
 Open access  Journal Article  DOI:10.1109/69.273029

Spatial SQL: a query and presentation language — Source link 

Max J. Egenhofer

Institutions: University of Maine

Published on: 01 Feb 1994 - IEEE Transactions on Knowledge and Data Engineering (IEEE Educational Activities
Department)

Topics: Query by Example, Spatial query, Data definition language, Query language and RDF query language

Related papers:

 Point-set topological spatial relations

 An introduction to spatial database systems

 An efficient pictorial database system for PSQL

 Maintaining knowledge about temporal intervals

 Geo-Relational Algebra: A Model and Query Language for Geometric Database Systems

Share this paper:    

View more about this paper here: https://typeset.io/papers/spatial-sql-a-query-and-presentation-language-
4xph0v3wh7

https://typeset.io/
https://www.doi.org/10.1109/69.273029
https://typeset.io/papers/spatial-sql-a-query-and-presentation-language-4xph0v3wh7
https://typeset.io/authors/max-j-egenhofer-2k91z93vqf
https://typeset.io/institutions/university-of-maine-26eond66
https://typeset.io/journals/ieee-transactions-on-knowledge-and-data-engineering-2fcyl039
https://typeset.io/topics/query-by-example-359rg01i
https://typeset.io/topics/spatial-query-318x9oao
https://typeset.io/topics/data-definition-language-2ku9m9rk
https://typeset.io/topics/query-language-3dnadtki
https://typeset.io/topics/rdf-query-language-qelxvq76
https://typeset.io/papers/point-set-topological-spatial-relations-gwirx3aaug
https://typeset.io/papers/an-introduction-to-spatial-database-systems-440082t4w3
https://typeset.io/papers/an-efficient-pictorial-database-system-for-psql-1hfphinxsv
https://typeset.io/papers/maintaining-knowledge-about-temporal-intervals-1tzbkd3o68
https://typeset.io/papers/geo-relational-algebra-a-model-and-query-language-for-grldtgxlxd
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/spatial-sql-a-query-and-presentation-language-4xph0v3wh7
https://twitter.com/intent/tweet?text=Spatial%20SQL:%20a%20query%20and%20presentation%20language&url=https://typeset.io/papers/spatial-sql-a-query-and-presentation-language-4xph0v3wh7
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/spatial-sql-a-query-and-presentation-language-4xph0v3wh7
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/spatial-sql-a-query-and-presentation-language-4xph0v3wh7
https://typeset.io/papers/spatial-sql-a-query-and-presentation-language-4xph0v3wh7


Member, IEEEMax J. Egenhofer,

Spatial SQL: A Query and Presentation Language

Abstract

query language
presentation language

—Recently, attention has been focused on spatial databases which com-
bine conventional and spatially related data such as Geographic Information Sys-
tems, CAD/CAM, or VLSI. A language has been developed to query such spa-
tial databases. It recognizes the significantly different requirements of spatial data
handling and overcomes the inherent problems of the application of conventional
database query languages. The spatial query language has been designed as a min-
imal extension to the interrogative part of SQL and distinguishes from previously
designed SQL extensions by (1) the preservation of SQL concepts, (2) the high-
level treatment of spatial objects, and (3) the incorporation of spatial operations
and relationships. It consists of two components, a to describe
what information to retrieve and a to specify how to display
query results. Users can ask standard SQL queries to retrieve non-spatial data based
on non-spatial constraints, use Spatial SQL commands to inquire about situations
involving spatial data, and give instructions in the Graphical Presentation Language
GPL to manipulate or examine the graphical presentation.

1



Index Terms—Geographic Information Systems, graphical presentation, query
languages, query result combinations, spatial context, spatial databases, SQL, topo-
logical relationships.

2



1 Introduction

geometry graphical presenta-
tion

Relational Query Language Spatial Relation-
ships Spatial Query Language

retrieval
presentation

Recently, attention has been focused on spatial databases [34, 56] which combine
conventional and spatially related data. The need for spatial query languages has
been identified in several different application domains of spatial databases such
as Geographic Information Systems (GIS’s) [30], image databases [10], or remote
sensing [45]. The usage of standard query languages for spatial data handling has
been hindered by the lack of appropriate language support for spatial data. Query
languages such as SQL [9], Quel [60], or Query-by-Example [63] are insufficient
for spatial data, because they address only the particular properties of lexical data.

Some attempts have been made to apply existing (relational) query languages to
spatial data as well. These languages treat spatial data as integers and strings in re-
lational form, so that users need an understanding of implementation details of spa-
tial data, which is comparable to seeing the treatment of reals as bit strings. Exam-
ples are GEO-QUEL [5, 33], a QUEL extension, Query-by-Pictorial-Example [11],
a Query-by-Example extension, or a Quel extension for image processing [25].
Spatial data have additional properties, such as and

, which the user must be able to address in a query language. The importance
of spatial relationships and operators for spatial query languages has been recog-
nized [28, 49, 53] and the relational algebra has been extended with spatial op-
erations to a Geo-Relational Algebra [35]. But a spatial query language must be
more than the simple equation: +

= . More functionality was added to languages, such
as SQUEL which combines QUEL and graphical presentation with which interac-
tive communication is encouraged [36], or GEOBASE [4] which has a flavor of
inheritance and propagation of attributes and values in generalization and aggrega-
tion of spatial hierarchies, respectively. Similar extensions which are based upon
SQL will be reviewed at more detail in section II.C.

In an earlier paper, we analyzed the requirements for a spatial query language
describing user concepts about spatial data and their integration into a human in-
terface [21]. In this paper we demonstrate how these concepts can be translated
into the syntax of a spatial query language. In the context of spatial data handling,
a query language is seen as broader than only a solution for the of data.
Here, the appropriate of spatial data is also considered to be part of a

3



2 Spatial Query Languages

Spatial SQL

Graphical
Presentation Language (GPL)

spatial query language.
Instead of developing an entire new query language from scratch, an existing

database query language is extended with spatial concepts. As the host language,
SQL was chosen, and the resulting spatial query language is called .
Similar attempts of extending an existing query language with new concepts have
been undertaken in other areas, for instance with the design of the temporal or his-
torical query languages TQUEL [57], TOSQL [2], and HSQL [54] as respective ex-
tensions of QUEL and SQL, and SQL dialects for date and time [14] and dynamic
complex objects [47]. The particular combination of the description of retrieval
and graphical presentation in a single query language distinguishes the design of
Spatial SQL from other languages. The retrieval part is based upon SQL, the stan-
dard query language for relational databases [1]. It is completed by the

[20], a comprehensive tool for the description of
the graphical display. The goal of Spatial SQL is to provide higher abstractions of
spatial data in a query language by incorporating concepts closer to the humans’
thinking about space and the present paper explains the semantics and syntax. Per-
formance considerations will not be addressed here. Also, the embedding of Spatial
SQL into a human interface [21], query processing and optimization [39], and the
state of the implementation [17] have been described elsewhere.

