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Spatial Spread Sampling Using Weakly
Associated Vectors

Raphaél JAUSLIN® and Yves TILLE

Geographical data are generally autocorrelated. In this case, it is preferable to select
spread units. In this paper, we propose a new method for selecting well-spread samples
from a finite spatial population with equal or unequal inclusion probabilities. The pro-
posed method is based on the definition of a spatial structure by using a stratification
matrix. Our method exactly satisfies given inclusion probabilities and provides samples
that are very well spread. A set of simulations shows that our method outperforms other
existing methods such as the generalized random tessellation stratified or the local piv-
otal method. Analysis of the variance on a real dataset shows that our method is more
accurate than these two. Furthermore, a variance estimator is proposed.
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1. INTRODUCTION

In most natural resources surveys, data contain spatial coordinates. The process of select-
ing units from a population defined over a region of space is called spatial sampling. These
kinds of data are usually autocorrelated, meaning that two close measurements are generally
similar. In general, to estimate a total of a target variable, selecting the units spatially best
spread collects more information and provides better estimation. An important problem of
spatial sampling is thus to spread at best the sampled units in space. A well-spread sample
is called spatially balanced. Grafstrom and Lundstrém (2013) and Grafstrom and Schelin
(2014) give the formal definition of a representative sample and discuss the theoretical jus-
tification of taking a well-spread sample with unequal probabilities. Marker and Stevens
(2009) and Hankin et al. (2019) present some example of studies where the population
considered is in an environmental context such as lakes, wetlands, rangelands and forests.
Vallée et al. (2015) discuss forest ecosystem evolution using a well-spread spatial sampling
design. Tillé (2020, Chapter 8), Tillé and Wilhelm (2017), Benedetti et al. (2017) and Wang
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et al. (2012) give a review of the main spatial sampling methods. Quenouille (1949) and
Bellhouse (1977) showed that systematic sampling is the optimal design for autocorrelated
data.

Generalized random tessellation stratified (GRTS) sampling is a spatial sampling method
proposed by Stevens and Olsen (1999, 2003, 2004). They use a mapping by means of a
quadrant-recursive function to map a finite subset of a multi-dimensional space into the real
line. A one-dimension systematic sampling is then applied, possibly with unequal proba-
bilities (see also Theobald et al. 2007; Brown et al. 2015; Kincaid et al. 2019). Robertson
et al. (2018) have proposed a similar method called Halton iterative partitioning (HIP). It
uses structural properties of the Halton sequence to draw a well-spread sample. Dickson and
Tillé (2016) have simply used the travelling salesman problem (TSP) in order to map the
population points in one dimension. Systematic sampling is then applied. Grafstrom (2011)
has proposed spatially correlated Poisson sampling (SCPS). This method uses weights to
create strong negative correlations between the inclusion probabilities of nearby units. Graf-
strom et al. (2012) proposed the local pivotal method (LPM). It is a particular case of the
splitting methods proposed by Deville and Tillé (1998). It consists of randomly choosing
between two nearby units at each step and produces an automatic repulsion in the selection
of the neighbour units. Grafstrom and Tillé (2013) have generalized the LPM to obtain
spread samples that are also balanced on totals of auxiliary variables. All these methods are
implemented in the BalancedSampling R package (Grafstrom and Lisic 2019).

Stevens and Olsen (2004) have proposed to compute the Voronoi polygons around the
sampled units, after which they sum the inclusion probabilities of the population units
belonging to each Voronoi polygon. The variance of these sums, called “spatial balance”, is
an indicator of the quality of spreading. Tillé et al. (2018) have modified the index proposed
by Moran (1950) so that it can be interpreted as a coefficient of correlation between the units
and their neighbourhood. The index provides another measure of the quality of spreading.

Diggle et al. (2010) defined preferential sampling as a sample selection where the sam-
pling method is not independent of the spatial process, and where unequal inclusion proba-
bilities cannot be explained by auxiliary variables. It is important to emphasize here, that in
this manuscript the inclusion probabilities are supposed to be established in advance. The
sample selection is a random realization of the sampling model and is independent of all of
the variables.

In this paper, we propose a new spatial sampling method. We start with the vector of
inclusion probabilities. Like in the cube method (Deville and Tillé 2004; Tillé 2006), inclu-
sion probabilities are randomly modified at each step. It can be seen as random walk that
from the vector of inclusion probabilities ends up with a sample. By choosing well the
modification direction at each step, the sample selected is very well spread.

The paper is organized as follows. Section 2 gives the notation and a basic set-up of the
problem as well as the insight that a well-spread sample results in an Horvitz—Thompson
estimator with a smaller variance. In Sect. 3, we introduce the new method that we propose
and the process of sample selection. In Sect. 4, we describe the indices that enable to evaluate
the quality of the spreading: the spatial balance index and the measure based on Moran’s
index. In Sect. 5, we present a variance estimator for our method. In Sect. 6, we give simu-
lation results of the algorithm on artificial spatial configurations, while Sect. 7 is dedicated
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to simulations on real data. We used the geo-referenced “Meuse” dataset available in the R
package “sp” of Pebesma and Bivand (2005) with inclusion probabilities proportional to the
“cadmium” variable. Simulations show that the proposed method surpasses LPM, GRTS
and SCPS for the quality of the spreading and the estimation accuracy.

