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Spatial Spread Sampling Using Weakly
Associated Vectors

Raphaël Jauslin and Yves Tillé

Geographical data are generally autocorrelated. In this case, it is preferable to select

spread units. In this paper, we propose a new method for selecting well-spread samples

from a finite spatial population with equal or unequal inclusion probabilities. The pro-

posed method is based on the definition of a spatial structure by using a stratification

matrix. Our method exactly satisfies given inclusion probabilities and provides samples

that are very well spread. A set of simulations shows that our method outperforms other

existing methods such as the generalized random tessellation stratified or the local piv-

otal method. Analysis of the variance on a real dataset shows that our method is more

accurate than these two. Furthermore, a variance estimator is proposed.
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1. INTRODUCTION

In most natural resources surveys, data contain spatial coordinates. The process of select-

ing units from a population defined over a region of space is called spatial sampling. These

kinds of data are usually autocorrelated, meaning that two close measurements are generally

similar. In general, to estimate a total of a target variable, selecting the units spatially best

spread collects more information and provides better estimation. An important problem of

spatial sampling is thus to spread at best the sampled units in space. A well-spread sample

is called spatially balanced. Grafström and Lundström (2013) and Grafström and Schelin

(2014) give the formal definition of a representative sample and discuss the theoretical jus-

tification of taking a well-spread sample with unequal probabilities. Marker and Stevens

(2009) and Hankin et al. (2019) present some example of studies where the population

considered is in an environmental context such as lakes, wetlands, rangelands and forests.

Vallée et al. (2015) discuss forest ecosystem evolution using a well-spread spatial sampling

design. Tillé (2020, Chapter 8), Tillé and Wilhelm (2017), Benedetti et al. (2017) and Wang
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et al. (2012) give a review of the main spatial sampling methods. Quenouille (1949) and

Bellhouse (1977) showed that systematic sampling is the optimal design for autocorrelated

data.

Generalized random tessellation stratified (GRTS) sampling is a spatial sampling method

proposed by Stevens and Olsen (1999, 2003, 2004). They use a mapping by means of a

quadrant-recursive function to map a finite subset of a multi-dimensional space into the real

line. A one-dimension systematic sampling is then applied, possibly with unequal proba-

bilities (see also Theobald et al. 2007; Brown et al. 2015; Kincaid et al. 2019). Robertson

et al. (2018) have proposed a similar method called Halton iterative partitioning (HIP). It

uses structural properties of the Halton sequence to draw a well-spread sample. Dickson and

Tillé (2016) have simply used the travelling salesman problem (TSP) in order to map the

population points in one dimension. Systematic sampling is then applied. Grafström (2011)

has proposed spatially correlated Poisson sampling (SCPS). This method uses weights to

create strong negative correlations between the inclusion probabilities of nearby units. Graf-

ström et al. (2012) proposed the local pivotal method (LPM). It is a particular case of the

splitting methods proposed by Deville and Tillé (1998). It consists of randomly choosing

between two nearby units at each step and produces an automatic repulsion in the selection

of the neighbour units. Grafström and Tillé (2013) have generalized the LPM to obtain

spread samples that are also balanced on totals of auxiliary variables. All these methods are

implemented in the BalancedSampling R package (Grafström and Lisic 2019).

Stevens and Olsen (2004) have proposed to compute the Voronoï polygons around the

sampled units, after which they sum the inclusion probabilities of the population units

belonging to each Voronoï polygon. The variance of these sums, called “spatial balance”, is

an indicator of the quality of spreading. Tillé et al. (2018) have modified the index proposed

by Moran (1950) so that it can be interpreted as a coefficient of correlation between the units

and their neighbourhood. The index provides another measure of the quality of spreading.

Diggle et al. (2010) defined preferential sampling as a sample selection where the sam-

pling method is not independent of the spatial process, and where unequal inclusion proba-

bilities cannot be explained by auxiliary variables. It is important to emphasize here, that in

this manuscript the inclusion probabilities are supposed to be established in advance. The

sample selection is a random realization of the sampling model and is independent of all of

the variables.

In this paper, we propose a new spatial sampling method. We start with the vector of

inclusion probabilities. Like in the cube method (Deville and Tillé 2004; Tillé 2006), inclu-

sion probabilities are randomly modified at each step. It can be seen as random walk that

from the vector of inclusion probabilities ends up with a sample. By choosing well the

modification direction at each step, the sample selected is very well spread.

The paper is organized as follows. Section 2 gives the notation and a basic set-up of the

problem as well as the insight that a well-spread sample results in an Horvitz–Thompson

estimator with a smaller variance. In Sect. 3, we introduce the new method that we propose

and the process of sample selection. In Sect. 4, we describe the indices that enable to evaluate

the quality of the spreading: the spatial balance index and the measure based on Moran’s I

index. In Sect. 5, we present a variance estimator for our method. In Sect. 6, we give simu-

lation results of the algorithm on artificial spatial configurations, while Sect. 7 is dedicated



Spatial Spread Sampling Using Weakly 433

to simulations on real data. We used the geo-referenced “Meuse” dataset available in the R

package “sp” of Pebesma and Bivand (2005) with inclusion probabilities proportional to the

“cadmium” variable. Simulations show that the proposed method surpasses LPM, GRTS

and SCPS for the quality of the spreading and the estimation accuracy.

2. NOTATION

2.1. BASIC SET-UP

Consider a finite population U of size N whose units can be defined by labels k ∈

{1, 2, . . . , N }. Let S = {s|s ⊂ U } be the power set of U . These units are geo-referenced

in a space that can have more than two dimensions. A sampling design is defined by a

probability distribution p(.) on S such that

p(s) ≥ 0 for all s ∈ S and
∑

s∈S

p(s) = 1.

