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Abstract—The spatial structure of base stations (BSs) in
cellular networks plays a key role in evaluating the downlink
performance. In this paper, different spatial stochastic models
(the Poisson point process (PPP), the Poisson hard-core process
(PHCP), the Strauss process (SP), and the perturbed triangular
lattice) are used to model the structure by fitting them to the
locations of BSs in real cellular networks obtained from a public
database. For the first three models, we apply the method of
maximum pseudolikelihood to fit them to the given data. Some
classical statistics in stochastic geometry cannot distinguish the
three fitted models conclusively. Thus, the coverage probability
is proposed as a more suitable metric. In terms of coverage, the
SP provides the best fit. Furthermore, we adopt a new fitting
method that minimizes the vertical average squared error and
fit the SP, the PHCP, and the perturbed triangular lattice model
to the given BS set. This way, fitted models are obtained whose
coverage performance matches that of the given BS set very
accurately. Finally, we introduce a novel metric, the deployment
gain, to measure how close a point set is to the PPP and to further
compare the performance of different models analytically.

Index Terms—Stochastic geometry, coverage probability, point
process, deployment gain, pseudolikelihood.

I. INTRODUCTION

In cellular networks, as the power of received signals and
interferences depends on the distances between the receiver
and base stations (BSs), the downlink performance is affected
by the spatial structure. System engineers and researchers often
use a regular hexagonal lattice or a square lattice [1]–[3] to
model the structure. But in reality, the BSs are not placed
so ideally, due to shrinking cell sizes and environmental con-
straints. As a consequence, they are more suitably modeled as
deployed randomly instead of deterministically, and stochastic
geometry is an efficient tool to analyze this kind of geometrical
configurations and provide theoretical insights. The critical
first step is the identification of accurate point process models
for the BSs, which is the focus of this paper.

A. Related work

Since the Poisson point process (PPP) [4]–[7] is highly
tractable, it is frequently used to model a variety of networks,
such as cellular networks [8]–[12], mobile ad hoc networks
[4]–[6], cognitive radio networks [13] and wireless sensor
networks [14]. For cellular networks, in [8], the authors
assume the distribution of BSs follows a homogeneous PPP
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and derive theoretical expressions for the downlink signal-to-
interference-plus-noise-ratio (SINR) complementary cumula-
tive distribution function (CCDF) and the average rate under
some assumptions. [9] is an extension of [8], in which the
authors model the infrastructure elements in heterogeneous
cellular networks as multi-tier independent PPPs. In [10], the
BSs locations are also modeled as a homogenous PPP, and the
outage probability and the handover probability are evaluated.
Although many useful theoretical results can be derived in
closed form for the PPP, the PPP may not be a good model
for real BSs’ deployments in homogenous networks, as will
be shown in our paper.

Indeed, the BS locations appear to form a more regular
point pattern than the PPP, which means there exists repulsion
between points, hence the hard-core processes and the Strauss
process might be better to describe them. The Matérn hard-
core processes [5]–[7] are often used to model concurrent
transmitters in CSMA networks [15]–[17]. In [17], the author
uses them to determine the mean interference in CSMA
networks, observed at a node of the process. In [18], a modified
Matérn hard-core process is proposed to model the access
points in dense IEEE 802.11 networks. But to the best of our
knowledge, no prior work has modeled the BSs in cellular
networks using hard-core processes.

The Strauss process has not been used in wireless networks,
but its generalization, the Geyer saturation process [19], is
fitted to the spatial structures of a variety of wireless network
types using the method of maximum pseudolikelihood in [20].
The difference between the two processes is that the Strauss
process is a regular (or soft-core) process, while the Geyer
saturation process can be both clustered and regular depending
on its parameters.

To evaluate the goodness-of-fit in [20], the authors compare
the statistics of the original data and the fitted model, such as
the nearest-neighbor distance distribution function, the empty
space function, the J function, the L function, and the residuals
of the model. Though these statistics can verify that the Geyer
saturation process is suitable to model the data set, they cannot
be used to compare different point processes, because they
cannot measure how suitable a point process is when it is fitted
to the data set. In this paper, all the processes mentioned above
are studied comprehensively, and we use different statistics to
compare their suitability as models for cellular networks.

The perturbed lattice, which is another soft-core model and
thus less regular than the lattice, can also be used to model
the BS locations. In [21], the authors consider the BSs as a
perturbed lattice network and analyze the fractional frequency
reuse technique. The degree of the perturbation is assumed
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to be a constant. But this constant may not be consistent
with real configurations of the BSs. In our work, perturbed
lattice networks with different degrees of the perturbation are
investigated.

B. Our Approach and Contributions

The objectives of this paper are to find an accurate point
process to model the real deployment of BSs and to develop an
approach that can be used to compare different deployments
of BSs.

