from

the shallow network layers were not fully utilized, which may be the reason that the accuracy of

R-HybridSN in the Salinas dataset was slightly lower than that of HybirdSN. AD-HybridSN is the

redevelopment of R-HybridSN, based on which the dense block and attention module are introduced

for feature reusing and refinement. As AD-HybridSN only has six convolutional layers, the structural

advantage of our proposed network was verified. However, the effectiveness of attention module

needs to be further verified.

In order to further verify the effectiveness of the attention module in our proposed model, we built

a D-HybridSN to conduct model ablation experiments. In order to control the experimental variables,

the only difference between D-HybridSN and AD-HybridSN was that the former had no attention

module. Table 7 shows the accuracy of AD-HybridSN, D-HybridSN and R-HybridSN in three datasets

and the proportion of the training sample used in this experiment was also 5%, 1% and 1% respectively.

The classification accuracies of D-HybridSN were −0.42%, 0.66% and 0.27% higher than that of

R-HybridSN in Indian Pines, Salinas and the University of Pavia respectively. From the comprehensive

performance of models on the three datasets, the features extracted by D-HybridSN were more

discriminative. Thus, it is further proved that, by means of reusing the spatial–spectral features

in the network, the features from shallow layers were better utilized to contribute to classification.

What is more, our proposed AD-HybridSN outperformed D-HybridSN in three datasets by 0.68%,
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0.19% and 0.41% respectively, which indicate that the spatial–spectral features were further refined by

the attention module that followed every convolutional layer.

Table 7. Classification results of R-HybridSN, D-HybridSN and AD-HybridSN.

R-HybridSN D-HybridSN AD-HybridSN

Indian Pines

KAPPA 0.963 ± 0.005 0.958 ± 0.006 0.966 ± 0.004
OA 96.76 ± 0.44 96.34 ± 0.50 97.02 ± 0.30
AA 91.39 ± 2.09 91.58 ± 1.64 92.34 ± 1.41

Salinas

KAPPA 0.986 ± 0.003 0.993 ± 0.002 0.995 ± 0.001
OA 98.74 ± 0.24 99.40 ± 0.20 99.59 ± 0.10
AA 98.57 ± 0.42 99.33 ± 0.24 99.24 ± 0.20

University of Pavia
KAPPA 0.969 ± 0.005 0.972 ± 0.004 0.978 ± 0.004

OA 97.64 ± 0.38 97.91 ± 0.27 98.32 ± 0.28
AA 96.02 ± 0.83 96.74 ± 0.62 97.23 ± 0.61

Although AD-HybridSN has satisfactory overall accuracies on the three datasets, the classification

of some ground objects was still unsatisfactory. This phenomenon may be attributed to the fixed

network structure for different datasets, which may limit the targeted feature learning for different

datasets with different spatial resolution and spectral conditions. Therefore, in the following research,

the model integration method will be used to integrate the advantages of different networks, so as

to comprehensively improve the classification accuracy of various ground objects. Besides, the fixed

network structure might mean a fixed input size, which includes window sizes and a number of bands.

That may further affect the ability of the model on learning spatial–spectral features from different

datasets. Thus, how to learn features in a more flexible way needs to be further investigated in the

aspect of network structure and hyperspectral image preprocessing.

In order to further verify the performance of AD-HybridSN under the “small-sample” condition,

we further reduced the amount of training samples and conducted supplementary experiments.

In Section 4.1 we showed the experiment results under unbalanced training sample cases, and we will

further reduce the amount of training samples. Meanwhile, we will use balanced training samples,

which means the amount of each ground objects are equal, to perform supplementary experiments.

Due to that, 5% is the minimum proportion of Indian Pines to ensure that all ground objects have at

least one sample and the classification accuracy of the University of Pavia is relatively low, we only

used the University of Pavia in our supplementary experiments. In the unbalanced training sample

experiment, the amount of labeled data decreased from 0.8% to 0.4%. In the balanced training sample

experiment, we used 50, 40, 30 and 20 labeled data of each ground object respectively. Tables 8 and 9

show the experiment results.