A random sample S is a random vector that maps elements of S to an N vector of 0 or 1

such that P(S = s) = p(s). Define ak(S), for k = 1, . . . , N :

ak =

{
1 if k ∈ S

0 otherwise.

Then, a sample can be denoted by means of a vector notation: a⊤ = (a1, a2, . . . , aN ).

For each unit of the population, the inclusion probability 0 ≤ πk ≤ 1 is defined as the

probability that unit k is selected into sample S:

πk = P(k ∈ S) = E(ak) =
∑

s∈S|k∈s

p(s), for all k ∈ U.

Let π
⊤ = (π1, . . . , πN ) be the vector of inclusion probabilities. Then, E(a) = π . In

many applications, inclusion probabilities are such that samples have a fixed size n. Let the

set of all samples that have fixed size equal to n be defined by

Sn =

{
a ∈ {0, 1}N

∣∣∣∣
N∑

k=1

ak = n

}
.

The sample is generally selected with the aim of estimating some population parameters.

Let yk denote a real number associated with unit k ∈ U , usually called the variable of

interest. For example, the total

Y =
∑

k∈U

yk

can be estimated by using the classical Horvitz–Thompson estimator of the total defined by
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ŶH T =
∑

k∈U

ykak

πk

. (1)

Usually, some auxiliary information x⊤
k = (xk1, xk2, . . . , xkq) ∈ R

q regarding the popu-

lation units is available. In the particular case of spatial sampling, a set of spatial coordinates

z⊤
k = (zk1, zk2, . . . , zkp) ∈ R

p is supposed to be available, where p is the dimension of the

considered space. A sampling design is said to be balanced on the auxiliary variables xk if

and only if it satisfies the balancing equations

X̂ =
∑

k∈S

xk

πk

=
∑

k∈U

xk = X.

2.2. WELL-SPREAD SAMPLE

A sample is well spread “if the number of selected units is close to what is expected on

average in any part of the space” (Grafström and Lundström 2013). We give in this section an

insight that selecting a well-spread sample minimizes the variance of the Horvitz–Thompson

estimator. Let suppose we are in general linear superpopulation model:

yk = x⊤
k β + εk, for all k ∈ U,

where xk is a column vector of values taken by q auxiliary variables on unit k, β ∈ R
q

are q regression coefficients and εk is a random variable that satisfies EM (εk) = 0 and

varM (εk) = σ 2(xk) = σ 2
k , with σ 2(·) a Lipschitz continuous function. Note that EM (·) and

varM (·) are the expectation and the variance under the model. Let also

covM (εk, εℓ) = σkσℓρkℓ, with k �= ℓ ∈ U,

where ρkℓ is a function that decreases when the distance between two units increase. This

notation shows that two close units are autocorrelated. Grafström and Tillé (2013) showed

that

E p EM (ŶH T −Y )2 = E p

⎡
⎣

(∑

k∈S

xk

πk

−
∑

k∈U

xk

)⊤

β

⎤
⎦

2

+
∑

k∈U

∑

ℓ∈U

σkσℓρkℓ

πkℓ − πkπℓ

πkπℓ

, (2)

where E p is the expectation of the design and πkℓ = E p(akaℓ) is the joint inclusion

probabilities. From Eq. (2), we could see that the first term of the right-hand side is min-

imized if the sample is balanced on the auxiliary variables X. The second term is mini-

mized if πkℓ is small whenever ρkℓ is large, meaning that choosing a well-spread sample

(i.e. a sample where the πkℓ are small) minimizing Eq. (2). Grafström and Lundström

(2013) showed that if the inclusion probabilities are set up proportional to the σk then

(2) is even more minimized. As result, selecting a well-spread sample jointly used with

the Horvitz–Thompson estimator is a very efficient procedure in terms of variance reduc-

tion.
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3. WEAKLY ASSOCIATED VECTOR SAMPLING

3.1. GENERAL IDEA

Our sampling algorithm, Weakly Associated VEctor (WAVE) sampling starts with the

inclusion probability vector. At each step, this vector is randomly modified so that at least

one of the components of the vector is replaced by a 0 or a 1. So, in at most N steps a sample

is randomly selected. This idea is also used in the cube method proposed by Deville and

Tillé (2004) to select balanced samples. The proposed method is different from the cube

method by selecting in a completely different way the vector of modification of inclusion

probabilities. By carefully choosing the direction of the modification of the working vector,

we can ensure that the selection of the sample will be well spread. This choice is described

in Sect. 3.4.

3.2. DISTANCE

In order to describe the spatial structure of the population, a distance is defined as a

function m defined on the product set U × U such that

m : U × U → R
+, (3)

and satisfies the property of non-negativity, symmetry and triangular inequality. More specif-

ically, for all x, y, z ∈ U the following properties hold:

m(x, y) ≥ 0, m(x, y) = 0 ⇐⇒ x = y,

m(x, y) = m(y, x),

m(x, z) ≤ m(x, y) + m(y, z).

In most of applications, the usual Euclidean squared distance is used. It is defined by,

m2
E (k, ℓ) = (zk − zℓ)

⊤(zk − zℓ), (4)

where zk and zℓ are the spatial coordinates of units k, ℓ ∈ U . Sometimes it could be

interesting to compute the distance on auxiliary variables. In this case, the Mahalanobis

distance can be more appropriate,

m2
M (k, ℓ) = (xk − xℓ)

⊤S−1(xk − xℓ),

where

S =
1

N

∑

k∈U

(xk − x̄)(xk − x̄)⊤, x̄ =
1

N

∑

k∈U

xk .