The remainder of this paper is organized as follows: Section II evaluates previ-
ous SQL-based query languages for spatial databases against a list of requirements
for a spatial query language and identifies particular deficiencies in the treatment of
the graphical presentation of query results. The architecture of an SQL-based spa-
tial query and presentation language is discussed in section III. Sections IV and V
present the syntax and semantics of the retrieval language Spatial SQL and the
Graphical Presentation Language GPL, respectively. An example in section VI
shows the use of Spatial SQL and GPL. Finally, in section VII our conclusions are
presented.

Spatial SQL is based upon the relational database query language SQL [9]. An
SQL query uses the SELECT–FROM–WHERE clause for the three operations of
relational algebra projection, Cartesian product, and selection, respectively. In ad-

4



�

�

�

the

2.1 Guidelines for an SQL Extension

SELECT population
FROM town
WHERE name = "Orono";

dition, aggregate functions, such as sum, minimum, or average, may be employed
to calculate a single value from a set of tuples [7].

The decision to exploit SQL as the backbone for a spatial query language was driven
by the recognition of efforts to standardize SQL as database query language [1].
The reason for extending an existing query language, as opposed to developing
a new one, was also influenced by the recognition that spatial databases contain
both spatial and non-spatial data which will be the subject of user queries. Three
fundamental categories of queries in a spatial information system can be distin-
guished [4]:

Queries exclusively about spatial properties, e.g., “Retrieve all towns that are
split by a river.”

Queries about non-spatial properties, e.g., “How many people live in Orono?”

Queries which combine spatial and non-spatial properties, e.g., “Retrieve all
neighbors of the parcel located at 26 Grove Street.”

It is crucial for spatial query languages to provide syntactical means for all three
categories. Traditional query languages do so for the formulation of non-spatial
queries. For example, the query for the number of people living in Orono may be
expressed as the following SQL query:

A spatial extension to a non-spatial query language must preserve all its alphanu-
meric functionalities to allow the user to pose non-spatial queries appropriately.

The premise of the design of this SQL extension has been to retain the concepts
of the host language. Likewise, the characteristic structure of the language with the
SELECT–FROM–WHERE clause should stay untouched.

The following concepts of standard SQL were specifically regarded:

5



�

�

�

2.2 Requirements for Spatial Query Languages

Every query result is a relation.

The SELECT–FROM–WHERE construct is the framework of every query.

Predicates in the WHERE clause are formulated upon attributes.

Every extension of SQL as a superset of standard SQL has to live with the flaws
of SQL. For this particular work, Codd’s critique of SQL [12] is not relevant; how-
ever, other limitations in the design of SQL make the language difficult to extend
for certain spatial concepts. For instance, the tabular presentation of the result,
implied for every interactive SQL query, is inappropriate for spatial applications
which frequently require graphical results. The spatial query language presented
in this paper will not improve SQL as such and should not be considered a “bet-
ter SQL.” Instead, it will be shown how easy—or how difficult—it is to integrate
certain spatial concepts into SQL.

The second guideline deals with the number of spatial additions to be made
to the syntax of SQL. The current structure of SQL with the SELECT–FROM–
WHERE block (and possibly additional GROUP BY–HAVING clauses) is already
considered to be complex enough to use [48]. Additional clauses for the treatment
of new concepts are undesirable. Although such extensions—adding a clause for
graphical presentation, another one for graphical context, etc.—might appear as
a possible solution, they would certainly further increase the users’ problems of
formulating syntactically correct queries.

Investigations of conventional query languages identified eleven crucial require-
ments for a spatial query language which are not covered by conventional sys-
tems [21]. They are:

1. An abstract data type spatial with corresponding operations and relationships
is necessary so that users may treat spatial data at a level independent from
internal coding such as x-y coordinates [52].

2. The display of query results in graphical form, as the most natural form to
analyze spatial data, allows for the presentation of the geometry of spatial

6



objects and the visualization of issues which are related to spatial objects but
represented in the database as non-spatial attributes.

3. The possible combination of one query result with the results of one or more
previous queries gives rise to a dynamic interaction.

4. Graphical presentations frequently require the display of context, i.e., infor-
mation which was not explicitly asked for but which is necessary to interpret
a query result in its spatial location.

5. Induced by the combination of multiple query results in a single rendering,
users need control mechanisms to check the content of a drawing.

6. An extended dialog using pointing devices for selection by pointing and direct
selection of a subscene promotes the usage of query results as a reference in
upcoming queries and reduces the use of the keyboard [32].

7. Varying graphical presentation of spatial objects and their parts described in
terms of colors, patterns, intensity, and symbols [6] is by far more complex
than the description of the format of a table and requires dedicated language
tools.

8. A descriptive legend is needed which reflects a summary of the object classes
displayed together with their particular graphical presentation.

9. Labels play an important role in the understanding of drawings and users must
be able to select objects to be labeled from the query language.

10. Users of conventional maps have developed significant skills to interpret the
actual size of objects drawn and the selection of a specific scale of a rendering
allows users of computerized spatial information systems to produce maps on
which they can continue to apply their capabilities.

11. Frequently, users work on a subscene, not the whole spatial database, and
the query language must offer them tools to restrict the area of interest to a
particular geography to which all upcoming queries will refer.

7



loc

loc

2.3 SQL-Based Query Languages for Spatial Databases

Several proposals have been made to make SQL applicable as a query language
for spatial databases by incorporating solutions for some of these requirements. The
most significant extensions will be reviewed subsequently.

GEOQL [51] fully preserves the SQL structure and adds to the standard definitions
of SQL the concept of geometry in terms of the bounding lines of spatial objects,
spatial operators between geographic objects, and windows.