2. NOTATION

2.1. BASIC SET-UP

Consider a finite population U of size N whose units can be defined by labels k €
{1,2,...,N}. Let S = {s|s C U} be the power set of U. These units are geo-referenced
in a space that can have more than two dimensions. A sampling design is defined by a
probability distribution p(.) on S such that

p(s) > 0forall s € S and Zp(s) =1.
seS

A random sample S is a random vector that maps elements of S to an N vector of 0 or 1
such that P(S = s) = p(s). Define ax(S), fork =1,..., N:

1 ifkeS
ar =
k 0  otherwise.

Then, a sample can be denoted by means of a vector notation: a '

= (a1, az,...,an).
For each unit of the population, the inclusion probability 0 < m; < 1 is defined as the

probability that unit & is selected into sample S:

M= PkeS)=E@)= Y pls), forallkeU.

seSlkes

Let x| = (71,...,7N) be the vector of inclusion probabilities. Then, E(a) = x. In
many applications, inclusion probabilities are such that samples have a fixed size n. Let the
set of all samples that have fixed size equal to n be defined by

S, = {a e {0, 1}V
k=1

The sample is generally selected with the aim of estimating some population parameters.
Let y; denote a real number associated with unit k& € U, usually called the variable of
interest. For example, the total

Y=>3

keU

can be estimated by using the classical Horvitz—Thompson estimator of the total defined by
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> YkQk
Yr =) o, (1)

Usually, some auxiliary information x,;r = (Xk1, Xk2, - - - » Xkg) € RY regarding the popu-
lation units is available. In the particular case of spatial sampling, a set of spatial coordinates
z,;r = (Zk1, 2k2, - - - » Zkp) € RP? is supposed to be available, where p is the dimension of the
considered space. A sampling design is said to be balanced on the auxiliary variables x if
and only if it satisfies the balancing equations

R=y % =Y n=x

keS keU

2.2. WELL-SPREAD SAMPLE

A sample is well spread “if the number of selected units is close to what is expected on
average in any part of the space” (Grafstrom and Lundstrom 2013). We give in this section an
insight that selecting a well-spread sample minimizes the variance of the Horvitz—Thompson
estimator. Let suppose we are in general linear superpopulation model:

Vi = x,—(rﬂ + ¢, forallk € U,

where X is a column vector of values taken by ¢ auxiliary variables on unit k, 8 € R?
are g regression coefficients and ¢ is a random variable that satisfies Ejs(¢x) = 0 and
vary (ex) = 02(xx) = akz, witho2(-) a Lipschitz continuous function. Note that Ey,(-) and
vary (-) are the expectation and the variance under the model. Let also

covyy (e, &¢) = oxoepre, Withk £ L€ € U,

where pi, is a function that decreases when the distance between two units increase. This
notation shows that two close units are autocorrelated. Grafstréom and Tillé (2013) showed
that

T 2
~ Xk ke — T
E,Ey(Yur—Y)? = E, (Z o Zxk) Bl +2 D oo @

keS keU keU teU

where E, is the expectation of the design and myy = Ep(agae) is the joint inclusion
probabilities. From Eq. (2), we could see that the first term of the right-hand side is min-
imized if the sample is balanced on the auxiliary variables X. The second term is mini-
mized if 7y is small whenever pg, is large, meaning that choosing a well-spread sample
(i.e. a sample where the i, are small) minimizing Eq. (2). Grafstrom and Lundstrom
(2013) showed that if the inclusion probabilities are set up proportional to the oy then
(2) is even more minimized. As result, selecting a well-spread sample jointly used with
the Horvitz—Thompson estimator is a very efficient procedure in terms of variance reduc-
tion.
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3. WEAKLY ASSOCIATED VECTOR SAMPLING

3.1. GENERAL IDEA

Our sampling algorithm, Weakly Associated VEctor (WAVE) sampling starts with the
inclusion probability vector. At each step, this vector is randomly modified so that at least
one of the components of the vector is replaced by a0 or a 1. So, in at most N steps a sample
is randomly selected. This idea is also used in the cube method proposed by Deville and
Tillé (2004) to select balanced samples. The proposed method is different from the cube
method by selecting in a completely different way the vector of modification of inclusion
probabilities. By carefully choosing the direction of the modification of the working vector,
we can ensure that the selection of the sample will be well spread. This choice is described
in Sect. 3.4.

3.2. DISTANCE

In order to describe the spatial structure of the population, a distance is defined as a
function m defined on the product set U x U such that

m:Ux U — RT, 3

and satisfies the property of non-negativity, symmetry and triangular inequality. More specif-
ically, for all x, y, z € U the following properties hold:

m(x,y) >0, mx,y)=0 < x =y,
m(x,y) =m(y, x),
m(x,z) <m(x,y)+m(y,z).

In most of applications, the usual Euclidean squared distance is used. It is defined by,
2 _ T
my(k, ) = (zk — 2¢)  (2k — Z¢), “)

where z; and z, are the spatial coordinates of units k, £ € U. Sometimes it could be
interesting to compute the distance on auxiliary variables. In this case, the Mahalanobis
distance can be more appropriate,

miy(k, 0) = (x¢ —x¢) TS % — x¢),

where

1 1
S = 5 Z(xk — X)X —X), X= 5 Zxk.

keU keU

When the population is distributed on a Ny x N5 regular grid of R?, a tore distance can be
defined. We define a tore distance as the Euclidean metric calculated on a regular tore. An
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advantage of using this distance is that the surface on which we working on has not anymore
corners and edges. With this tore distance, two units on the same column (respectively, row)
that are on the opposite side have a small distance. More precisely, a unit that is positioned
at the right top corner of the grid will be equally distant to the left top corner and the right
bottom corner. It is like seeing the grid curved such that it looks like a regular tore.