When the population is distributed on a N1 × N2 regular grid of R
2, a tore distance can be

defined. We define a tore distance as the Euclidean metric calculated on a regular tore. An
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advantage of using this distance is that the surface on which we working on has not anymore

corners and edges. With this tore distance, two units on the same column (respectively, row)

that are on the opposite side have a small distance. More precisely, a unit that is positioned

at the right top corner of the grid will be equally distant to the left top corner and the right

bottom corner. It is like seeing the grid curved such that it looks like a regular tore.

The distance is then defined by:

m2
T (k, ℓ) = min[(zk1 − zℓ1)

2, (zk1 + N1 − zℓ1)
2, (zk1 − N1 − zℓ1)

2]

+ min[(zk2 − zℓ2)
2, (zk2 + N2 − zℓ2)

2, (zk2 − N2 − zℓ2)
2].

(5)

Example 3.1. Let {1, . . . , 9} be on a regular grid of size 3×3, then the squared distance

matrices defined by Eqs. (4) and (5) are equal to

ME =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 4 1 2 5 4 5 8

1 0 1 2 1 2 5 4 5

4 1 0 5 2 1 8 5 4

1 2 5 0 1 4 1 2 5

2 1 2 1 0 1 2 1 2

5 2 1 4 1 0 5 2 1

4 5 8 1 2 5 0 1 4

5 4 5 2 1 2 1 0 1

8 5 4 5 2 1 4 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, MT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 2 2 1 2 2

1 0 1 2 1 2 2 1 2

1 1 0 2 2 1 2 2 1

1 2 2 0 1 1 1 2 2

2 1 2 1 0 1 2 1 2

2 2 1 1 1 0 2 2 1

1 2 2 1 2 2 0 1 1

2 1 2 2 1 2 1 0 1

2 2 1 2 2 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(6)

In spatial configuration of a regular grid, some distances between points are equal. The

rank of the nearest neighbours is then assigned and duplicated values appear. In order to

obtain a different rank distance for each unit, a small random quantity is added to the

coordinates so that it disturbs the given units and the distances are a little bit different from

each other. Let ε ∈ R
2 and z̃k = zk +ε the shifted coordinates, Equation (5) is then replaced

by,

m2
S(k, ℓ) = min[(z̃k1 − zℓ1)

2, (z̃k1 + N1 − zℓ1)
2, (z̃k1 − N1 − zℓ1)

2]

+ min[(z̃k2 − zℓ2)
2, (z̃k2 + N2 − zℓ2)

2, (z̃k2 − N2 − zℓ2)
2].

ε is called a “shift” and mS the shifted version of mT , for example if ε = (1/12, 1/4), the

distance matrix MS becomes,

MS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.90 1.24 0.57 1.40 1.74 1.57 2.40 2.74

1.24 0 0.90 1.74 0.57 1.40 2.74 1.57 2.40

0.90 1.24 0 1.40 1.74 0.57 2.40 2.74 1.57

1.57 2.40 2.74 0 0.90 1.24 0.57 1.40 1.74

2.74 1.57 2.40 1.24 0 0.90 1.74 0.57 1.40

2.40 2.74 1.57 0.90 1.24 0 1.40 1.74 0.57

0.57 1.40 1.74 1.57 2.40 2.74 0 0.90 1.24

1.74 0.57 1.40 2.74 1.57 2.40 1.24 0 0.90

1.40 1.74 0.57 2.40 2.74 1.57 0.90 1.24 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

The matrix is no longer a distance matrix since the symmetric axiom has been dropped.

A distance that has an unsatisfied symmetry axiom is called a quasi-metric. Nevertheless,
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Figure 1. Simple example of a 3 × 3 regular grid set up on three different distances with a gradient calculated

from the points (1, 1). The left one is the classical Euclidean distance (4), the right one is the tore distance given in

(5) and the central graph is the shifted tore distance with a shift equal to (1/12,1/4) (the black point on the graph).

It illustrates the two different patterns and the values of the grid points corresponding to the entries of the first row

of the three previous matrices (6) .

if an epsilon value is added instead of (1/12, 1/4), then the values are almost the same

and the order is preserved in each row. In Fig. 1, three simple configurations are presented:

Euclidean, tore and shifted tore distance on a 3 × 3 regular grid. In shifted distance graph,

all the distances from point (1, 1) to the other grid points are different.

3.3. THE STRATIFICATION MATRIX

Let k ∈ U denote a unit in the population. The idea is to construct a strata Gk under some

distance metric such that the elements in Gk are ranked in increasing order. Define Gk the

set of the nearest neighbours of unit k, including k, such that their inclusion probabilities

are greater or equal than one by only one unit. Denote gk the number of elements inside Gk ,

the spatial weights are then defined as follows

wkℓ =

⎧
⎪⎪⎨
⎪⎪⎩

πℓ if unit ℓ is in the set of the gk − 1 nearest neighbour of k,

πℓ + 1 −
∑

j∈Gk

πk if unit ℓ is the gk th nearest neighbour of k,

0 otherwise.

(8)

Let W denote an N × N stratification matrix and each row of matrix W represents a

stratum. Each stratum is defined by a particular unit and its neighbouring units. Nearest

neighbours are defined with a metric function (3). If the metric is such that there exists

ties values, then we can divide the quantity wkl into the different gk nearest neighbours of

the unit k that have the same distance. Or, a shifted metrics can be used [exemplified in

matrix (7)] such that all the distances are different. Each row of matrix W sum to 1. Thus,

matrix W is a right stochastic matrix. Most of the components of matrix W are null. Matrix

W can thus be encoded as a sparse matrix.
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Figure 2. Sparsity pattern of three stratification matrices. Spatial coordinates are 3×3 regular grid and the inclusion

probabilities are equal to π = (1/3, . . . , 1/3). Depending on the way of defining the nearest neighbours in Eq. (8),

different weight values are obtained. The left stratification matrix uses the classical Euclidean distance (4), the

central one the tore distance (5) and the right one uses a shifted tore distance with a shift randomly generated from

a random variable N (0, 1/100I) .