Our work is based on the real deployment of BSs; we
have several point sets that denote the actual locations of BSs
collected from the Ofcom1 - the independent regulator and
competition authority for the UK communications industries,
where the data are open to the public. Table I gives the details
of the three point sets used in this paper. Note that these
point sets all represent the BSs of the operator Vodafone with
frequency band 900 MHz (GSM). Figs. 1-3 visualize these
point sets.
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Fig. 1. The locations of the BSs (the urban region).

To accomplish the goal of finding an accurate point process
to model the point sets, we have to first define the metrics
to evaluate the goodness of different models. Some classical
statistics in stochastic geometry, such as the J function and the
L function [5], can be used as the metrics. Nevertheless, sim-
ulations show they are not sufficient to discriminate between
different models. Since we study the point processes in the
context of wireless networks, it is natural to instead use a key
performance metric of cellular systems, namely the coverage
probability [5, Ch. 13], [8], [9]. It will be defined in Def. 7.

As [8] indicates, the PPP model and the lattice provide a
lower bound and an upper bound on the coverage probability,
respectively. Since the point sets appear to be regular and
their coverage probabilities lie between the PPP’s and the
lattice’s, we are interested in the point process models that lie
in between the two in terms of regularity, such as the Poisson
hard-core process (PHCP), the Strauss process (SP), and the

1Ofcom website: http://sitefinder.ofcom.org.uk/search
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Fig. 2. The locations of the BSs (the rural region 1).
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Fig. 3. The locations of the BSs (the rural region 2).

perturbed triangular lattice. In order to find the desired point
process, we use two different fitting methods. The first one
is the method of maximum pseudolikelihood [22], which is
the common method for model fitting in stochastic geometry.
The second one is fitting by minimizing the vertical average
squared error, a new method we propose, which is tailored to
the task at hand.

Using the first method, we fit the PPP, the PHCP, and
the SP to the point sets and determine the best fitted model.
Simulations indicate that the SP is the best, followed by the
PHCP and then the PPP. But there is still a gap between the
coverage probabilities of the SP and the corresponding point
set. The perturbed triangular lattice is not considered, since its
likelihood and pseudolikelihood are generally unknown.

In the second method, the intensity is assumed to be fixed to
the density of the given point sets. The PPP is not considered,
since it would result in the same model as with the first
method. The fitted models of the SP, the PHCP, and the
perturbed triangular lattice for the point sets are obtained. They
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TABLE I
DETAILS OF THE THREE POINT SETS

Operator Area (m×m) Center Location (latitude, longitude) Number of BSs
Urban region Vodafone 1500× 1050 (51.515◦ N, -0.132◦ W) 64

Rural region 1 Vodafone 78200× 48200 (52.064◦ N, -1.381◦ W) 62
Rural region 2 Vodafone 66700× 50000 (52.489◦ N, 0.704◦ W) 69

exhibit quite exactly the same coverage performance as the
given point sets.

At last, to compare the coverage performances of different
point sets or different models analytically, we propose a metric
called the deployment gain, which measures how close the
coverage curve of a point set or a point process model is to
that of the PPP. A larger deployment gain means the point
set or the model provides better coverage. For example, the
deployment gains of the three point sets are: urban region
> rural region 1 > rural region 2, which is also the rank of
their coverage curves from top to bottom. Moreover, and more
importantly, the deployment gain provides a simple yet highly
accurate way of using the analytical results available for the
PPP for the analysis of more realistic point process models.

The main contributions of this paper are summarized as
follows:

1) We use the coverage probability as a metric to compare
different point processes and publicly available point
sets, which is shown to be more efficient than the
classical statistics in stochastic geometry;

2) Through fitting the PPP, the PHCP, and the SP to the
given point set using the method of maximum pseudo-
likelihood, we discover that the SP has the best coverage
performance, while the PPP has the worst;

3) Through fitting the SP, the PHCP, and the perturbed
triangular lattice by minimizing the vertical average
squared error, we find that the fitted models have nearly
the same coverage probability as the given point set,
and thus, in terms of the coverage probability, they are
accurate models of the real deployments of the BSs;

4) We propose the deployment gain to analytically compare
the coverage probability performances of different point
sets or different models and to show how results for
the PPP can be applied to more accurate point process
models.

The rest of the paper is organized as follows. In Section II,
basic concepts of point processes are introduced. In Section
III, the PPP, the PHCP, and the SP are fitted to the point sets
using the method of maximum pseudolikelihood, and some
classical statistics, the coverage probability and the average
rate are used to test the goodness of fitted models. In Section
IV, the SP, the PHCP, and the perturbed triangular lattice are
used to model the given point set by the new fitting method.
Then we introduce the “distance” between the point set and
the PPP in Section V. Conclusions are drawn in Section VI.