Another proposal [55] includes extensions for the treatment of spatial relations
and a picture list to manage the graphical output. The spatial relations are separated
from the relations among non-spatial data by means of an additional clause (WITH
LOCATION) in which predicates with spatial relationships can be formulated. The
picture list is added to the attribute list of the SELECT statement. In order to dis-
tinguish which parts to print and which parts to draw, the qualifier GRAPHIC is
introduced. Spatial results of subqueries are tagged with the postfix . This pro-
posal assumes a standard graphical format for each relation which is insufficient
for most queries. The treatment of relations instead of attributes in the WITH LO-
CATION clause and the GRAPHIC qualifier does not conform with the general
concept of SQL which requires that predicates are defined upon attributes.

PSQL (Pictorial SQL) is an SQL extension tailored to raster image process-
ing [53]. Each spatial object is extended by an attribute which is referenced
in the SELECT clause for graphical output and in a specific clause for treating
spatial relations. PSQL adds two clauses to the SELECT–FROM–WHERE con-
struct: (1) AT specifying the area to treat, and (2) ON describing a predefined
output format (picture list) such as a specific map type. The introduction of two
additional clauses in PSQL makes the formulation of queries unnecessarily com-
plicated. Complex queries which involve the logical combination of spatial and
non-spatial predicates may require repeated AT–WHERE clauses. In an update of
this language the logical consequence was drawn and the AT clause was merged
with the WHERE clause [52]. Predefined output formats are very useful, but the
user also needs a language to manipulate the graphical presentation.

The SQL-based query language for the Geographic Information System KGIS [43]
is a combination of syntax extensions in the SELECT–FROM–WHERE clauses

8



3 Separating Retrieval and Display Instructions

and a command set outside of SQL [40]. The spatial relationships distance, over-
lay, overlap, and adjacent are added to the WHERE clauses, and spatial relations
are extended by the attributes area, perimeter, and length. Objects on the graphic
screen can be identified via a PICK routine. Further extensions include (1) the def-
inition of a context map which is added to the query result as a default background,
(2) the definition of a window which describes the area of the graphical display,
and (3) the specification of the output type (e.g., REMOVE). These features are
evaluated as additional clauses outside of the SELECT–FROM–WHERE query.

The query language for the TIGRIS GIS [37] pursues an object-oriented ap-
proach, giving up some SQL principles [38]. For instance, the FROM clause is
cancelled and the SELECT clause treats entire relations represented through object
identifiers. Spatial extensions are Boolean operators for topological concepts, such
as intersect or adjacent, spatial attributes, such as area or centroid; and “derivation
operators” determining parts of spatial objects, such as boundary, or compositions,
such as union. To provide for higher-level and more complex constructs, macro
facilities are introduced for predicates. These macros can be used as shortcuts in
the WHERE clause. A significant contribution is the attempt to define the spatial
relationships, operations, and attributes formally, using mathematical terms from
topology and set theory.

The spatial capabilities of these SQL extensions are summarized in Table 1
where the languages are analyzed against the eleven requirements for a spatial query
language.

The production of a map with a single instruction may be of interest [24], however,
the primary goal of the interaction with graphical renderings in a spatial information
system is making dynamic changes rather than producing static products. Users
are expected to (1) pose several queries in a row the results of which more often
change the content of the rendering than its graphical presentation style and (2) edit
the graphical rendering frequently by modifying only the graphical “parameters” of
objects already displayed [19]. In such an environment a single, standard display
layout is insufficient for complex graphics, such as maps. On the other hand, the
storage of map graphics is inappropriate because the exact rendering depends upon

9



�

�

�

user query

display queries

display description

retrieval
language presentation language

display environment

the scale, area of display, and content of a drawing, and must be recomputed for
each actual display. For example, screens may become overcrowded [27] or labels
may be placed outside of the visible screen area [29, 31].

The integration of a full display description into the query language would make
each user query unnecessarily complex and long. In lieu of packing the entire re-
quest into a single statement, it appears to be beneficial to separate each instruction
into several smaller and controllable units. Three types of instructions are distin-
guished:

the actual specifying the retrieval of the set of data to be displayed,

additional queries, called , necessary to separate query results
into more detailed sets, each to be displayed in an individual format, and

the actual specifying how to render the data.

Here, it is proposed to group these three types of instructions into two languages so
that users can separately describe the content of a drawing—what to retrieve—and
its appearance—how to display the query result. The separation into a

and a releases the user from the need of describ-
ing the graphical presentation with each query. Instead, a is
maintained that manages the state of the graphical presentation and applies it to
the query result. Query and display specifications then interact closely: the pre-
sentation language describes on the one hand what to do with the result such as,
“Show the buildings in the query result (if any) as black squares.” On the other
hand, the presentation language may require expressions similar to a regular query
for a detailed description such as, “Show the buildings in the query result which
are of type residence as red squares and the commercial buildings as blue squares.”
The similarity to actual user queries implies that the query language may serve as
part of the Graphical Presentation Language.

Our particular approach consists of Spatial SQL, a spatial query language de-
signed as an extended SQL for the retrieval of spatial and non-spatial data, and the
Graphical Presentation Language GPL, a dedicated language for the description of
the graphical presentation which was designed as a superset of the spatial query
language. Fig. 1 shows the three standard situations of a user interacting with GPL
and Spatial SQL: a user modifies the display environment with one or several GPL

10



spatial

4 Spatial SQL

4.1 Spatial Domain

commands which will be effective with the next query asked (Fig. 1a); a user formu-
lates a query in Spatial SQL and the result is presented according the current state of
the display environment (Fig. 1b); and a user updates the display environment with
a GPL command and requests to update the current display before asking the next
query (Fig. 1c). Query and display instructions are combined in a non-procedural
way, i.e., users describe the display style and formulate the query, and the system
finds the most effective way for integrating and executing a user query and display
queries.

The concept of Spatial SQL allows experienced SQL users to continue applying
the popular query language for inquiries upon non-spatial data in the familiar way.
Only queries that include spatial properties must use the extensions of Spatial SQL.
Users familiar with SQL are expected to learn this SQL dialect quickly because
it preserves the general concepts and structure of standard SQL and only a few
additions are made to the semantics and syntax.