Example 3.2. Let U = {1, 2, 3, 4, 5} a population of 5 units. Suppose that the inclusion

probabilities are equal to π = (1/2, 1/3, 1/4, 1/5, 1/6) and that the order in terms of

distance metric from the unit 1 is exactly equal to 1, 2, 3, 4, 5, meaning that the 5th unit is

the farthest to the first. Then, Gk = {1, 2, 3} because 1/2 + 1/3 + 1/4 ∼= 1.084 > 1 and

w13 = 1/4 + 1 − (1/2 + 1/3 + 1/4) = 1/6.

Example 3.3. Let {1, . . . , 9} be on a regular grid of size 3×3 with inclusion probabilities

equal πk = 1/3, for all k ∈ U . Figure 2 shows different stratification matrices corresponding

to ME , MT and MS with a shift randomly generated from a random variable N (0, 1/100I)
where I is the identity matrix.

Let now D = diag(π) the matrix with inclusion probabilities on the diagonal and define

A by

A = WD−1 =

⎛
⎜⎝

w11/π1 w12/π2 · · · w1N /πN

...
...

. . .
...

wN1/π1 wN2/π2 · · · wN N /πN

⎞
⎟⎠ . (9)

Matrices W and A are square but not necessarily full rank. The sum of the rows of A
is equal or approximately equal to the number of elements in each stratum. The strata are

represented by the rows and the contribution of a unit i in each stratum is represented by

the i th column. Figure 3 shows the sparsity pattern of the two stratification matrices.

Example 3.4. Let U be a population of size N = 250 and inclusion probabilities equal

to πk = 1/25, for all k ∈ U . Suppose that spatial coordinates are generated independently

from a uniform distribution on the square unit, so that with probability one there are no tied

distance values, since all 1/πk = 25 the nonzero entries of A are all equal to 1. Based on

the definition (8), the weights are all equal to the inclusion probabilities or zero. Figure 3

shows the sparsity pattern of the stratification matrices and exemplifies some initial strata.
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Figure 3. Representation of the strata defined by the spatial weights [Eq. (8)]. Spatial coordinates of the units are

generated randomly from a uniform distribution on the square unit [0, 1] × [0, 1]. The overall population size is

equal to N = 250 and the inclusion probabilities are identical and equal to πk = 1/25 = 0.04, meaning that the

sample size is equal to n = 10. With these parameters, the expected number of units in each stratum is equal to

125/4 = 25. The left graph shows the population and the selected units with its initial strata. On the right, it shows

the sparsity pattern of the matrix (9). All entries of the matrix are equal to 1 .

3.4. IMPLEMENTATION

The method is described in detail in Algorithm 1. The main idea is derived from the cube

method (Deville and Tillé 2004). At each step, vector π is randomly modified. To modify

π , we choose a vector that spreads at best. Ideally, the aim consists of obtaining a sample a
such that the following equality is satisfied:

Aa = Aπ = 1.

This linear system defines an affine subspace of R
N :

A = {a ∈ R
N | Aa = Aπ}

which could also be rewritten:

A = π + Null(A)

where

Null(A) = {v ∈ R
N | Av = 0}.

Depending if matrix A is full rank or not, the vector giving the direction is not selected

in the same way. If matrix A is not full rank, a vector that is contained in the right null

space is selected. If matrix A is full rank, we compute v,u a left and a right singular vectors

associated with the smallest singular value σ of A, i.e.
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Av = σu, A⊤u = σv.

By choosing the modification vector v, we ensure that we select the vector which remains

closest to the set A. Vector v is called the weakest associated vector to the matrix A. Vector v
is then centred to ensure the fixed sample size. By using these weakest associated vectors, the

initial spatial configurations are the least modified. At each step, some inclusion probabilities

π are modified and at least one component is set to 0 or 1. Matrix A is updated from the

new inclusion probabilities. This step is repeated until there is only one component that is

not equal to 0 or 1.

Algorithm 1 Algorithm for WAVE sampling

Let A = A0 and π0 = (π
(0)
1 , . . . , π

(0)
N

) = π for the initialization step. For t = 0, 1, 2, . . .

1. From π t , extract π̃ t vector π t restricted to the k such that 0 < π
(t)
k

< 1. Let J be the length

of π̃ t .

2. Compute the J × J matrix At of Equation (9) using inclusion probabilities π̃ t .

3. Calculate the rank r of matrix At .

(a) If matrix At does not have full rank, choose vt = (v
(t)
1 , . . . , v

(t)
J

) ∈ R
J a vector in

the right null space of At .

(b) If matrix At has full rank, compute the singular value decomposition and seek for vt

a right singular vector associated with the smallest singular value σt .

4. Next in order to ensure the fixed sample size, vector vt is centred:

ṽt = vt −
1

J

∑

i∈J

v
(t)
i

1J ,

where 1J is the J × 1 vector of one.

5. Find λ1 and λ2 the largest positive real numbers such that all the 0 ≤ π̃
(t)
k

+ λ1ṽ
(t)
k

≤ 1 and

0 ≤ π̃
(t)
k

− λ2ṽ
(t)
k

≤ 1, k = 1, . . . , J .

6. Compute

π t+1 =

{
π̃ t + λ1ṽt with probability λ2/(λ1 + λ2)

π̃ t − λ2ṽt with probability λ1/(λ1 + λ2).

7. Return at 1. with π t+1 until no units k remains such that 0 < π
(t+1)
k

< 1.