II. SPATIAL POINT PROCESS MODELS

A. Overview
The spatial point processes we considered lie in the Eu-

clidean plane R2. Informally, a point process is a countable

random collection of points in R2. If it is simple (there is
only one point at each location a.s.), it can be represented as
a countable random set Φ = {x1, x2, . . .}, where xi ∈ R2 are
the points. Usually, it is characterized by a random counting
measure N ∈ N , where N is the set of counting measures on
R2. (N ,N) is the measurable space, where N is the σ-algebra
of counting measures. N(B) is a random variable that denotes
the number of points in set B ⊂ R2 for a point process Φ.
A concrete realization of Φ is denoted as ϕ. Hence ϕ(B) is
a deterministic counting measure that denotes the number of
points in B. See [5, Ch. 2] for details.

There are many kinds of point processes, such as the PPP,
cluster processes, hard-core processes and Gibbs processes [5,
Ch. 3]. They can be placed into three categories, the complete
spatial randomness (i.e., the PPP), clustered processes, and
regular processes. Clustering means there is attraction between
points, while regularity means there is repulsion. So the
probability of having a nearby neighbor in regular processes
is smaller than in the PPP and clustered processes. Since
regularity is good for interference minimization and coverage
optimization in wireless networks and the deployment of BSs
appears to be regular according to the point sets we collected,
some regular point processes, including the PHCP, the SP
and the perturbed triangular lattice, are considered. We focus
on the motion-invariant case of the PPP, the PHCP, and the
SP, and the stationary case of the perturbed triangular lattice.
A point process is stationary if its distribution is translation-
invariant and isotropic if its distribution is rotationally invariant
with respect to rotations about the origin. If a point process
is both stationary and isotropic, then it is motion-invariant.
A stationary PPP is also motion-invariant and also said to be
homogeneous [5].

B. The Poisson Point Process

Definition 1 (Poisson point process): The PPP with inten-
sity λ is a point process in R2 so that 1) for every bounded
closed set B, N(B) follows a Poisson distribution with
mean λ|B| (where | · | is the Lebesgue measure in two
dimensions and λ is the expected number of points per
unit area), 2) N(B1), N(B2), . . . , N(Bm) are independent if
B1, B2, . . . , Bm are disjoint.

C. The Strauss Process

The SP constitutes an important class of Gibbs processes.
Loosely speaking, Gibbs processes can be obtained by shaping
the distribution of a PPP using a density function f(ϕ) on
the space of counting measures N . The density function
is also called the likelihood function. Suppose f(ϕ) is a
function such that f(ϕ) > 0 implies f(ϕ′) > 0 whenever
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ϕ′ ⊆ ϕ, and Q is the distribution of a PPP with inten-
sity λ = 1. Regarding ϕ as a counting measure, we have∫
N Q(dϕ) = 1. If

∫
N f(ϕ)Q(dϕ) = 1, then the probability

measure P (Y ) on the measurable space (N ,N) that satisfies
P (Y ) =

∫
Y
f(ϕ)Q(dϕ), ∀Y ∈ N, is the distribution of a

Gibbs process.
Definition 2 (Strauss process): The SP is a Gibbs process

with a density function f : N 7→ R+ with

f(ϕ) = caϕ(R2) exp(−btR̃(ϕ)), (1)

where a, R̃ > 0, b ∈ R+∪∞, c is a normalizing constant, and
tR̃(ϕ) is the number of point pairs {x, y} of ϕ with ‖x−y‖ <
R̃.
R̃ is called the interaction radius. b determines the strength

of repulsion between points, which makes the SP suitable for
modeling regular point sets. In other words, the SP is a soft-
core process.

D. The Poisson Hard-core Process

Just as the name implies, the distance between any two
points of the PHCP is larger than a constant R, which is called
the hard-core distance.

Definition 3 (Poisson hard-core process): The PHCP is a
special case of the SP. Its density function is obtained by
setting b =∞ in (1), i.e.,

f(ϕ) =

{
0 if tR(ϕ) > 0

caϕ(R2) if tR(ϕ) = 0.
(2)

E. The Perturbed Triangular Lattice

Definition 4 (Triangular lattice): The triangular lattice L ⊂
R2 is defined as

L = {u ∈ Z2 : Gu}, (3)

where G = η

[
1 1/2

0
√

3/2

]
, η ∈ R+, is the generator matrix.

The area of each Voronoi cell is V = |detG| = η2
√

3/2,
and the density of the triangular lattice is λtri = V −1.

The triangular lattice is obviously not stationary. However,
we can make it stationary by translating the lattice by a random
vector within the range of the Voronoi cell of the origin. In
the rest of the paper, the triangular lattices considered are all
assumed to be stationary.