In Spatial SQL, the domains of the relational calculus are extended by the new do-
main to provide a high-level abstraction of spatial data at the user interface.
Besides the spatial domain and its dimension-dependent specializations, the spatial
operations and relationships, and a method to refer to objects on drawings by point-
ing at them with a direct manipulation device are introduced. To date, only subsets
of a spatial algebra [35, 61] and formal definitions of spatial relationships [18] have
been developed; therefore, this part of Spatial SQL is extensible so that new spatial
operations can be added into this conceptual framework.

It has been demonstrated that the use of “pure” SQL for some spatial queries [46]
is cumbersome and syntactically very complex [62]. The treatment of spatial data
as abstractions higher than integers or strings is necessary for an appropriate treat-
ment of geometry. While an operation, such as the Euclidean distance between
two points, may be familiar to a large community and its implementation might be
commonly known, other operations or relationships are by far more complex—or

11



n O O

O

4.2 Spatial Operations and Relationships

spatial 0 spatial 1
spatial 2 spatial 3

spatial
spatial attribute

spatial relation

Unary spatial operations

dimension
Boundary

interior

boundingNodes boundingEdges

boundary boundingNodes boundingEdges
interior interiorNodes interiorEdges interiorAreas

length
area volume

subtle. Mathematically less sophisticated users cannot be expected to acquire all
this mathematical knowledge before asking a query with some geometric criteria.

Spatial SQL provides a higher-level abstraction of spatial data and extends the
domains in the relational calculus by four spatial domains— , ,

, and —for 0-, 1-, 2-, and 3-dimensional spatial objects, respec-
tively. These domains are generalized to a dimension-independent domain .
An attribute over such a spatial domain will be referred to as a , and
a relation with a spatial attribute will be called a .

The properties of spatial relations are significantly different from the properties
of the standard relations with integer numbers or character strings. Spatial relation-
ships, for instance, refer to spatial concepts such as topology and metric [23, 42];
however, they are considered as selection criteria, similar to traditional predicates,
and can be used similarly to conventional relationships. Only the specified spatial
operations and relationships apply to spatial attributes.

access a spatial property of a tuple of a spatial relation.
A unary spatial operation can be considered a function upon a spatial attribute.
Important spatial functions are those which determine the dimension of an object,
its boundary, and its interior. The is 0, 1, 2, and 3 for points, lines,
areas, and volumes, respectively. determines the bounding faces of an

-dimensional object , i.e., all object parts in the boundary of [16]. Com-
plementary to boundary, calculates the interior faces, i.e., all those object
parts that are not in the boundary of . The specializations of these operations
determine bounding and interior faces of a specific dimension, e.g., an area has
the operations and for the determination of 0- and
1-dimensional bounding object parts, respectively. For 1- and 2-dimensional ob-
jects, the set consists of the operations , , ,

, , , and .
A second set of unary spatial operations deals with arithmetic operations. They

depend upon the dimension of an object. This set of operations consists of ,
for a 1-dimensional object, and and for 2-D and 3-D objects, respec-
tively. More complex attributes can be derived as the combination of topological

12



5

distance (city.geometry,
highway.geometry)

perimeter
ex-

treme coordinates complement convex hull

Binary spatial operations

distance
direction

angles
minimum average

Binary spatial relationship

spa-
tial

disjoint meet overlap inside/contains covers/coveredBy
equal

and arithmetic properties, such as the of a polygon which is defined as
the sum of the lengths of the boundingEdges. Other unary operations, such as

[13], [8], and [35], fit into this concept
and may be easily incorporated into Spatial SQL.

calculate a value among two tuples of spatial rela-
tions, similar to the arithmetic operators for atoms of conventional domains, such
as addition or multiplication. Two binary spatial operations are introduced in Spa-
tial SQL which map from two spatial attributes onto a real number: (1)
and (2) . Distances can be added, subtracted, multiplied with a scalar,
and compared for equality, order, and strict order. Directions can be compared with
the same operators and subtracted to yield . Aggregate functions, such as

and , can be formulated upon distances and directions.
A prefix formulation for spatial operators, like

, is more natural and preferred over the conventional infix
form of arithmetic operators. Spatial operators can occur in any SELECT clause
in association with two spatial attributes, or in any WHERE clause as part of a
non-spatial predicate. Though spatial operators are conceptually different from ag-
gregate functions, they are incorporated into Spatial SQL at the same locations.

are relationships between two spatial attributes. They
conform with traditional binary relationships and result in a Boolean value. Hence,
they can be immediately applied as predicates in the WHERE clause of SQL. Spatial
SQL also preserves the infix form of traditional SQL predicates for spatial predi-
cates. Similar to Standard SQL, which overloads relationships like less than or
equal, spatial relationships are defined upon the generalized spatial data type

. The actual implementation is invisible to the user unless a constraint is vio-
lated, such as a void predicate, “point contains line.”

Binary topological relationships are based upon the set intersections of the
boundaries and interiors of the two targets [18, 22]. For example, the neighborhood
relationship between two areas can be expressed in terms of the four boundary and
interior intersections (Table 2). These specifications are dimension independent
and, therefore, apply to any two objects of arbitrary dimensions. Fig. 2 shows
prototypical examples for the topological relationships most commonly used in ge-
ographic applications: , , , , ,
and . They are included in Spatial SQL as convenience operations releasing

13



4.3 Spatial Data Definition

left/right north/south
over/under

city name
geometry

CREATE TABLE city
( name char (20)

geometry spatial_2 );

city

CREATE TABLE city
( name char (20)

geometry spatial_2
generalizedGeometry spatial_0 );

users from the fundamental mathematical knowledge necessary to formulate spatial
queries with topological constraints and to provide a higher-level abstraction of ge-
ometric concepts. Depending on various orderings, details can be expressed about
topological relationships. Possible spatial order relations are , ,
or .

The data definition in SQL is extended for spatial attributes. The following example
shows the definition of the relation with a conventional attribute and
a spatial attribute .

In general, a spatial relation will have exactly one spatial attribute which defines
the geometry of the object; however, Spatial SQL does not prevent the user from
defining several “geometries” for a single object. This possibility might be useful
for the graphical presentation of an object at different scales and levels of detail.
For example, a town on a map may be presented as a polygon in 1:10,000 and as
a node at its center of gravity in 1:1,000,000. The data definition in Spatial SQL
would allow for a table with two different spatial attributes, like

Spatial attributes in Spatial SQL commands are used equivalently to conven-
tional attributes in SQL either in the SELECT clause as projection, or as a predicate
in the WHERE clause.