Algorithm 1 is implemented in a R package, which uses the Armadillo C++ library into

the R interface (Eddelbuettel and Sanderson 2014). The implementation uses the sparse

matrix class. Indeed, depending on the inclusion probabilities, matrix A given in (9) could

be strongly sparse. Even if the function benefits from the C++ implementation, it could be

quite time consuming as the size of the population N increases. Nevertheless, we will see

in the next section that the algorithm performs better in terms of two spreading measures

than those currently used for the spatial balanced sampling design.
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4. SPATIAL BALANCE

4.1. VORONOÏ POLYGONS

Stevens and Olsen (2004) suggested the spatial balance of a sample consists of using the

Voronoï polygons. The Voronoï polygon associated with the sample unit k is the set of all

units of the population that are closer to k than to any other sample units. Let vk be the sum

of inclusion probabilities of the units belonging to the Voronoï polygon associated with the

sample unit k. If the sample is perfectly spread, vk should be equal to 1 for each k. Indeed,

n units are selected in the sample, then

∑

k∈S

vk =
∑

k∈U

πk = n,

and so

1

n

∑

k∈S

vk = 1.

The variance of the E[vk] could be approximated and give a good measure of the spatial

balance of the sample. The spatial balance measure based on the Voronoï polygons is defined

by

B(S) =
1

n

∑

k∈S

(vk − 1)2. (10)

Two samples are compared in Fig. 4. The left one is selected with a simple random

sampling without replacement and the right one is selected with WAVE sampling. The

darker the Voronoï polygon, the more units it contains. An exactly well-spread sample

should have all polygons of the same colour.

The measure B has some limitations. It does not vary from a fixed finite range. This

does not allow a clear understanding if the sample is balanced or clustered (Tillé et al.

2018). Moreover, the measure behaves sometimes wrongly and suggest a well-spread sample

although it is not the case. Examples are given in Supplementary Material Section. For these

reasons, we suggest to use another measure based on Moran’s I index.

4.2. MORAN’S I INDEX

A second approach for measuring the spatial balance of a sampling design has been

proposed by Tillé et al. (2018). Consider a N × N spatial weights matrix,

W =

⎛
⎜⎜⎜⎜⎝

0 w12 · · · w1N

w21 0 · · · w2N

...
...

. . .
...

wN1 wN2 · · · 0

⎞
⎟⎟⎟⎟⎠

.
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Figure 4. Illustrated example of how the spatial balance measure based on the Voronoï is performed. The popu-

lation and sample sizes are, respectively, equal to N = 50 and n = 20, the inclusion probabilities are identical and

equal to πk = 0.4. The spatial coordinates are generated from two random uniform U(0, 1). Two sampling design

are compared. The left one is the simple random sampling without replacement and the right one is the weakly

associated vector sampling .

A large value of wkℓ indicates that ℓ is a neighbour of k. Matrix W is not necessarily

symmetric. The index proposed by Tillé et al. (2018) is defined by

IB(a) =
(a − āw)⊤W(a − āw)√

(a − āw)⊤D(a − āw)(a − āw)⊤B(a − āw)
, (11)

where a is the sample and

āw =
a⊤W1

1⊤W1
,

D is the diagonal matrix containing wk. =
∑

ℓ∈U wkℓ on its diagonal,

B = C⊤DC, C = D−1W −
11⊤W

1⊤W1
,

and 1 is a column vector of N ones. Tillé et al. (2018) pointed out that IB can be interpreted

as weighted correlation between ak and the average of the aℓ that are in the neighbouring

of k. We have that −1 ≤ IB ≤ 1 and IB = −1 when the sample is well spread. Tillé et al.

(2018) have proposed to use the inverse of the inclusion probability hk = 1/πk to define

the neighbours of the unit k. More specifically, if the unit k is selected it seems natural to

consider hk −1 neighbours in the population. Let ⌊hk⌋ and ⌈hk⌉ be, respectively, the inferior

and superior integers of hk . Spatial weights are then defined as follows,
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wkℓ =

⎧
⎪⎨
⎪⎩

1 if unit ℓ is in the set of the ⌊hk⌋ nearest neighbour of k

hk − ⌊hk⌋ if unit ℓ is the ⌈hk⌉th nearest neighbour of k

0 otherwise .

(12)

For example, if a unit k has an inclusion probability of πk = 0.35 then hk
∼= 2.857,

meaning that the first nearest neighbour of k has a weight equal to 1 and the second has a

weight of 0.857. In case there are units that are at equal distance from each other, Tillé et al.

(2018) suggest to divide the spatial weights equally among them.

We propose a new way of defining the spatial weights. It consists of using spatial weights

defined in (8) rather than the weights (12). We set wkk = 0 for all k ∈ U . For the rest of

the paper, IB 1 will represent the measure based on the spatial weights (12) and IB the one

based on (8).

5. VARIANCE ESTIMATION

If the sampling design is of fixed size, the variance of the Horvitz–Thompson estimator

of the total (1) is defined by

var(ŶHT) = −
1

2

∑

k∈U

∑

ℓ∈U

(
yk

πk

−
yℓ

πℓ

)2

	kℓ,

where 	kℓ = πkℓ−πkπℓ and πkℓ = E(akal) is the joint inclusion probabilities. For complex

sampling designs, quantities πkℓ are generally impossible to compute.

Many different estimators have been developed. Sen (1953) and Yates and Grundy (1953)

proposed one classical estimator:

vSYG(ŶHT) = −
1

2

∑

k∈S

∑

ℓ∈S

(
yk

πk

−
yℓ

πℓ

)2
	kℓ

πkℓ

.

This estimator can take negative values, but it is non-negative when 	kℓ ≤ 0 for all k �=

ℓ ∈ U . A common problem with spatially balanced sampling designs is that many joint

inclusion probabilities are equal to zero. Indeed, the probability of selecting two close units

is generally zero or very close to zero. In this case, vSYG is not an unbiased estimator of

var(ŶHT).