Definition 5 (Stationary triangular lattice): Let V (o) be
the Voronoi cell of the origin o in L. The stationary triangular
lattice is

Φ = {u ∈ Z2 : Gu+ Y }, (4)

where Y is uniformly distributed over V (o).
The perturbed triangular lattice is based on the stationary

triangular lattice and is also stationary.
Definition 6 (Perturbed triangular lattice): Let (Xu), u ∈

Z2, be a family of i.i.d. random variables, uniformly dis-
tributed on the disk b(o,R). The perturbed triangular lattice,
i.e. the triangular lattice with uniform perturbation on the disk
b(o,R), is defined as

Φ = {u ∈ Z2 : Gu+ Y +Xu}. (5)

III. FITTING BY PSEUDOLIKELIHOOD MAXIMIZATION

In this section, in order to find an accurate model, different
point processes (the PPP, the PHCP, and the SP) are fitted
to the point sets in Table I, using the method of maxi-
mum pseudolikelihood, which is a common fitting method
in stochastic geometry. The reason of using this method is
that the definitions of the PHCP and the SP are based on
their likelihood functions, thus maximizing the likelihood or
pseudolikelihood is the most direct way for fitting. Since
the likelihood function of the perturbed triangular lattice is
generally unknown, it is not considered in this section. The
fitting metric, which is used to compare the models, may be
drawn from the classical statistics in stochastic geometry or
some statistics relevant in wireless networks.

A. Fitting Method

For the PPP, the method of maximum pseudolikelihood
coincides with maximum likelihood [22], [23]. The likelihood
function for the PPP is f(ϕ) = e−(λ−1)|W |λϕ(W ), where
λ is the intensity and W is the sampling region. Then, the
maximum likelihood estimate is λ = ϕ(W )/|W |.

For the PHCP, R is decided by the method of maximum
profile pseudolikelihood [22], which means for different values
of R, we obtain their corresponding fitted PHCP models by
the method of maximum pseudolikelihood and select the value
of R whose fitted PHCP model has the largest maximum
pseudolikelihood. The other parameters in (2) are obtained by
fitting using the method of maximum pseudolikelihood given
R.

For the SP, R̃ is selected from the range [R, 4R] by the
method of maximum profile pseudolikelihood. By fitting, a
and b in the SP model (1) can then be obtained.

The reason why we use the method of maximum pseudo-
likelihood instead of maximum likelihood is that the likelihood
is intractable for the PHCP and the SP, while, except for the
computation of an integral over the sampling region, which
can be approximated by a finite sum, the pseudolikelihood
is known. As the conditional intensities take an exponential
family form, the pseudolikelihood can then be maximized
using standard statistical software for generalized linear or
additive models. The simulations are all done with the software
R [24].

B. Classical Statistics

Many statistics can be used to characterize the structure of a
point process or a point set, such as the nearest-neighbor dis-
tance distribution function G(r) and the empty space function
F (r). The J function, J(r) = (1−G(r))/(1−F (r)), measures
how close a process is to a PPP. For the PPP, J(r) ≡ 1.
J(r) > 1 at some r indicates the points are regular at these
distances, while J(r) < 1 means the points are clustered.
Hence, we can easily tell by visual inspection of J(r) whether
a point set or a point process is regular or clustered. But it is
hard to get more information that can be used to discriminate
different regular point processes.

Different from the J function that is related to the inter-
point distance, Ripley’s K function is related to point location
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correlations. It is a second-order statistic and can be defined
as K(r) = E[N(b(x, r)) − 1 | x ∈ Φ]/λ, for r ≥ 0, where λ
is the intensity. λK(r) can be interpreted as the mean number
of points y ∈ Φ that satisfy 0 < ‖y − x‖ ≤ r, given x ∈ Φ.
For the PPP, K(r) = πr2.

The L function is defined as L(r) =
√
K(r)/π. L(r) < r

at some r indicates the points are regular at r, while L(r) > r
means the points are clustered.

Consider the point set of the urban region. The L function
of the point set is plotted in Figs. 4-6 (black solid line). It is
seen that the point set is regular for r < 140,2 since L(r) < r
for r < 140. Clearly, L(r) = 0 for r < 39, which means no
two points are closer than 39. In this point of view, the point
set can be regarded as a realization of a hard-core process with
hard-core distance R = 39. This R value coincides with the
value obtained by fitting. The grey areas in these figures are
the pointwise maximum and minimum of 99 realizations of
the fitted PPP with λ = 4.06 × 10−5, the fitted PHCP with
R = 39 and the fitted SP with R̃ = 63, respectively.
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Fig. 4. L function of BSs of the urban region (the solid line) and the envelope
of 99 realizations of the fitted PPP model. The dashed line is the theoretical
L function of the PPP.

According to the figures, the PPP is not an appropriate
model, as the L function of the point set is not within the
envelope of the PPP. But the PHCP and the SP fit well.
Although the L function is more powerful than the J function
when used to compare the three models, it cannot distinguish
which of the PHCP and the SP is better. Other statistics are
needed.