The distance is then defined by:

m%.(k, €) = min[(zx1 — z¢1)% 21 + N1 — ze1)?, (21 — Ni — ze1)?]
+min[(zx2 — z02)%, (a2 + Na — 262)%, (zk2 — N2 — 202)*].

®)

Example 3.1. Let{l, ..., 9} be onaregular grid of size 3 x 3, then the squared distance
matrices defined by Eqs. (4) and (5) are equal to

01 4 1 2 5 4 5 8 o1 1 1 2 2 1 2 2
1 01 21 2 5 45 1 01 21 2 2 1 2
4 1 0 5 2 1 8 5 4 1 1.0 2 2 1 2 2 1
1 25 01 41 25 1 22 01 1 1 2 2
Mg=1]2 1 2 1 01 2 1 2|, Mr={|2 1 2 1 0 1 2 1 2
521 41 0 5 2 1 221 110 2 21
4 5 8 1 2 5 0 1 4 1 22 1 2 2 0 1 1
545 2 1 2 1 01 21 2 2 1 2 1 01
8 54 5 2 1 4 10 2212 2 1110

(6)

In spatial configuration of a regular grid, some distances between points are equal. The
rank of the nearest neighbours is then assigned and duplicated values appear. In order to
obtain a different rank distance for each unit, a small random quantity is added to the
coordinates so that it disturbs the given units and the distances are a little bit different from
each other. Let & € R? and Z; = z; + € the shifted coordinates, Equation (5) is then replaced
by,

m%(k, ) = min[(Zx1 — ze1)% Gt + N1 — ze1)?, Gr1 — N1 — ze1)?]
+min[(Gr2 — 202)?, Gr2 + N2 — 202)%, Grz — N2 — z22)].
€ is called a “shift” and m g the shifted version of mr, for example if ¢ = (1/12, 1/4), the
distance matrix Mg becomes,

0 090 124 057 140 1.74 157 240 274
124 0 090 1.74 057 140 274 157 240
090 124 0 140 1.74 057 240 274 1.57
1.57 240 274 0 090 124 057 140 1.74
Mg=1]274 157 240 124 0 090 1.74 057 1.40]. (7
240 274 157 090 124 0 140 174 0.57
0.57 140 1.74 157 240 274 0 090 1.24
1.74 057 140 274 157 240 124 0 0.90
140 1.74 0.57 240 274 157 090 124 0

The matrix is no longer a distance matrix since the symmetric axiom has been dropped.
A distance that has an unsatisfied symmetry axiom is called a quasi-metric. Nevertheless,
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Figure 1. Simple example of a 3 x 3 regular grid set up on three different distances with a gradient calculated
from the points (1, 1). The left one is the classical Euclidean distance (4), the right one is the tore distance given in
(5) and the central graph is the shifted tore distance with a shift equal to (1/12,1/4) (the black point on the graph).
It illustrates the two different patterns and the values of the grid points corresponding to the entries of the first row
of the three previous matrices (6) .

if an epsilon value is added instead of (1/12, 1/4), then the values are almost the same
and the order is preserved in each row. In Fig. 1, three simple configurations are presented:
Euclidean, tore and shifted tore distance on a 3 x 3 regular grid. In shifted distance graph,
all the distances from point (1, 1) to the other grid points are different.

3.3. THE STRATIFICATION MATRIX

Letk € U denote a unit in the population. The idea is to construct a strata G under some
distance metric such that the elements in Gy are ranked in increasing order. Define Gy the
set of the nearest neighbours of unit &, including k, such that their inclusion probabilities
are greater or equal than one by only one unit. Denote g; the number of elements inside Gy,
the spatial weights are then defined as follows

e if unit £ is in the set of the gx — 1 nearest neighbour of k,
Wee = e+ 1— Z 7y if unit £ is the gxth nearest neighbour of &,
Jj€Gy
0 otherwise.
3

Let W denote an N x N stratification matrix and each row of matrix W represents a
stratum. Each stratum is defined by a particular unit and its neighbouring units. Nearest
neighbours are defined with a metric function (3). If the metric is such that there exists
ties values, then we can divide the quantity wy, into the different g nearest neighbours of
the unit &k that have the same distance. Or, a shifted metrics can be used [exemplified in
matrix (7)] such that all the distances are different. Each row of matrix W sum to 1. Thus,
matrix W is a right stochastic matrix. Most of the components of matrix W are null. Matrix
W can thus be encoded as a sparse matrix.
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Figure2. Sparsity pattern of three stratification matrices. Spatial coordinates are 3 x 3 regular grid and the inclusion
probabilities are equal tor = (1/3, ..., 1/3). Depending on the way of defining the nearest neighbours in Eq. (8),
different weight values are obtained. The left stratification matrix uses the classical Euclidean distance (4), the
central one the tore distance (5) and the right one uses a shifted tore distance with a shift randomly generated from
a random variable A (0, 1/100I) .