Tillé (2020, Chapter 5) gives a general estimator based on the variance estimator of the

conditional Poisson sampling. It is equal to

v(ŶHT) =
∑

k∈S

ck

π2
k

(yk − ŷ⋆
k )2,

where

ŷ⋆
k = πk

∑
ℓ∈S cℓyℓ/πℓ∑

ℓ∈S cℓ

.
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Choosing cℓ = (1−πk)n/n−1, we obtain the Hájek–Rosén estimator (Hájek 1981) defined

by

vHAJ(ŶHT) =
n

n − 1

∑

k∈S

(1 − πk)

{
yk

πk

−

∑
ℓ∈S yℓ(1 − πℓ)/πℓ∑

ℓ∈S(1 − πℓ)

}2

. (13)

This variance estimator is simple to compute and has the advantage of using only the first-

order inclusion probabilities. It is a good estimator for maximum entropy sampling design

and simple random sampling without replacement. Grafström et al. (2012) pointed out that

the estimator seems to overestimate the variance for spread sampling design. Grafström and

Schelin (2014) proposed an estimator based on the nearest neighbour in the sample. It is

called variance estimator for spatially balanced sampled and is defined as follows:

vSB(ŶHT) =
1

2

∑

k∈S

(
yk

πk

−
yℓk

πℓk

)2

, (14)

where ℓk is the nearest neighbour to the unit k in the sample. Stevens and Olsen (2003)

proposed an estimator based on a local neighbourhood for each unit in the sample. It is

called the local mean variance estimator and is given by

vLM(ŶHT) =
∑

k∈U

∑

ℓ∈Dk

wkℓ

⎛
⎝ yk

πk

−
∑

m∈Dk

wkm

ym

πm

⎞
⎠

2

, (15)

where the weights wkℓ are computed such that they vary inversely as πℓ and decrease as the

distance between unit k and ℓ increases. Moreover, it satisfies the constraint
∑

k∈S wkℓ =∑
ℓ∈S wkℓ = 1. The set Dk is the neighbourhood of the unit k and is defined by the unit itself

and the three neighbourhoods of the three nearest neighbours, meaning that Dk contains at

least four units and at most thirteen. This variance estimator is implemented by function

localmean.var in the R package “spsurvey” Kincaid et al. (2019). It produces a good

estimator for the GRTS method. For the rest of the manuscript, we will adopt the following

notation: vLM j
(ŶHT) where j is the number of neighbours used in the calculations. In Sect. 7,

we compare the previous estimators for different sampling designs.

6. SIMULATIONS ON ARTIFICIAL SPATIAL CONFIGURATIONS

In this section, we propose three artificial spatial configurations to study the performance

of the WAVE sampling in terms of spreading measure. To generate the three population

datasets, the expected size of the population is equal to N = 144.

1. The dataset is generated from the complete spatial randomness (CSR) that is a Poisson

process with intensity equal to N , meaning that the expected number of points in the

unit square is equal to N .

2. A Neyman–Scott cluster process (Neyman and Scott 1958) is generated with 12

circular discs of radius 0.055 with units uniformly distributed around the centre.

Each cluster contains 12 units such that the population target size is equal to N .
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Figure 5. Example of a sample selection by the WAVE sampling on the three different spatial configurations,

complete spatial randomness, Neyman–Scott and regular grid. For each of them, the inclusion probabilities are

equal to πk = n/N for all k ∈ U .

3. Simple regular grid of size 12 × 12.

Figure 5 shows a sample selection by the WAVE sampling design on the three different

datasets. For the three configurations, the sample size is equal to n = 3 and the inclusion

probabilities are all equal to πk = n/N for all k ∈ U . When units are regularly dispersed

in the space and when the inverse of inclusion probabilities is equal to an integer that is a

divisor of the population size N , the selected sample can be systematic, which is the optimal

solution.

For each population, 10,000 samples of size n, respectively, equal to 25, 50 and 100

are selected. Two cases are considered for the inclusion probabilities. In the first case, all

inclusion probabilities are equal

for all k ∈ U, πk = π =
n

N
.

For the second case, the inclusion probabilities are unequal and sum up to n,

for all k, ℓ ∈ U, k �= ℓ we have πk �= πℓ and
∑

k∈U

πk = n.

In each case, we calculate the spatial balance based on the Voronoï polygons (10) and

measures based on Moran’s I index (11). The simulation results of the CRS dataset are given

in Table 1. For the measures based on Moran’s I index, the WAVE sampling design performs

better than the other algorithms. Moreover, for the classical measure based on the Voronoï

polygons, the WAVE sampling design performs equally and sometimes better than the local

pivotal method. This can be explained by the fact that the spatial balance measure based on

the Voronoï polygons is less sensitive to observe a well-spread sample and sometimes suggest

a well-spread sample although it is not the case (see Supplementary Material Section). For

the equal probabilities designs, the measures IB1 and IB coincide. Indeed, the strata based on

the inverse inclusion probabilities are the same as the ones considered such that the inclusion

probabilities sum to 1. For unequal sampling designs, the differences are less marked with

the measure based on the inverse inclusion probabilities (12). This result comes from the

heterogeneity of the strata and the randomness of the algorithm. If the inclusion probabilities
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Table 1. Spreading measures results based on 10,000 simulations on the complete spatial randomness dataset

Sampling design

Equal probabilities Unequal probabilities

Wave lpm1 scps grts hip srswor Wave lpm1 scps grts maxent

IB1

n = 16 − 0.530 − 0.348 − 0.370 − 0.220 − 0.259 − 0.030 − 0.028 − 0.009 − 0.012 0.027 0.093

n = 32 − 0.693 − 0.467 − 0.464 − 0.322 − 0.392 − 0.017 − 0.125 − 0.095 − 0.085 − 0.059 0.016

n = 48 − 0.807 − 0.583 − 0.506 − 0.375 − 0.373 − 0.015 − 0.436 − 0.344 − 0.318 − 0.229 − 0.020