C. Definition of Coverage Probability

It is sensible to use a statistic that is related with a standard
metric used in wireless networks to decide on the best model.
Simulations indicate that the coverage probability is such a
statistic. Generally speaking, the coverage probability is the
probability that a randomly located user achieves a given SINR
threshold with respect to one of the BSs.

2The unit of all distances in this paper is meter.
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Fig. 5. L function of BSs of the urban region (the solid line) and the envelope
of 99 realizations of the fitted PHCP model. The dashed line is the average
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Fig. 6. L function of BSs of the urban region (the solid line) and the envelope
of 99 realizations of the fitted SP model. The dashed line is the average value
of the L functions of 99 realizations of the fitted SP model.

A mobile user is assumed to attempt to communicate
with the nearest BS, while all other BSs act as interferers
(the frequency reuse factor is 1). The received power, the
interference, and in turn, the coverage probability, depend
on the transmit power of the BSs, the power loss during
propagation, and the random channel effects. We make the
following assumptions: (i) the transmit power of all BSs is
constant 1; (ii) the path loss exponent α = 4; (iii) all signals
experience Rayleigh fading with mean 1; (iv) the shadowing
effect is neglected; (v) the thermal noise σ2 is ignored, i.e.
SNR =∞, and the SINR reduces to the SIR.

Under these assumptions, the SIR has the form

SIRz =
h0‖x0‖−α∑

i:xi∈Φ\{x0} hi‖xi − z‖
−α , (6)

where {h0, h1, ...} ∼ exponential(1) and independent, and
x0 = arg minx∈Φ ‖x − z‖. We assume that the location z
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is in coverage if SIRz > T .
Definition 7 (Coverage probability): For a stationary pro-

cess, P(SIRz > T ) does not depend on z, and we call it the
coverage probability:

Pc(T ) = P(SIR > T ). (7)

It is the CCDF of the SIR and can also be interpreted as
the average area fraction in coverage.

On the plane, the theoretical expression of Pc(T ) for the
PPP with intensity λ has been derived in [8]:

Pc(T ) =
1

1 +
√
T (π/2− arctan(1/

√
T ))

. (8)

Since the coverage probability of the PPP does not depend
on the intensity, no fitting method based on adjusting the
intensity is possible.

D. Results for Coverage Probability

The regions where the BSs reside are not infinite. Thus, for
the fitted point process, which is stationary, we only consider
a finite region that has the same area and shape as the point
set.

In the finite region, Pc(T ) can be estimated by determining
the average fraction of the whole area where SIR > T . In
the following simulations, Pc(T ) is obtained by evaluating
3,000,000 values of SIR. In order to mitigate the boundary
effect, we only use the central [ 2

3 length× 2
3 width] area of the

entire region to compute Pc(T ). For the point sets, the SIRs of
3,000,000 randomly chosen locations (uniformly distributed)
are computed. For point processes, 3,000 realizations are
generated and for each realization, 1,000 randomly chosen
locations are generated. The SIR is evaluated at all chosen
locations.
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and different fitted point process models.

Consider the point set of the urban region. The coverage
curves of the experimental data and the fitted models of the
PPP, the PHCP, and the SP are shown in Fig. 7. Clearly,
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Fig. 8. The coverage curves of the experimental data of the rural region 1
and different fitted point process models.
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Fig. 9. The coverage curves of the experimental data of the rural region 2
and different fitted point process models.

the curves of three models are all below the curve of the
experimental data. Among the three point processes, the SP
provides the best fit, followed by the PHCP and then the PPP.

We use the other two point sets in Table I to test the
statistic. For the fitted models, the hard-core distances in the
two rural regions are R1 = 1194 and R2 = 1474 and the
interaction radii are R̃1 = 2120 and R̃2 = 5490. Fig. 8
and Fig. 9 show the coverage curves of the two point sets.
The PPP still performs the worst. In Fig. 9, the SP is better
than the PHCP, while in Fig. 8, the curves of the SP and the
PHCP are quite close, which means the two processes can be
considered equivalent when fitted to that point set. Generally,
it depends on the given point set. The SP is often better. Note
that this is not because the PHCP is a special case of the SP.
The method of maximum pseudolikelihood is used to do the
fittings, but a larger pseudolikelihood does not directly imply
a better matching coverage probability.
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TABLE II
FITTING RESULTS OF THE STRAUSS PROCESS

Parameters a b R̃ Actual intensity λ̂ Desired intensity λ λ̂/λ− 1
Urban region 1× 10−4 3.745 85 3.737× 10−5 4.063× 10−5 −8.02%

Rural region 1 2.44× 10−8 1.892 3000 1.622× 10−8 1.645× 10−8 −1.40%
Rural region 2 5.00× 10−8 0.599 5490 2.086× 10−8 2.069× 10−8 0.82%

TABLE III
FITTING RESULTS OF THE POISSON HARD-CORE PROCESS

Parameters a R Actual intensity λ̂ Desired intensity λ λ̂/λ− 1
Urban region 9.38× 10−5 78 3.885× 10−5 4.063× 10−5 −4.38%