Example 3.2. LetU = {1, 2, 3,4, 5}apopulation of 5 units. Suppose that the inclusion
probabilities are equal to # = (1/2,1/3,1/4,1/5,1/6) and that the order in terms of
distance metric from the unit 1 is exactly equal to 1, 2, 3, 4, 5, meaning that the 5th unit is
the farthest to the first. Then, Gy = {1, 2, 3} because 1/2+ 1/3 + 1/4 = 1.084 > 1 and
wiz=1/4+1—-(1/24+1/3+1/4) =1/6.

Example 3.3. Let{l, ..., 9}beonaregular grid of size 3 x 3 with inclusion probabilities
equal ry = 1/3, forall k € U.Figure 2 shows different stratification matrices corresponding
to Mg, M7 and Mg with a shift randomly generated from a random variable N (0, 1/100I)
where I is the identity matrix.

Let now D = diag(x) the matrix with inclusion probabilities on the diagonal and define
A by
wi/m w2/ e WIN/TN
A=WD!= : : : : ©)
WN1/TL wWN2/T2 s WNN/TN
Matrices W and A are square but not necessarily full rank. The sum of the rows of A
is equal or approximately equal to the number of elements in each stratum. The strata are

represented by the rows and the contribution of a unit i in each stratum is represented by
the ith column. Figure 3 shows the sparsity pattern of the two stratification matrices.

Example 3.4. Let U be a population of size N = 250 and inclusion probabilities equal
to mx = 1/25, for all k € U. Suppose that spatial coordinates are generated independently
from a uniform distribution on the square unit, so that with probability one there are no tied
distance values, since all 1/m; = 25 the nonzero entries of A are all equal to 1. Based on
the definition (8), the weights are all equal to the inclusion probabilities or zero. Figure 3
shows the sparsity pattern of the stratification matrices and exemplifies some initial strata.
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Intial strata Stratification matrix

Figure 3. Representation of the strata defined by the spatial weights [Eq. (8)]. Spatial coordinates of the units are
generated randomly from a uniform distribution on the square unit [0, 1] x [0, 1]. The overall population size is
equal to N = 250 and the inclusion probabilities are identical and equal to 7 = 1/25 = 0.04, meaning that the
sample size is equal to n = 10. With these parameters, the expected number of units in each stratum is equal to
125/4 = 25. The left graph shows the population and the selected units with its initial strata. On the right, it shows
the sparsity pattern of the matrix (9). All entries of the matrix are equal to 1 .

3.4. IMPLEMENTATION

The method is described in detail in Algorithm 1. The main idea is derived from the cube
method (Deville and Tillé 2004). At each step, vector  is randomly modified. To modify
7, we choose a vector that spreads at best. Ideally, the aim consists of obtaining a sample a
such that the following equality is satisfied:

Aa=Ar =1.

This linear system defines an affine subspace of RV:
A={aeR"|Aa=An}
which could also be rewritten:
A =m + Null(A)
where
Null(A) = {v e R | Av = 0}.

Depending if matrix A is full rank or not, the vector giving the direction is not selected
in the same way. If matrix A is not full rank, a vector that is contained in the right null

space is selected. If matrix A is full rank, we compute v,u a left and a right singular vectors
associated with the smallest singular value o of A, i.e.
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Av = ou, Alu=ov.

By choosing the modification vector v, we ensure that we select the vector which remains
closest to the set .A. Vector v is called the weakest associated vector to the matrix A. Vector v
is then centred to ensure the fixed sample size. By using these weakest associated vectors, the
initial spatial configurations are the least modified. At each step, some inclusion probabilities
7 are modified and at least one component is set to 0 or 1. Matrix A is updated from the
new inclusion probabilities. This step is repeated until there is only one component that is
not equal to 0 or 1.

Algorithm 1 Algorithm for WAVE sampling

LetA =Agand g = (711(0), e, 71’1(\?)) = m for the initialization step. Forr =0, 1, 2, ...

1. From m;, extract T; vector m; restricted to the k such that 0 < ”151) < 1. Let J be the length
of ﬁ[ .

2. Compute the J x J matrix A; of Equation (9) using inclusion probabilities 7;.
3. Calculate the rank r of matrix A;.

(a) If matrix A; does not have full rank, choose v; = (v}l), e vy)) € R a vector in
the right null space of A;.

(b) If matrix A; has full rank, compute the singular value decomposition and seek for v;
a right singular vector associated with the smallest singular value o;.

4. Next in order to ensure the fixed sample size, vector v; is centred:

- 1
V¢ = Vy — 72111-0)1‘],
ieJ
where 1; is the J x 1 vector of one.

5. Find A1 and A, the largest positive real numbers such that all the 0 < 7715[) + )»1’17,(:) < 1 and

0<7 g <L k=1,....J.

6. Compute

x | 4+ AV, with probability A5 /(A1 + A2)
1=V %, — A%, with probability A1 /(A; + A2).