14



4.4 Selection by Pointing

SELECT name
FROM city
WHERE geometry = PICK;

SELECT name
FROM county
WHERE geometry = PICK;

Interactive communication with drawings is enabled with the PICK qualifier which
allows users to formulate queries with reference to spatial objects visible on a
screen. PICK is incorporated into the language as a predicate and can qualify each
spatial attribute in a WHERE clause. The specification is similar to a value typed
from the keyboard; however, the specified value is not a character string but the
location of an object identified on the screen.

The semantics of selection by pointing vary depending on the spatial dimension
of the target. When pointing to objects rendered in the two-dimensional plane,
the target is either the 0- or 1-dimensional object closest to the pointer or the 2-
dimensional object which includes the point of selection [19]. Ambiguities are
reduced since the user points to a location and specifies in the query which kind of
object, i.e., relation name, to select. On a map with a partition of counties, displayed
by their boundaries, and their major cities displayed as small circles, a user asks for
the the name of a particular city by clicking to its map symbol and entering the
following query:

On the other hand, if one points to the same location and specifies that the object
selected is a county, the county name will be retrieved:

Ambiguities in the selection may exist if more than one object of the class iden-
tified has the same distance to the pointer position. Such situations may occur when,
for instance, a user tries to select a road pointing exactly to the intersection of two
roads. Likewise, the selection of an areal object is ambiguous if the user points
exactly to the boundary of two adjacent areas. In such (rare) cases, the user will be
offered the possible choices and then asked to identify the target [21].

15



5.1 Display Mode

display environment

5 The Graphical Presentation Language GPL

The Graphical Presentation Language GPL [20] provides tools for the manipula-
tion of the graphical presentation of query results. Central to GPL is the concept
of the which handles the information about how to display
query results. During query processing, this information is integrated with the user
query so that the query result is rendered according the display description. Unless
the user changes the environment with a GPL instruction, the display environment
continues to produce with each query a map of the same style.

GPL offers instructions to SET a graphic specification, establishing the char-
acteristics of the display environment; to CANCEL a specification, resetting the
display environment; and to examine (SHOW) the current values of the display
environment. Environments established with GPL are effective for all subsequent
Spatial SQL queries and stay valid until they are cancelled or overwritten with a
corresponding instruction. SET and CANCEL can be qualified with PERMANENT
so that the instructions persist across sessions, and with IMMEDIATELY to allow
users to update the graphical presentation of the current map prior to asking the
next query.

Six types of graphic specification are distinguished: (1) the display mode, (2)
the graphical presentation, (3) the scale of the drawing, (4) the window to be shown,
(5) the spatial context, and (6) the examination of the content.

In order to combine several query results in a single drawing, the selection of the
appropriate display mode is necessary. A major impediment for any SQL-based
query language with more than one kind of rendering is that the SELECT clause is
overloaded with the projection of the attributes onto the resulting relation and the
implied tabular representation [15]. Spatial SQL solves this problem by the sepa-
ration of the two issues so that the SELECT command performs only the relational
projection operation, and the query result will be displayed according to the current
display mode selected with GPL. The six display modes are the conventional al-
phanumeric display and five graphical display types [19]: (1) NEW, starting a new
drawing; (2) OVERLAY, adding the result onto an existing drawing; (3) REMOVE,
erasing the result from a drawing; (4) INTERSECT, determining the common ob-

16



n

n

visual
variables

5.2 Visual Variables

5.3 Scale and Window

5.4 Context

jects on the display and in the query result; and (5) HIGHLIGHT, emphasizing the
result such that it can be easily recognized.

With the selection of the graphic mode the placement of labels can be directed
as well. Non-spatial attributes in the SELECT clause will be represented as labels.
Their actual placement remains the task of some name placement subsystem [31].

The graphical presentation plays a more important role for spatial data than for
the presentation of lexical data in tabular form [19]; therefore, the use of

(colors pattern, and symbols) [6] to specify the graphical presentation of
spatial objects is included into GPL. These graphic attributes can be specified for
either an entire spatial relation or instances of spatial relations which fulfill specific
constraints. This lets different users view a spatial database from their individual
perspectives and allows them to tailor the graphical presentation of query results
to their specific needs. Complementary to defining these visual variables, users
can check the current settings by “looking at the legend,” i.e., inquiring about the
graphical presentation.

This part of GPL depends upon the user’s hardware; therefore, the set of terms
for the visual variables is is designed to be extensible so that it can be adapted to
different environments.

The scale of the graphical presentation and the window describing the area to be
displayed can be described with the commands SET SCALE and SET WINDOW,
respectively. The scale is set by a positive number , representing a scale factor
of 1 : . The window can be determined either by two pairs of coordinates, two
diagonal points selected on a screen drawing, or the minimal bounding rectangle
from the result of a Spatial SQL query.

The interpretation of a graphical presentation is extremely dependent on the context
and environment in which it is shown. Unlike lexical presentation, it is often in-

17



5.5 Content

6 Query Example

SET LEGEND
COLOR black
PATTERN dashed

sufficient to draw only those objects directly requested in the query. The graphical
presentation of a city as a point in the center of the screen is useless information
unless context, such as the boundary of the state, helps to identify its location [21].
GPL allows the user to define spatial relations or specified portions with SET CON-
TEXT as graphical context which is during query processing merged with the actual
user query.

Because a combination of multiple query results may be shown in a single drawing,
a control mechanism is necessary with which the user may examine the content of
a drawing. The content is the logical combination of queries the results of which
were combined with OVERLAY and REMOVE. In essence, the content gives a
single query with which the drawing currently visible could have been produced. Of
course, content is only observable, i.e., users can examine the content with SHOW
CONTENT, but they cannot SET or MODIFY it.

Imagine a geographic database of Penobscot county with towns, parcels, buildings,
roads, rivers, and utility lines. An insurance agent wants the following information
displayed on a map for a client who intends to buy a home owner’s insurance policy
for the building “26 Grove Street” in the town of Orono:

Show a map of Grove Street in Orono with all buildings, parcel bound-
aries, and roads. Display the residences in green, commercial buildings
in blue, parcel boundaries in black. Cross-hatch roads narrower than 15
ft. Label roads by names.