Rural region 1 2.28× 10−8 2500 1.626× 10−8 1.645× 10−8 −1.16%
Rural region 2 2.37× 10−8 2000 1.864× 10−8 2.069× 10−8 −9.91%

E. Average Rate

We can also distinguish the best fitted model in terms of
the average rate in units of nats/Hz. Similar results can be
obtained. The average rate (or Shannon throughput) is defined
as γ = E[ln(1 + SIR)]. Denote γe, γp, γh, γs as the average
rates of the experimental data, the PPP, the PHCP, and the SP
respectively. Let the simulation parameters remain the same.
For the point set of the urban region, γe ≈ 1.786, γp ≈ 1.513,
γh ≈ 1.635, γs ≈ 1.682. For the point set of the rural region
1, γe ≈ 1.679, γp ≈ 1.506, γh ≈ 1.566, γs ≈ 1.572. For
the point set of the rural region 2, γe ≈ 1.634, γp ≈ 1.515,
γh ≈ 1.581, γs ≈ 1.605. Then we have γp < γh < γs < γe.
The theoretical average rate of the PPP is γ′p ≈ 1.49, which
is smaller than the values of simulations of the PPP.

IV. FITTING USING THE COVERAGE PROBABILITY

We have fitted the PPP, the PHCP, and the SP to the
given point sets by the method of maximum pseudolikelihood,
but none of these models precisely describes the coverage
probability of the data, and all their coverage curves are below
the curve of the point set. If we want to find a point process
that has a similar performance as the given point set, we cannot
just use the three fitted models, because they are all not regular
enough, due to the limitation of the fitting methods. In this
section, we propose a new fitting method, and fit the SP, the
PHCP, and the perturbed triangular lattice to the point sets in
Table I.

A. Fitting Method

We assume the intensity of the fitted model is the same as
the given point set. By this new method, the coverage curve
of the fitted model should have the minimum difference from
that of the given point set.

Definition 8 (Vertical average squared error): The vertical
average squared error, denoted as Evas, measures the differ-
ence between two coverage curves. It is defined as:

Evas(a, b) =
1

b− a

∫ b

a

(
Pc1(t)− Pc2(t)

)2

dt, (9)

where a, b ∈ R, t is the SIR threshold in dB, and Pc1(t),
Pc2(t) denote two coverage curves.

Under the condition of the fixed intensity, the relevant
parameters in the model are adjusted to find the model that
has the minimum vertical average squared error between
its coverage curve and the given point set’s. Here, we set
a = −9.38 dB and b = 16.07 dB (for the PPP, Pc(a) = 0.9
and Pc(b) = 0.1), because [0.1, 0.9] is the coverage probability
range where the curves differ the most and [−10, 16] dB is a
reasonable SIR interval.

B. The SP and The PHCP

In the new fitting method, the intensity of the fitted model
is fixed. Thus, the PPP is not considered. As the accurate
intensity values of the SP and the PHCP are unknown, given
the values of parameters in (1) and (2), it is not quite suitable
to use the method for the two processes. But there are some
approximations of the intensity for the SP [25], e.g.,

λ ≈W (aΓ)/Γ, (10)

where W (x) is Lamberts W function [26] and Γ =
(
1 −

exp(−b)
)
πR̃2. This is the Poisson-saddlepoint approximation

[25], which is more accurate than the mean field approxima-
tion.

If we use the approximated intensity as (10) indicates in
the fitting method for the SP, we have to adjust the three
parameters a, b, and R̃ in (1) to minimize the vertical average
squared error. Note that, as b increases, the strength of the
repulsion between the points in the SP increases, and as
R̃ increases, the repulsion range increases. Both adjustments
increase the regularity of the process. From (10), we have
a ≈ λ exp(λΓ). a increases as b and R̃ increase with λ fixed.
So in order to increase the regularity of the SP with fixed
intensity, we can fix b, increase R̃ and a, or fix R̃, increase
b and a according to (10). We can also first increase a, and
then adjust b and R̃. But in this way, the regularity may not
increase, or even decrease for some b and R̃. To get a more
regular model, we can compare models with different settings
of b and R̃ in simulations. Above all, we use the three methods
to obtain the fitting results of the SP in simulations.

Given a point set, to obtain a fitted SP, we can first fit
the SP to the point set using the method of the maximum
pseudolikelihood, and then based on the parameters we get,
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increase the regularity to minimize the vertical average squared
error. Table II shows the fitting results of the SP for the
three point sets in Table I. As shown in Fig. 10, for each
fitted model, the coverage curve matches the one of the
corresponding point set very closely. Note that the simulation
is not perfectly accurate, since the number of realizations of
the point process used to calculate the coverage probability is
limited to 3,000; also, when calculating the vertical average
squared error, we only compute the average over a finite
number of sample points on the coverage curve; and when
we increase b and R̃, the step width is not infinitesimal. We
say an SP model has the “minimum” vertical average squared
error, if Evas < 10−5.