IB

n = 16 − 0.530 − 0.348 − 0.370 − 0.220 − 0.259 − 0.030 − 0.459 − 0.316 − 0.331 − 0.201 − 0.028

n = 32 − 0.693 − 0.467 − 0.464 − 0.322 − 0.392 − 0.017 − 0.548 − 0.393 − 0.373 − 0.261 − 0.013

n = 48 − 0.807 − 0.583 − 0.506 − 0.375 − 0.373 − 0.015 − 0.621 − 0.469 − 0.424 − 0.292 − 0.029

B

n = 16 0.115 0.117 0.108 0.164 0.135 0.338 0.123 0.124 0.118 0.177 0.345

n = 32 0.137 0.128 0.130 0.167 0.165 0.345 0.140 0.146 0.138 0.180 0.352

n = 48 0.158 0.137 0.149 0.177 0.195 0.337 0.165 0.151 0.158 0.189 0.319

The population size is equal to 144

of a unit are nearly zero, then the size of the strata will be very large. This effect can increase

the spatial balance measure. Similar results for the two remaining datasets can be seen in

the Supplementary Material Section. This analysis shows that the measure IB should be

preferred to IB1 .

7. APPLICATION TO THE MEUSE DATASET

This section investigates the application of WAVE sampling on the dataset “Meuse”

available in the R package “sp” of Pebesma and Bivand (2005). It is described as follows:

“This data set gives locations and topsoil heavy metal concentrations, along with a number

of soil and landscape variables at the observation locations, collected in a flood plain of the

river Meuse, near the village of Stein (NL). Heavy metal concentrations are from composite

samples of an area of approximately 15 m× 15 m”.

In order to see how the WAVE sampling performs in terms of spread measures,

m = 10, 000 samples of size, respectively, equal to 15, 30 and 50 are selected. As in

the previous simulation with an artificial population, two cases are considered, equal and

unequal probabilities. In the latter case, inclusion probabilities are set proportional to con-

centration of copper. Locations with high concentrations of copper were therefore more

likely to be selected into the sample. Let Y be the total cadmium concentration over the

whole population. To show that the variance of the estimated total with the WAVE sampling

design is lower than the other method, we calculate the approximated variance with the

following quantity:

vSIM(ŶHT) =
1

m

∑

s

{
ŶHT(s) − Y

}2
. (16)

Figure 6 shows a sample selected with the WAVE sampling. The filled black circles are

selected units, while the hollow circles are those that are not selected in the sample. We
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Figure 6. Example of WAVE sampling on the Meuse dataset. The overall population size is equal to 155. The

inclusion probabilities are proportional to copper level variable and the sample size is equal to 30. Plotted sizes of

the units are proportional to the copper concentration. The Meuse River is filled in light blue .

observe that the dataset is partially aggregated around the river showing a strong spatial

correlation.

Results of the three spatial balanced measures on 10,000 simulated samples are given in

Table 2. WAVE sampling performs better than other sampling designs in terms of IB and

IB1 . In terms of spatial balance measure B, the algorithms are comparable to the artificial

simulation, the differences are less marked.

Results of the simulations on the variance estimator in Table 3 show that the WAVE

sampling strategy has a lower variance than the currently used method. This suggests that the

method is more efficient in cases where there is a clear spatial correlation. A design-unbiased

variance estimator does not exist for the Horvitz–Thompson estimator, but the spatially

balanced estimator (14) seems to produce a good estimator for this dataset. Although

the latter slightly overestimates the variance none of the other estimators seem to offer a

better alternative. As there is no unbiased estimator we favour a slight overestimation of

the variance. Table 4 shows the coverage rate as well as the ratio vSB/vSIM for all sampling

methods.

Based on these simulation results, we are confident that we propose here a new method

that allows to select a sample with a really strong degree of spreading. It performs better

than the other sampling method. It can be generalized to higher dimensions and respects the

unequal inclusion probabilities.
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Table 2. Spreading measures results based on 10,000 simulations on the Meuse dataset. The population size is

equal to 155

Sampling design

Equal probabilities Unequal probabilities

Wave lpm1 scps grts hip srswor Wave lpm1 scps grts maxent

IB1

n = 15 − 0.518 − 0.338 − 0.351 − 0.226 − 0.230 − 0.030 − 0.340 − 0.250 − 0.246 − 0.165 − 0.003

n = 30 − 0.664 − 0.427 − 0.427 − 0.266 − 0.259 − 0.019 − 0.407 − 0.298 − 0.288 − 0.172 0.024

n = 50 − 0.796 − 0.519 − 0.473 − 0.302 − 0.248 − 0.011 − 0.466 − 0.326 − 0.285 − 0.204 0.038

IB

n = 15 − 0.518 − 0.338 − 0.351 − 0.226 − 0.230 − 0.030 − 0.354 − 0.244 − 0.247 − 0.153 0.009

n = 30 − 0.664 − 0.427 − 0.427 − 0.266 − 0.259 − 0.019 − 0.427 − 0.290 − 0.283 − 0.154 0.048

n = 50 − 0.796 − 0.519 − 0.473 − 0.302 − 0.248 − 0.011 − 0.455 − 0.305 − 0.263 − 0.181 0.060