First, the graphical environment is built describing the various colors, patterns,
and symbols used.

18



Then the user identifies the window of interest and sets a context for the roads.

Finally, the user selects to draw a new map and enters the actual user query, a brief
Spatial SQL statement.

19

FOR SELECT boundary (geometry)
FROM parcel;

SET LEGEND
COLOR green, blue

FOR SELECT residence.geometry, commercial.geometry
FROM residence building, commercial building
WHERE residence.type = "Residential" and

commercial.type = "Commercial";

SET LEGEND
PATTERN cross-hatched

FOR SELECT interior (geometry)
FROM road
WHERE width < 15;

SET WINDOW
SELECT geometry
FROM road
WHERE town.name = "Orono";

SET CONTEXT
FOR road.geometry

SELECT parcel.geometry, building.geometry, road.name
FROM road, parcel, building;

SET MODE new;

SELECT road.geometry
FROM road, town



WHERE town.name = "Orono" and
road.name = "Grove Street" and
road.geometry INSIDE town.geometry;

SET MODE highlight;
SELECT building.geometry
FROM building
WHERE address = "26 Grove Street";

SET MODE alpha;

SELECT distance (building.geometry, firestation.geometry),
firestation.address

FROM building, building firestation
WHERE building = PICK and

firestation.type = "Fire Station";

SET LEGEND
COLOR red
SYMBOL "2mm disk"

The result is the desired map (Fig. 3). With further Spatial SQL commands the user
requests more information about the objects displayed or manipulates the graphical
properties of the rendering. For example, the following commands will help the
insurance agent to identify the building with address “26 Grove Street”:

The insurance agent’s primary interest is in fire fighting. How far is the building
from the next fire station?

The result is a list of fire stations and their distances to the building which the user
selected by pointing (PICK). Note that the previously defined window restricts the
fire stations to be located in Orono.

To check the accessibility to a water hydrant from “26 Grove Street” the insur-
ance agent overlays the water hydrants, located within 100 ft of the building, over
the current map.

20



7 Conclusions

FOR SELECT geometry
FROM utility
WHERE type = "Water Hydrant";

SET MODE overlay;

SELECT geometry
FROM utility, building
WHERE type = "Water Hydrant" and

building.geometry = PICK and
distance (building.geometry, utility.geometry) < 100;

SET IMMEDIATELY COLOR red
FOR SELECT interior (geometry)

FROM parcel
WHERE fire_damage_date >= 1980;

Are there any parcels on Grove Street which had fire accidents since 1980? If
yes, show them on the map.

The insurance agent checks the values of the buildings on the parcels adjacent
to “26 Grove Street.”

Spatial SQL is characterized by minimal extensions to SQL and the introduction
of the Graphical Presentation Language (GPL). The eleven requirements for a spa-
tial query language are satisfied with: (1) the introduction of a spatial data type
and the corresponding operations and relationships; (2) the graphical presentation
directed from GPL; (3) the display modes NEW, OVERLAY, REMOVE, INTER-
SECT, and HIGHLIGHT in GPL to combine query results into a single drawing;
(4) the definition of CONTEXT in GPL; (5) the examination of CONTENT from
GPL; (6) selection by pointing via the PICK qualifier in WHERE clauses; (7) the
manipulation of the graphical presentations of objects with colors, patterns, and

21



2O

spatial
ad hoc

Acknowledgments

symbols; (8) the examination of the map LEGEND in GPL; (9) the combination of
both graphical and alphanumeric data in a single result which enable objects to be
labeled; (10) graphical presentations in specific map scales; and (11) the selection
of a spatial query window to which queries will refer.

Several features of Spatial SQL have an object-oriented flavor, such as the com-
plex abstract data type and its subtypes for different spatial dimensions. Re-
cently, object-oriented SQL versions have been proposed as general query
languages for object-oriented databases, e.g., OSQL for IRIS [26], HDBL [44], and
the query language [3]. HDBL and OSQL allow users to define complex data
types, including generalization hierarchies, and corresponding operations; how-
ever, the extension of a database language with a new abstract data type [14, 50, 59]
is only one of the requirements for a spatial query language. All object-oriented
SQL extensions have not made any provisions for the issues related to the graphi-
cal presentation of query results.

Spatial SQL and GPL commands are verbose if a user has to type them from
a keyboard. Considerable increase of the usability of this spatial query language
is expected by incorporating the command line structure into a human interface, as
proposed in [21]. The incorporation of the direct manipulation device into the query
language is a first step toward an improved interaction with maps using pointing in-
stead of typing. Operations like pan and zoom are good candidates to exploit this
concept for which appropriate metaphors are being examined [41]. Likewise, the
implementation of GPL as a visual language is likely to boost its usability. For ex-
ample, instead of typing a name for a color or pattern, users may make their choice
from a control panel which presents a series of colors and patterns, and also allows
the users to create new ones. A cartographic editor to create and manipulate car-
tographic symbols is an essential component of such a user interface [58]. Finally,
the visualization of prototypical spatial relations may reduce the time for learning
a specific terminology and help users in the selection of the correct configuration.

Andrew Frank’s expertise and advice were helpful contributions to this paper. Thanks
also to Renato Barrera and Bruce Palmer for many stimulating discussions, Doug
Hudson who made many helpful comments on the language design, and Robert

22



Cicogna who helped with the preparation of this paper.

23



2O

References

ACM Trans. Database Syst.

Proc. 2nd Int. Workshop Database Program-
ming Languages

IEEE Trans. Comp. Architecture: Pattern
Analysis and Image Database Management

ACM Comp. Graphics

Semiology of Graphics

Proc. 13th Int. Conf. VLDB

Geo-Processing

IBM J. Res. and Develop.

Computer

[1] “X3.135-1986 American National Standard Database Language SQL,” Amer-
ican National Standards Institute, Jan. 1986.

[2] G. Ariav, “A temporally oriented data model,” ,
vol. 11, no. 4, pp. 499–527, Dec. 1986.

[3] F. Bancilhon, S. Cluet, and C. Delobel, “A query language for the object-
oriented database system,” in

, June 1989, pp. 122–138.