7. Return at 1. with ;41 until no units k remains such that 0 < nIEH_l) < L

Algorithm 1 is implemented in a R package, which uses the Armadillo C++ library into
the R interface (Eddelbuettel and Sanderson 2014). The implementation uses the sparse
matrix class. Indeed, depending on the inclusion probabilities, matrix A given in (9) could
be strongly sparse. Even if the function benefits from the C++ implementation, it could be
quite time consuming as the size of the population N increases. Nevertheless, we will see
in the next section that the algorithm performs better in terms of two spreading measures
than those currently used for the spatial balanced sampling design.
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4. SPATIAL BALANCE

4.1. VORONOI POLYGONS

Stevens and Olsen (2004) suggested the spatial balance of a sample consists of using the
Voronoi polygons. The Voronoi polygon associated with the sample unit & is the set of all
units of the population that are closer to k than to any other sample units. Let v be the sum
of inclusion probabilities of the units belonging to the Voronoi polygon associated with the
sample unit k. If the sample is perfectly spread, vy should be equal to 1 for each k. Indeed,
n units are selected in the sample, then

S o= m=n,

keS keU

and so

%ka=l.

keS

The variance of the E[vi] could be approximated and give a good measure of the spatial
balance of the sample. The spatial balance measure based on the Voronoi polygons is defined
by
1
B(S) = - ) (u— D% 10
$) == (=1 (10)

keS

Two samples are compared in Fig. 4. The left one is selected with a simple random
sampling without replacement and the right one is selected with WAVE sampling. The
darker the Voronoi polygon, the more units it contains. An exactly well-spread sample
should have all polygons of the same colour.

The measure B has some limitations. It does not vary from a fixed finite range. This
does not allow a clear understanding if the sample is balanced or clustered (Tillé et al.
2018). Moreover, the measure behaves sometimes wrongly and suggest a well-spread sample
although it is not the case. Examples are given in Supplementary Material Section. For these
reasons, we suggest to use another measure based on Moran’s I index.

4.2. MORAN’S | INDEX

A second approach for measuring the spatial balance of a sampling design has been
proposed by Tillé et al. (2018). Consider a N x N spatial weights matrix,

0 w2 e WIN
w21 0 - wan
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Simple random sampling Weakly associated vectors

Vg

05 1.0 1.5 20

Figure 4. Illustrated example of how the spatial balance measure based on the Voronoi is performed. The popu-
lation and sample sizes are, respectively, equal to N = 50 and n = 20, the inclusion probabilities are identical and
equal to 7y = 0.4. The spatial coordinates are generated from two random uniform ¢/ (0, 1). Two sampling design
are compared. The left one is the simple random sampling without replacement and the right one is the weakly
associated vector sampling .

A large value of wy, indicates that £ is a neighbour of k. Matrix W is not necessarily
symmetric. The index proposed by Tillé et al. (2018) is defined by

(a—a,) Wa-ay)

I = 9
o J(@—-a,) D@—a,)(a—a,) Ba—a,)

an

where a is the sample and

. a'wl

Ay, = ——,
YT 1TWI

D is the diagonal matrix containing wy, = > rey Wke on its diagonal,

T » 11w
B=C'DC, C=D W—m,
and 1 is a column vector of N ones. Tillé et al. (2018) pointed out that /5 can be interpreted
as weighted correlation between a; and the average of the a, that are in the neighbouring
of k. We have that —1 < Ip < 1 and Ip = —1 when the sample is well spread. Tillé et al.
(2018) have proposed to use the inverse of the inclusion probability sy = 1/my to define
the neighbours of the unit k. More specifically, if the unit k is selected it seems natural to
consider i; — 1 neighbours in the population. Let | 44 | and [/ ] be, respectively, the inferior
and superior integers of hj. Spatial weights are then defined as follows,
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1 if unit £ is in the set of the | /x| nearest neighbour of k
wike = { hx — Lhy] if unit £ is the [h ]th nearest neighbour of & (12)
0 otherwise .

For example, if a unit k£ has an inclusion probability of 7z = 0.35 then h; = 2.857,
meaning that the first nearest neighbour of k has a weight equal to 1 and the second has a
weight of 0.857. In case there are units that are at equal distance from each other, Tillé et al.
(2018) suggest to divide the spatial weights equally among them.

We propose a new way of defining the spatial weights. It consists of using spatial weights
defined in (8) rather than the weights (12). We set wix = 0 for all k € U. For the rest of
the paper, Ip1 will represent the measure based on the spatial weights (12) and 7p the one
based on (8).

5. VARIANCE ESTIMATION

If the sampling design is of fixed size, the variance of the Horvitz—Thompson estimator
of the total (1) is defined by

2
var(Yyr) = — = Z Z (— — —) Age,

keU teu

where Ayy = my¢ —mpmy and i = E(aray) is the joint inclusion probabilities. For complex
sampling designs, quantities 7y are generally impossible to compute.

Many different estimators have been developed. Sen (1953) and Yates and Grundy (1953)
proposed one classical estimator:

vsyG (YuT) = —= ZZ (& _ _) Akﬂ

TT,
2 (o5 tes \Tk ke

This estimator can take negative values, but it is non-negative when Ay, < O for all k #
£ € U. A common problem with spatially balanced sampling designs is that many joint
inclusion probabilities are equal to zero. Indeed, the probability of selecting two close units
is generally zero or very close to zero. In this case, vsyg is not an unbiased estimator of
var(?HT).