B

n = 15 0.119 0.125 0.118 0.170 0.160 0.379 0.115 0.121 0.120 0.170 0.387

n = 30 0.118 0.123 0.126 0.164 0.159 0.359 0.120 0.121 0.120 0.162 0.345

n = 50 0.139 0.132 0.143 0.174 0.194 0.329 0.138 0.133 0.141 0.160 0.281

Table 3. Results of 10,000 simulations on Meuse dataset

Sampling design

Equal probabilities Unequal probabilities

Wave lpm1 scps grts hip srswor Wave lpm1 scps grts maxent

n = 15

vSIM 1.232 1.387 1.309 1.517 1.315 1.774 0.250 0.287 0.260 0.330 0.361

vSB 1.847 1.670 1.635 1.596 1.701 1.455 0.393 0.362 0.371 0.333 0.321

vLM2 0.962 0.889 0.889 0.855 0.930 0.786 0.224 0.206 0.209 0.194 0.183

vLM3 1.301 1.256 1.261 1.230 1.308 1.147 0.293 0.279 0.282 0.269 0.259

vLM4 1.463 1.445 1.452 1.430 1.487 1.352 0.325 0.315 0.319 0.306 0.299

vHAJ 1.808 1.824 1.829 1.826 1.854 1.784 0.375 0.370 0.373 0.369 0.365

n = 30

vSIM 0.533 0.525 0.538 0.586 0.463 0.805 0.116 0.109 0.096 0.115 0.150

vSB 0.692 0.687 0.670 0.657 0.639 0.634 0.154 0.153 0.152 0.150 0.143

vLM2 0.382 0.373 0.370 0.362 0.356 0.348 0.094 0.090 0.090 0.089 0.082

vLM3 0.555 0.543 0.543 0.534 0.534 0.512 0.130 0.127 0.127 0.126 0.118

vLM4 0.654 0.649 0.649 0.641 0.652 0.616 0.150 0.148 0.148 0.147 0.140

vHAJ 0.808 0.805 0.806 0.808 0.814 0.808 0.153 0.154 0.155 0.154 0.153

n = 50

vSIM 0.250 0.250 0.222 0.284 0.200 0.413 0.052 0.049 0.039 0.049 0.065

vSB 0.380 0.375 0.385 0.353 0.337 0.344 0.081 0.078 0.080 0.080 0.080

vLM2 0.214 0.208 0.213 0.196 0.190 0.190 0.050 0.048 0.049 0.048 0.045

vLM3 0.308 0.294 0.298 0.284 0.280 0.276 0.068 0.068 0.069 0.068 0.065

vLM4 0.358 0.349 0.351 0.340 0.337 0.330 0.079 0.080 0.081 0.081 0.078

vHAJ 0.406 0.407 0.407 0.404 0.405 0.403 0.065 0.066 0.066 0.066 0.066

The population size is equal to 155. vSIM (16) is equal to the variance approximated by the simulations. vSB (14)

is the variance estimator based on the nearest neighbours in the sample. vLM j
is equal to the estimator (15) where

the number of neighbouring units used is set to j = 2, 3, 4. vHAJ (13) is the Hajek–Rosen estimator
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Table 4. Results of 10,000 simulations on Meuse dataset

Sampling design

Equal probabilities Unequal probabilities

Wave lpm1 scps grts hip srswor Wave lpm1 scps grts maxent

vSIM

n = 15 1.232 1.387 1.309 1.517 1.315 1.774 0.250 0.287 0.260 0.330 0.361

n = 30 0.533 0.525 0.538 0.586 0.463 0.805 0.116 0.109 0.096 0.115 0.150

n = 50 0.250 0.250 0.222 0.284 0.200 0.413 0.052 0.049 0.039 0.049 0.065

v

n = 15 1.847 1.670 1.635 1.596 1.701 1.784 0.393 0.362 0.371 0.333 0.365

n = 30 0.692 0.687 0.670 0.657 0.639 0.808 0.154 0.153 0.152 0.150 0.153

n = 50 0.380 0.375 0.385 0.353 0.337 0.403 0.081 0.078 0.080 0.080 0.066

Coverage of the 95% confidence interval

n = 15 0.925 0.907 0.914 0.887 0.918 0.890 0.973 0.958 0.972 0.929 0.933

n = 30 0.953 0.943 0.942 0.929 0.963 0.924 0.971 0.972 0.983 0.966 0.942

n = 50 0.975 0.966 0.977 0.946 0.973 0.927 0.978 0.979 0.990 0.979 0.944

Ratio v/vSIM

n = 15 1.499 1.204 1.249 1.052 1.294 1.006 1.573 1.264 1.428 1.011 1.011

n = 30 1.298 1.307 1.246 1.121 1.380 1.003 1.323 1.400 1.588 1.308 1.016

n = 50 1.521 1.501 1.739 1.242 1.685 0.976 1.564 1.615 2.030 1.616 1.003

The population size is equal to 155. vSI M is equal to the variance approximated by the simulations (16). v depends

on the sampling design. For the srswor and maxent methods, we used the estimator vHAJ (13), while for the other

sampling designs, we use vSB (14). Coverage rate of the 95% confidence intervals is computed as well as the ratio

between averages of v and vSIM

8. DISCUSSION

Environmental data are generally not uniformly distributed over a region of the space.

Thus, it is generally justified to use unequal inclusion probabilities to overrepresent some

parts of the population. As explained in Sect. 2.2, this reduces the variance of the Horvitz–

Thompson estimator, a phenomenon also observed in Sect. 7 on the Meuse dataset.

In this manuscript, we present a sampling design that selects the units in a very well-

spread configuration. We have shown on the Meuse dataset that on measurements of spa-

tial spreading the method behaves very well. Moreover, the approximated variance of the

Horvitz–Thompson estimator is lower with WAVE sampling than the other methods. Some

second-order inclusion probabilities are null. It is thus impossible to estimate unbiasedly

the variance of the estimator. However, we propose different estimators and compare their

performance. We show that it is possible to estimate appropriately the variance and to con-

struct confidence intervals that have good coverage rates, particularly when the sample size

is large. All of these results indicate that our method is very efficient to select a well-spread

sample and has better properties than the usual spatial sampling designs.
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