[4] R. Barrera and A. Buchmann, “Schema definition and query language for
a geographical database system,”

, vol. 11, pp. 250–256, 1981.

[5] R. Berman and M. Stonebraker, “Geo-Quel, a system for the manipulation and
display of geographic data,” , vol. 11, no. 2, pp. 186–
191, 1977.

[6] J. Bertin, . Madison, WI: The University of Wisconsin
Press, 1983.

[7] G. von Bültzingsloewen, “Translating and optimizing SQL queries having
aggregates,” in , Brighton, England, Sep. 1987,
pp. 235–243.

[8] W. Burton, “Logical and physical data types in geographic information sys-
tems,” , vol. 1, no. 2, pp. 167–181, 1979.

[9] D. Chamberlin, M. Astrahan, K. Eswaran, P. Griffiths, R. Lorie, J. Mehl,
P. Reisner, and B. Wade, “Sequel 2: a unified approach to data definition,
manipulation, and control,” , vol. 20, no. 6, pp. 560–
575, Nov. 1976.

[10] S.K. Chang and T. Kunii, “Pictorial database systems,” , vol. 14,
no. 11, pp. 13–21, Nov. 1981.

24



IEEE Trans. Soft-
ware Eng.

Datamation

Geo-Processing

SIGMOD Rec.

Proc.
2nd Int. Seminar Trends and Concerns of Spatial Sciences

Proc. 3rd Int. Conf. Foundations of Data Organization and Algorithms

J. Visual Languages and Computing

Cartography and
Geographic Information Systems

Proc. 14th Int. Conf. VLDB

[11] N.S. Chang and K.S. Fu, “Query-by-pictorial-example,”
, vol. SE-6, no. 6, pp. 519–524, Nov. 1980.

[12] E.F. Codd, “Fatal flaws in SQL,” , vol. 34, no. 16, Aug. 1988.

[13] N. Cox, B. Alfred, and D. Rhind, “A relational data base system and a proposal
for a geographic data type,” , vol. 1, no. 3, pp. 217–229, 1979.

[14] C.J. Date, “Defining data types in a database language,” ,
vol. 17, no. 2, pp. 53–76, June 1988.

[15] M. Egenhofer, “An extended SQL syntax to treat spatial objects,” in
, Fredericton,

New Brunswick, June 1987, pp. 83–95.

[16] M. Egenhofer, “Graphical representation of spatial objects: an object-oriented
view,” Tech. Rep. 83, Department of Surveying Engineering, University of
Maine, Orono, ME, July 1988.

[17] M. Egenhofer, “Spatial query languages,” PhD thesis, University of Maine,
Orono, ME, 1989.

[18] M. Egenhofer, “A formal definition of binary topological relationships,” in
, Paris,

France, June 1989, LNCS vol. 367, New York, NY: Springer-Verlag, pp. 457–
472.

[19] M. Egenhofer, “Interaction with geographic information systems via spatial
queries,” , vol. 1, no. 4, pp. 389–413,
1990.

[20] M. Egenhofer, “Extending SQL for cartographic display,”
, 1991 (in press).

[21] M. Egenhofer and A. Frank, “Towards a spatial query language: user interface
considerations,” in , Long Beach, CA, Aug. 1988,
pp. 124–133.

25



Int.
J. Geographical Information Systems

Proc. Fourth Int. Symp. Spatial Data Handling

Geologisches Jahrbuch

ACM Trans. Office
Inform. Syst.

Proc. 7th
Int. Conf. VLDB

ACM Comp. Graphics

J. Sur-
veying Engineering

Pho-
togrammetric Eng. & Remote Sensing

Int. J. Pattern Recognition and Art. Intell.

[22] M. Egenhofer and R. Franzosa, “Point-set topological spatial relations,”
, vol. 5, no. 2, pp. 161–174, 1991.

[23] M. Egenhofer and J. Herring, “A mathematical framework for the definition of
topological relationships,” in ,
Zurich, Switzerland, July 1990, pp. 814–819.

[24] H.-D. Ehrich, F. Lohmann, K. Neumann, and I. Ramm, “A database language
for scientific map data,” , vol. A, no. 104, pp. 139–152,
1988.

[25] D.W. Embley and G. Nagy, “Toward a high-level integrated image database
system,” Tech. Rep., Image Processing Laboratory, Rensselaer Polytechnic
Institute, Troy, NY, Apr. 1986.

[26] D. Fishman, D. Beech, H. Cate, E. Chow, T. Connors, J. Davis, N. Derrett,
C. Hoch, W. Kent, P. Lyngbaek, B. Mahbod, N. Neimat, T. Ryan, and M. Shan,
“Iris: an object-oriented database management system,”

, vol. 5, no. 1, pp. 48–69, Jan. 1986.

[27] A. Frank, “Applications of DBMS to land information systems,” in
, Cannes, France, Aug. 1981, pp. 448–453.

[28] A. Frank, “Mapquery—database query language for retrieval of geometric
data and its graphical representation,” , vol. 16, no. 3,
pp. 199–207, July 1982.

[29] A. Frank, “Computer assisted cartography—graphics or geometry,”
, vol. 110, no. 2, pp. 159–168, Aug. 1984.

[30] A. Frank, “Requirements for a database management system for a GIS,”
, vol. 54, no. 11, pp. 1557-1564, Nov.

1988.

[31] H. Freeman and J. Ahn, “On the problem of placing names in a geographic
map,” , vol. 1, no. 1, pp. 121–140,
1987.

26



ACM Comp. Graphics

SIG-
MOD Rec.

Proc. Int. Conf. Extending Database Technology

ACM Trans. Database Syst.

Proc. AUTO-CARTO 8

Proc. GIS/LIS ’88

Proc. AUTO-CARTO 8

Proc. ACSM-ASPRS Annual Conv.

[32] M. Friedell, J. Barnett, and D. Kramlich, “Context-sensitive, graphic presen-
tation of information,” , vol. 16, no. 3, pp. 181–188,
July 1982.

[33] A. Go, M. Stonebraker, and C. Williams, “An approach to implementing a
geo-data system,” Tech. Rep., Memo ERL-M529, Electronics Research Lab-
oratory, University of California, Berkeley, CA, June 1975.

[34] O. Guenther and A. Buchmann, “Research issues in spatial databases,”
, vol. 19, no. 4, pp. 61–68, 1990.