The fitted SP is not unique. For some different values of
a, we can find different fitted models, which satisfies Evas <
10−5, by adjusting b and R̃. For instance, the SP with a =
1.1× 10−4, b = 2.547, R̃ = 92 is also a fitted model for the
urban region, which is shown as the curve of another fitted SP
model in Fig. 10.
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Fig. 10. The coverage curves of the experimental data and the fitted SP
models. The curves of the rural area 1, not shown in this figure, are very
similar to those of the rural area 2.

Since the PHCP is a special case of the SP, its approximated
intensity can be obtained by setting b = ∞ in (10), λ ≈
W (aπR2)/(πR2). To increase the regularity of the PHCP with
fixed intensity, we can increase R. Table III shows the fitting
results of the PHCP for the three point sets. The coverage
curves of the fitted models and their corresponding point sets
are visually indistinguishable, as shown in Fig. 11.

Although the models are fitted well to the point sets, there
are two main shortcomings of the fitting for the SP and the
PHCP. One is that the actual intensity is not the same as the
density of the given point set as shown in Table II and III, and
the difference can be as large as 10%. Note that each value
of the actual intensity is obtained by averaging over 10,000
independent realizations of the model.

The other drawback is that we may not get a well fitted
model for some point set. In simulations, we use the function
rStrauss in the R package spatstat [27] to generate realizations
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Fig. 11. The coverage curves of the experimental data and the fitted PHCP
models. The curves of the rural area 1, not shown in this figure, are very
similar to those of the rural area 2.

for the SP and the function rHardcore for the PHCP. In
rStrauss and rHardcore, the coupling-from-the-past (CFTP)
algorithm [28] is used, but it is not practicable for all parameter
values. Its computation time and storage increase rapidly with
a, R̃ and R. For example, for a point set that has a coverage
curve close to that of the triangular lattice, we cannot get the
fitted SP or PHCP, due to the limited storage and time. It
turns out, though, that the three point sets in Table I are not
too regular to use rStrauss and rHardcore.

C. The Perturbed Triangular Lattice

There are no such shortcomings described in the previous
subsection when the perturbed triangular lattice is fitted by the
new method. The reasons are 1) the intensity is fixed once η
is fixed; 2) as R increases from 0 to ∞, the coverage curve
of the perturbed triangular lattice degrades from that of the
triangular lattice to that of the PPP, and we can easily get the
realizations of the perturbed triangular lattice for all values
of η and R. To do the fitting, we first compute η, and then
increase R from 0 to find the fitted model.

Consider the point set of the urban region. The intensity
of the point set is λ = 4.06 × 10−5. Equating λtri = λ,
we get η = 168.57. Fig. 1 shows the locations of the BSs
in the urban region. Figs. 12-14 give the realizations of the
fitted PPP, the triangular lattice, and the triangular lattice with
uniform perturbation on the disk b(o, 0.52η), respectively. To
compute the coverage probability of the triangular lattice with
η = 168.57, the lattice is generated on the same region as
the point set. Under the same simulation conditions as those
in Section III, the coverage probability is obtained, which is
shown in Fig. 15. As expected, the coverage probability of
the lattice is larger than that of the given point set. The lattice
provides an upper bound on the coverage probability.

To compare the coverage performances of the perturbed
triangular lattices with the PPP and the triangular lattice, we
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Fig. 12. A realization of the PPP fitted to the urban data set.
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Fig. 13. A realization of the triangular lattice on the urban region. The
dashed disks have centers at the lattice points and their radii are 0.52η.
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Fig. 14. A realization of the triangular lattice with uniform perturbation
on the disk b(o, 0.52η) fitted to the urban data set.
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Fig. 15. The coverage curves of the experimental data (the urban region),
the triangular lattice, the triangular lattice with uniform perturbation on
the disk b(o, 0.52η) and the PPP.

simulate the cases with R = 0.2η, 0.5η and 0.8η. Fig. 16
shows the coverage curves. As expected and observed in the
figure, the coverage probability degrades as R increases. As
R → ∞, the perturbed triangular lattice approaches the PPP
with intensity λ = 4.06×10−5. Therefore, the coverage curves
of the perturbed triangular lattices with different R spread out
the region between the PPP and the triangular lattice. It is thus
guaranteed that we can obtain the desired perturbed triangular
lattice that is fitted tightly to a point set.

For the point set of the urban region, the fitting value of
R is R = 0.52η. Fig. 13 indicates that the disks centered at
the triangular lattice points with radii 0.52η overlap slightly,
as the distance between each two triangular lattice points is η.
In Fig. 14, a realization of this perturbed triangular lattice is
shown. The coverage curves of this perturbed triangular lattice
and the point set closely overlap, as shown in Fig. 15. For the
point sets of the rural region 1 and the rural region 2, the

fitting values are R1 = 0.70η and R2 = 0.74η, respectively.
So the point set of the urban region is the most regular of the
three, followed by the point set of the rural region 1 and then
the point set of the rural region 2.