Tillé (2020, Chapter 5) gives a general estimator based on the variance estimator of the
conditional Poisson sampling. It is equal to

o) = Y (e — )2

kes Tk

where

Ak Zees ceye/me
i e
res Ct
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Choosing ¢, = (1 —mx)n/n—1, we obtain the Hijek—Rosén estimator (H4jek 1981) defined
by

13)

{&  pes yel =) /e }2
i 2 res(1 = 70) '

This variance estimator is simple to compute and has the advantage of using only the first-

-~ n
vHAl(YhT) = —— > —m)
keS

order inclusion probabilities. It is a good estimator for maximum entropy sampling design
and simple random sampling without replacement. Grafstrom et al. (2012) pointed out that
the estimator seems to overestimate the variance for spread sampling design. Grafstrom and
Schelin (2014) proposed an estimator based on the nearest neighbour in the sample. It is
called variance estimator for spatially balanced sampled and is defined as follows:

~ 1 k 0 2
vsp(Fim) = 5 ) (;—k - %) , (14)
k

keS

where £ is the nearest neighbour to the unit £ in the sample. Stevens and Olsen (2003)
proposed an estimator based on a local neighbourhood for each unit in the sample. It is
called the local mean variance estimator and is given by

2

vim (Yur) = D0 e i—i -3 wkm:;_m , 5)

keU teDy meDy, mn

where the weights wy¢ are computed such that they vary inversely as 7y and decrease as the
distance between unit k and ¢ increases. Moreover, it satisfies the constraint ) ;¢ wie =
Y res Wie = 1. The set Dy is the neighbourhood of the unit k and is defined by the unit itself
and the three neighbourhoods of the three nearest neighbours, meaning that Dy contains at
least four units and at most thirteen. This variance estimator is implemented by function
localmean.var in the R package “spsurvey” Kincaid et al. (2019). It produces a good
estimator for the GRTS method. For the rest of the manuscript, we will adopt the following
notation: vy M i (?HT) where j is the number of neighbours used in the calculations. In Sect. 7,
we compare the previous estimators for different sampling designs.

6. SIMULATIONS ON ARTIFICIAL SPATIAL CONFIGURATIONS

In this section, we propose three artificial spatial configurations to study the performance
of the WAVE sampling in terms of spreading measure. To generate the three population
datasets, the expected size of the population is equal to N = 144.

1. Thedatasetis generated from the complete spatial randomness (CSR) thatis a Poisson
process with intensity equal to N, meaning that the expected number of points in the
unit square is equal to N.

2. A Neyman-Scott cluster process (Neyman and Scott 1958) is generated with 12
circular discs of radius 0.055 with units uniformly distributed around the centre.
Each cluster contains 12 units such that the population target size is equal to N.
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Figure 5. Example of a sample selection by the WAVE sampling on the three different spatial configurations,
complete spatial randomness, Neyman—Scott and regular grid. For each of them, the inclusion probabilities are
equaltomry =n/N forallk e U .

3. Simple regular grid of size 12 x 12.

Figure 5 shows a sample selection by the WAVE sampling design on the three different
datasets. For the three configurations, the sample size is equal to n = 3 and the inclusion
probabilities are all equal to wy = n/N for all k € U. When units are regularly dispersed
in the space and when the inverse of inclusion probabilities is equal to an integer that is a
divisor of the population size N, the selected sample can be systematic, which is the optimal
solution.

For each population, 10,000 samples of size n, respectively, equal to 25, 50 and 100
are selected. Two cases are considered for the inclusion probabilities. In the first case, all
inclusion probabilities are equal

n

forallk e U,y =71 = —.
N

For the second case, the inclusion probabilities are unequal and sum up to n,

forallk, £ € U, k # £ we have m; # my and an =n.
keU

In each case, we calculate the spatial balance based on the Voronoi polygons (10) and
measures based on Moran’s 7 index (11). The simulation results of the CRS dataset are given
in Table 1. For the measures based on Moran’s I index, the WAVE sampling design performs
better than the other algorithms. Moreover, for the classical measure based on the Voronoi
polygons, the WAVE sampling design performs equally and sometimes better than the local
pivotal method. This can be explained by the fact that the spatial balance measure based on
the Voronoi polygons is less sensitive to observe a well-spread sample and sometimes suggest
a well-spread sample although it is not the case (see Supplementary Material Section). For
the equal probabilities designs, the measures /g, and /g coincide. Indeed, the strata based on
the inverse inclusion probabilities are the same as the ones considered such that the inclusion
probabilities sum to 1. For unequal sampling designs, the differences are less marked with
the measure based on the inverse inclusion probabilities (12). This result comes from the
heterogeneity of the strata and the randomness of the algorithm. If the inclusion probabilities
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Table 1. Spreading measures results based on 10,000 simulations on the complete spatial randomness dataset

Sampling design
Equal probabilities Unequal probabilities
Wave  Ipml scps arts hip srswor  Wave  Ipml scps arts maxent