[35] R. Güting, “Geo-relational algebra: a model and query language for geomet-
ric database systems,” in ,
Venice, Italy, May 1988, LNCS vol. 303, New York, NY: Springer Verlag,
pp. 506–527.

[36] C. Herot, “Spatial management of data,” , vol. 5,
no. 4, pp. 493–513, Dec. 1980.

[37] J. Herring, “TIGRIS: topologically integrated geographic information sys-
tems,” in , Baltimore, MD, March 1987, pp. 282–291.

[38] J. Herring, R. Larsen, and J. Shivakumar, “Extensions to the SQL language to
support spatial analysis in a topological data base,” in , San
Antonio, TX, Nov. 1988, pp. 741–750.

[39] D. Hudson, “Combined Spatial/II and RDB database operation: query coordi-
nation and optimization strategies,” Tech. Rep., University of Maine, Orono,
Department of Surveying Engineering, Orono, ME, 1988.

[40] K. Ingram and W. Phillips, “Geographic information processing using a SQL-
based query language,” in , Baltimore, MD, March
1987, pp. 326–335.

[41] J. Jackson, “Developing an effective human interface for geographic informa-
tion systems using metaphors,” in , Den-
ver, CO, March 1990, pp. 117–125.

27



Proc. Fourth Int.
Symp. Spatial Data Handling

Photogrammetric Eng. & Remote
Sensing

Proc. 14th Int. Conf. VLDB

Proc. SIGMOD 83

Geo-Processing

Proc. 2nd Int. Workshop Object-Oriented Database Syst.

ACM Trans.
Database Syst.

SIGMOD Rec.

[42] W. Kainz, “Spatial relationships—topology versus order,” in
, Zurich, Switzerland, July 1990, pp. 814–819.

[43] T. Keating, W. Phillips, and K. Ingram, “An integrated topologic database de-
sign for geographic information systems,”

, vol. 53, no. 10, pp. 1399–1402, Oct. 1987.

[44] V. Linnemann, K. Küspert, P. Dadam, P. Pistor, R. Erbe, A. Kemper,
N. Südkamp, G. Walch, and M. Wallrath, “Design and implementation of an
extensible database management system supporting user defined data types
and functions,” in , Long Beach, CA, Aug. 1988,
pp. 294–305.

[45] G. Lohman, J. Stoltzfus, A. Benson, M. Martin, and A. Cardenas, “Remotely-
sensed geophysical databases: experience and implications for generalized
DBMS,” in , San Jose, CA, 1983, pp. 146–160.

[46] R. Lorie, and A. Meier, “Using relational dbms for geographical databases,”
, vol. 2, pp. 243–257, 1984.

[47] R. Lorie and H.-J. Schek, “On dynamically defined complex objects and
SQL,” in , Bad
Münster am Stein-Ebernburg, Germany, Sep. 1988, LNCS vol. 334, New
York, NY: Springer-Verlag, pp. 323–328.

[48] W.S. Luk and S. Kloster, “ELFS: english language from SQL,”
, vol. 11, no. 4, pp. 447–472, Dec. 1986.

[49] D. McKeown, “MAPS: the organization of a spatial database system using
imagery, terrain, and map data,” Tech. Rep. CMU-CS-83-136, Department of
Computer Science, Carnegie-Mellon University, Pittsburgh, PA, July 1983.

[50] J. Ong, D. Fogg, and M. Stonebraker, “Implementation of data abstraction in
the relational database system INGRES,” , vol. 14, no. 1, March
1984.

28



Proc. IEEE 5th Int. Conf. Data Eng.

IEEE Trans. Software Eng.

Proc. SIGMOD 85

IEEE Trans. Knowl-
edge and Data Eng.

J. Visual Languages and Computing

ACM Trans. Database
Syst.

Proc. ASPRS-ACSM Annual Conv.

Proc. ACM SIGMOD Conf.
Eng. Design Applications

ACM Trans. Database Syst.

[51] B.C. Ooi, R. Sacks-Davis, and K. McDonell, “Extending a DBMS for ge-
ographic applications,” in , Los Ange-
les, CA, Feb. 1989, pp. 590–597.

[52] N. Roussopoulos, C. Faloutsos, and T. Sellis, “An efficient pictorial database
system for PSQL,” , vol. 14, no. 5, pp. 630–638,
May 1988.

[53] N. Roussopoulos and D. Leifker, “Direct spatial search on pictorial databases
using packed R-trees,” in , Austin, TX, May 1985, SIG-
MOD Rec., vol. 14, no. 4, pp. 17–31.

[54] N. Sarda, “Extensions to SQL for historical databases,”
, vol. 2, no. 2, pp. 220–230, June 1990.

[55] A. Sikeler, “Examination of storage structures for 3-dimensional objects (in
German),” Tech. Rep., University Kaiserslautern, 1985.

[56] T. Smith and A. Frank, “Very large spatial databases: report from the specialist
meeting,” , vol. 1, no. 3, pp. 291–309,
1990.

[57] R. Snodgrass, “The temporal query language TQUEL,”
, vol. 12, no. 6, pp. 247–298, June 1987.

[58] D. Steiner, M. Egenhofer, and A. Frank, “An object-oriented carto-graphic
output package,” in , Baltimore, MD,
March 1989, pp. 104–113.

[59] M. Stonebraker, B. Rubenstein, and A. Guttman, “Application of abstract data
types and abstract indices to CAD databases,” in

, San Jose, CA, 1983, pp. 107–113.

[60] M. Stonebraker, E. Wong, and P. Kreps, “The design and implementation of
INGRES,” , vol. 1, no. 3, pp. 189–222, September
1976.

29



Geographic Information Systems and Cartographic Modeling

Proc. 5th Int. Conf. Statis-
tical and Scientific Database Management

IBM Syst. J.

[61] C.D. Tomlin, .
Englewood Cliffs, NJ: Prentice-Hall, 1990.

[62] A. Westlake and I. Kleinschmidt, “The implementation of area and member-
ship retrievals in point geography using SQL,” in

, Charlotte, NC, Apr. 1990, LNCS
vol. 420, New York, NY: Springer-Verlag, pp. 200–218.

[63] M.M. Zloof, “Query-by-example: a database language,” , vol. 16,
no. 4, pp. 324–343, 1977.

30