Table 8. Classification results of the University of Pavia on an unbalanced training sample case.

1% 0.8% 0.6% 0.4%

OA (%) AA (%) OA (%) AA (%) OA (%) AA (%) OA (%) AA (%)

HybridSN 95.94 92.41 94.60 89.69 93.31 87.50 90.62 80.96

R-HybridSN 97.64 96.02 96.60 93.94 95.76 92.91 93.46 86.82

AD-HybridSN 98.32 97.23 97.57 95.61 97.24 95.40 96.13 92.15

Table 9. Classification results of the University of Pavia on an balanced training sample case.

50 40 30 20

OA (%) AA (%) OA (%) AA (%) OA (%) AA (%) OA (%) AA (%)

HybridSN 96.70 96.64 95.70 95.64 93.06 93.87 88.76 90.31
R-HybridSN 97.38 97.36 95.79 96.25 94.99 94.98 90.47 92.24

AD-HybridSN 98.32 98.31 97.14 97.36 96.33 96.70 93.98 94.59
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After analyzing the experimental results, we had the following findings:

(1) In our experiments, the classification accuracy of AD-HybridSN was the highest in both the

unbalanced training sample case and balanced training sample case. Additionally, the classification

accuracy of R-HybridSN was higher that of HybridSN, which was consistent with the experiment

results of the University of Pavia in Section 4.1.

However, the classification accuracy of the three models showed great differences in the two

kinds of experiments. By comparing the OA and AA value in the experiment result, we found that,

in the balanced training sample case, the AA value was relatively higher, which was different from

the experiment on the unbalanced training sample case. This phenomenon indicates that the sample

distribution had a great influence on the classification results.

(2) The experiment results further indicate that the sample distribution was a valuable research

issue in “small sample” hyperspectral classification. For now, we randomly split the hyperspectral data

to obtain the training set, validation set and testing set. However, there was an ill-posed problem in the

hyperspectral image. On the one hand, the amount of samples were unbalanced, on the other hand,

the quality of samples were also unbalanced. Thus, selecting the best training sample combination

from the labeled samples may alleviate the problem of the hyperspectral image ill-posed problem to a

certain extent.

(3) We can tell by the experimental results that when the number of training samples was reduced

to a certain extent, the classification accuracy of all models decreased in a cliff-like manner. Therefore,

there is a limit to improve the classification accuracy of small samples only by network optimization.

When the training samples were reduced to a certain extent, there were a large number of unlabeled

samples that were not used. Thus, in the following research, we should focus on mining the information

of unlabeled samples by combining semisupervised learning or an active learning strategy.

5. Conclusions

In this paper, in order to realize the efficient extraction and refinement of the spatial–spectral

feature in the “small sample” hyperspectral image classification, we proposed an AD-HybridSN model

from the perspective of network optimization. Based on the 3D-2D-CNN model, multifeature reuse

was realized by a dense block. Besides, the 3D convolution and 2D convolution were respectively

equipped with channel attention and spatial attention modules, thus the spatial–spectral features were

further refined. We conducted a series of experiments on three open datasets: Indian Pines, Salinas

and the University of Pavia. The experiment results show that the AD-HybridSN model had a better

classification effect than all the contrast models. In Section 4.2, we further performed the supplementary

experiment on a balanced training sample case. AD-HybridSN still had the best classification results

when the amount of training samples decreased. However, the accuracy improvement brought by

network optimization was limited, so other strategies should be combined to further improve the

classification accuracy.

In our proposed model, the attention module was of great help to improve the accuracy of the

hyperspectral classification under the “small sample” condition. However, in AD-HybridSN, only a

simple attention module was used. In the future, we will further study the attention mechanism and a

more targeted attention module could be designed and applied in the hyperspectral image classification

experiment. In addition, the AD-HybridSN still has room for improvement in the classification of

specific ground objects. In subsequent studies, we will combine semisupervised learning or active

learning strategy to break through the bottleneck of network optimization. Moreover, the dense block

and attention module are only preliminarily explored in AD-HybridSN. Network optimization is an

open field with rapid development, we hope that the idea of AD-HybridSN can be further expanded.
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