Ip,

n=16 —0.530 —0.348 —0.370 —0.220 —0.259 —0.030 —0.028 —0.009 —0.012 0.027 0.093
n=232 —0.693 —0.467 —0.464 —0.322 —0.392 —0.017 —0.125 —0.095 —0.085 —0.059 0.016
n=48 —0.807 —0.583 —0.506 —0.375 —0.373 —0.015 —0.436 —0.344 —0.318 —0.229 —0.020
Ip

n=16 —0.530 —0.348 —0.370 —0.220 —0.259 —0.030 —0.459 —0.316 —0.331 —0.201 —0.028
n=32 —0.693 —0.467 —0.464 —0.322 —0.392 —0.017 —0.548 —0.393 —0.373 —0.261 —0.013
n=48 —0.807 —0.583 —0.506 —0.375 —0.373 —0.015 —0.621 —0.469 —0.424 —0.292 —0.029
B

n=16 0.115 0.117 0.108 0.164 0.135 0.338 0.123 0.124 0.118 0.177 0.345
n=32 0.137 0.128 0.130 0.167 0.165 0.345 0.140 0.146 0.138 0.180 0.352
n=48 0.158 0.137 0.149 0.177 0.195 0.337 0.165 0.151 0.158 0.189 0.319

The population size is equal to 144

of a unit are nearly zero, then the size of the strata will be very large. This effect can increase
the spatial balance measure. Similar results for the two remaining datasets can be seen in
the Supplementary Material Section. This analysis shows that the measure /p should be
preferred to Ip,.

7. APPLICATION TO THE MEUSE DATASET

This section investigates the application of WAVE sampling on the dataset “Meuse”
available in the R package “sp” of Pebesma and Bivand (2005). It is described as follows:
“This data set gives locations and topsoil heavy metal concentrations, along with a number
of soil and landscape variables at the observation locations, collected in a flood plain of the
river Meuse, near the village of Stein (NL). Heavy metal concentrations are from composite
samples of an area of approximately 15 m x 15 m”.

In order to see how the WAVE sampling performs in terms of spread measures,
m = 10,000 samples of size, respectively, equal to 15, 30 and 50 are selected. As in
the previous simulation with an artificial population, two cases are considered, equal and
unequal probabilities. In the latter case, inclusion probabilities are set proportional to con-
centration of copper. Locations with high concentrations of copper were therefore more
likely to be selected into the sample. Let Y be the total cadmium concentration over the
whole population. To show that the variance of the estimated total with the WAVE sampling
design is lower than the other method, we calculate the approximated variance with the
following quantity: |

> > 2
vsm (Yur) = - Z {Yur(s) = Y}~. (16)

Figure 6 shows a sample selected with the WAVE sampling. The filled black circles are

selected units, while the hollow circles are those that are not selected in the sample. We
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Figure 6. Example of WAVE sampling on the Meuse dataset. The overall population size is equal to 155. The
inclusion probabilities are proportional to copper level variable and the sample size is equal to 30. Plotted sizes of
the units are proportional to the copper concentration. The Meuse River is filled in light blue .

observe that the dataset is partially aggregated around the river showing a strong spatial
correlation.

Results of the three spatial balanced measures on 10,000 simulated samples are given in
Table 2. WAVE sampling performs better than other sampling designs in terms of /5 and
Ip,. In terms of spatial balance measure B, the algorithms are comparable to the artificial
simulation, the differences are less marked.

Results of the simulations on the variance estimator in Table 3 show that the WAVE
sampling strategy has a lower variance than the currently used method. This suggests that the
method is more efficient in cases where there is a clear spatial correlation. A design-unbiased
variance estimator does not exist for the Horvitz—Thompson estimator, but the spatially
balanced estimator (14) seems to produce a good estimator for this dataset. Although
the latter slightly overestimates the variance none of the other estimators seem to offer a
better alternative. As there is no unbiased estimator we favour a slight overestimation of
the variance. Table 4 shows the coverage rate as well as the ratio vsg /vsiv for all sampling
methods.

Based on these simulation results, we are confident that we propose here a new method
that allows to select a sample with a really strong degree of spreading. It performs better
than the other sampling method. It can be generalized to higher dimensions and respects the
unequal inclusion probabilities.
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Table 2. Spreading measures results based on 10,000 simulations on the Meuse dataset. The population size is
equal to 155

Sampling design
Equal probabilities Unequal probabilities
Wave  Ilpml scps arts hip srswor  Wave  Ipml scps arts maxent

Ip

n ; 15 —0.518 —0.338 —0.351 —0.226 —0.230 —0.030 —0.340 —0.250 —0.246 —0.165 —0.003
n=30 —0.664 —0.427 —0.427 —0.266 —0.259 —0.019 —0.407 —0.298 —0.288 —0.172 0.024
n=50 —0.796 —0.519 —0.473 —0.302 —0.248 —0.011 —0.466 —0.326 —0.285 —0.204 0.038
Ip

n=15 —0.518 —0.338 —0.351 —0.226 —0.230 —0.030 —0.354 —0.244 —0.247 —0.153  0.009
n=30 —0.664 —0.427 —0.427 —0.266 —0.259 —0.019 —0.427 —0.290 —0.283 —0.154 0.048
n=50 —0.796 —0.519 —0.473 —0.302 —0.248 —0.011 —0.455 —0.305 —0.263 —0.181 0.060

n=15 0.119 0.125 0.118 0.170 0.160  0.379 0.115 0.121  0.120 0.170  0.387
n=30 0.118 0.123 0.126 0.164 0.159 0.359 0.120 0.121 0.120 0.162  0.345
n=50 0139 0.132 0.143 0.174 0.194 0.329 0.138 0.133 0.141  0.160 0.281

Table 3. Results of 10,000 simulations on Meuse dataset

Sampling design
Equal probabilities Unequal probabilities
Wave  Ipml scps arts hip srswor ~ Wave  Ipml scps arts maxent

n=15
USTM 1.232 1.387 1.309 1.517 1315 1.774 0.250 0.287 0.260 0.330 0.361
USB 1.847 1.670 1.635 1.596 1.701  1.455 0.393 0362 0371 0.333 0.321
vive 0962 0.889  0.889 0.855 0.930 0.786 0.224 0.206 0.209 0.194 0.183
vpmz 1301 1256 1.261  1.230 1.308  1.147 0.293 0.279 0.282 0.269 0.259
viva 1463 1445 1452 1430 1487  1.352 0.325 0.315 0.319 0306 0.299
VHAJ 1.808 1.824 1.829 1.826 1.854 1.784 0.375 0370 0373 0369 0.365

n =230
USTM 0.533 0.525 0.538 0.586 0.463 0.805 0.116  0.109 0.096 0.115 0.150
USB 0.692 0.687 0.670 0.657 0.639 0.634 0.154 0.153 0.152 0.150 0.143
vy 0382 0373 0370 0.362  0.356 0.348 0.094 0.090 0.090 0.089 0.082
vpvz 0555 0543 0543 0.534 0.534  0.512 0.130 0.127 0.127 0.126 0.118
vpva 0.654  0.649  0.649  0.641 0.652 0.616 0.150 0.148 0.148 0.147 0.140
vgay 0.808 0.805 0.806 0.808 0.814 0.808 0.153 0.154 0.155 0.154 0.153

n =50
vsiv - 0250 0.250  0.222 0.284  0.200 0.413 0.052 0.049 0.039 0.049 0.065
USB 0.380 0.375 0385 0353 0337 0344 0.081 0.078 0.080 0.080 0.080
vive 0214 0208 0213 0.196  0.190  0.190 0.050 0.048 0.049 0.048 0.045
vy 0308 0294 0.298  0.284  0.280 0.276 0.068 0.068 0.069 0.068 0.065
vpva 0358 0349 0351 0.340 0.337  0.330 0.079 0.080 0.081 0.081 0.078
vgay 0406 0407 0407 0404 0405 0403 0.065 0.066 0.066 0.066 0.066

The population size is equal to 155. vgpv (16) is equal to the variance approximated by the simulations. vsg (14)
is the variance estimator based on the nearest neighbours in the sample. vy . is equal to the estimator (15) where
the number of neighbouring units used is set to j = 2, 3, 4. vgay (13) is the Hajek—Rosen estimator
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Table 4. Results of 10,000 simulations on Meuse dataset

Sampling design
Equal probabilities Unequal probabilities
Wave Ipml  scps arts hip srswor  Wave  Ipml  scps arts maxent

USIM
n=15 1232 1387 1309 1517 1315 1774 0250 0.287 0260 0.330 0.361
n=30 0533 0525 0538 0586 0463 0.805 0.116  0.109 0.096 0.115 0.150
n=>50 0250 0250 0222 0284 0.200 0413 0.052 0.049 0.039 0.049 0.065
v
n=15 1847 1.670 1.635 159 1701 1.784 0393 0362 0371 0.333 0.365
n=30 0692 0.687 0.670 0.657 0.639 0.808 0.154 0.153 0.152 0.150 0.153
n=50 0380 0375 0385 0353 0.337 0.403 0.081 0.078 0.080 0.080 0.066
Coverage of the 95% confidence interval
n=15 0925 0907 0914 0.887 0918 0890 0973 0958 0972 0.929 0.933
n=30 0953 0943 0942 0929 0963 0924 0971 0972 0983 0.966 0.942
n=50 0975 0966 0977 0946 0.973 0.927 0978 0.979 0990 0979 0.944
Ratio v/vgim
n=15 1499 1204 1249 1.052 1.294 1.006 1.573  1.264 1.428 1.011 1.011
n=30 1298 1307 1246 1.121 1.380 1.003 1.323 1400 1.588 1308 1.016
n=>50 1521 1501 1.739 1.242 1.685 0.976 1.564 1.615 2030 1.616 1.003

The population size is equal to 155. vgy s is equal to the variance approximated by the simulations (16). v depends
on the sampling design. For the srswor and maxent methods, we used the estimator vay (13), while for the other
sampling designs, we use vsp (14). Coverage rate of the 95% confidence intervals is computed as well as the ratio
between averages of v and vgpv

8. DISCUSSION

Environmental data are generally not uniformly distributed over a region of the space.
Thus, it is generally justified to use unequal inclusion probabilities to overrepresent some
parts of the population. As explained in Sect. 2.2, this reduces the variance of the Horvitz—
Thompson estimator, a phenomenon also observed in Sect. 7 on the Meuse dataset.

In this manuscript, we present a sampling design that selects the units in a very well-
spread configuration. We have shown on the Meuse dataset that on measurements of spa-
tial spreading the method behaves very well. Moreover, the approximated variance of the
Horvitz—Thompson estimator is lower with WAVE sampling than the other methods. Some
second-order inclusion probabilities are null. It is thus impossible to estimate unbiasedly
the variance of the estimator. However, we propose different estimators and compare their
performance. We show that it is possible to estimate appropriately the variance and to con-
struct confidence intervals that have good coverage rates, particularly when the sample size
is large. All of these results indicate that our method is very efficient to select a well-spread
sample and has better properties than the usual spatial sampling designs.
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