To obtain a point set from the model that has approximately
the same performance of the coverage probability as the given
point set, we can generate a realization of the triangular lattice
with uniform perturbation on the disk b(o,R). Although the
coverage curve of the realization may have some deviations,
its average, the coverage probability, is quite exactly that of
the point set.

Thus, we can model the given point set as a realization
of the triangular lattice with uniform perturbation on the
disk b(o,R), where R can be determined by minimizing the
vertical average squared error, which is of great significance in
practice. When analyzing performance metrics that are related
with the distribution of the BSs in real cellular networks, we
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Fig. 16. The coverage curves of the triangular lattice, the perturbed triangular
lattices and the PPP.

can use the perturbed triangular lattice instead of the lattice or
the PPP to model the BSs. Although the perturbed triangular
lattice is not as tractable as the PPP, it still has some desirable
properties. For the PPP, the distribution of the area of the
Voronoi cell is usually approximated by a generalized gamma
function [11], [29], [30]. The area is unbounded for the PPP,
while for the perturbed triangular lattice, the area is bounded
and depends on R.

V. DEPLOYMENT GAIN

Here we define a metric that measures how close the point
set is to the PPP. This metric can be considered as a “distance”
between the point set and the PPP whose coverage curve
only depends on the SIR threshold T . We call this metric the
deployment gain. It is a function of the coverage probability
and is a gain in SIR, relative to the PPP provided by the
deployment.

Definition 9 (Deployment gain): The deployment gain, de-
noted by Sg(pt), is the SIR difference between the coverage
curves of the given point set and the PPP at a given target
coverage probability pt.

As such, it mimics the notion of the coding gain3 commonly
used in coding theory. We can evaluate different deployment
gains at different pt, for different considerations. In the rest
of the paper, we choose pt = 0.5. At this target probability,
the coverage curves are steep, and the gap between curves is
easy to recognize. More importantly, Sg(0.5) gives a good
approximation of the average deployment gain, which is,
briefly speaking, the value by which the coverage curve of
the PPP is right shifted such that the difference between the
new curve and the curve of the point set is minimized.

Definition 10 (Average deployment gain): Let the differ-
ence between two curves be the vertical average squared error

3Coding gain [31, Ch. 1], always a function of the target bit-error-rate
(BER), is a measure to quantify the performance of a given code, and is
defined by the difference in minimum signal-to-noise-ratio (SNR) required to
achieve the same BER with and without the code.

defined in (9). The average deployment gain, denoted by Ŝg ,
is then defined as:

Ŝg = arg min
x

∫ b

a

(
P th
c (t− x)− P ed

c (t)

)2

dt, (11)

where a = −9.38 dB and b = 16.07 dB, P th
c (t) is the

theoretical value of the coverage probability for the PPP, and
P ed
c (t) is the experimental value of the coverage probability

for the data.
For fixed α, the theoretical expression of the coverage

probability of the PPP [8] is

P th
c (T ) =

1

1 + ρ(T, α)
, (12)

where ρ(T, α) = T 2/α
∫∞
T−2/α 1/(1 + uα/2)du. For α = 4,

P th
c (T ) is equal to Pc(T ) in (8).
The average deployment gain Ŝg is a measure of regularity.

The point set with a larger average deployment gain has a
better performance than the one with a smaller value. For
the triangular lattice, when α = 4, Ŝlg = 4.38 dB, which is
the maximal value of the average deployment gain. Similar to
Ŝg , Sg(0.5) is also a measure of regularity and satisfies that
|Sg(0.5) − Ŝg|/Ŝg < 5%, which is verified in simulations.
Hence, we can evaluate Sg(0.5) instead of Ŝg in practice,
since Sg(0.5) is much easier to obtain.
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Fig. 17. The coverage curves of the experimental data and the PPP and the
curves of the PPP right shifted by 2.09 dB, 1.28 dB and 1.10 dB, which are
the average deployment gains (α = 4).

Fig. 17 shows the coverage curves of the experimental data
and the PPP and the right shifted curves of the PPP by the
average deployment gains, when α = 4. As the figure shows,
the right shifted curve of the PPP and the curve of the point set
are well matched. For the point sets of the urban region, the
rural region 1 and the rural region 2, the average deployment
gains are, respectively, Ŝg0 = 2.09 dB, Ŝg1 = 1.28 dB and
Ŝg2 = 1.10 dB. While, the deployment gains at pt = 0.5
are, respectively, Sg0(0.5) = 2.07 dB, Sg1(0.5) = 1.26 dB
and Sg2(0.5) = 1.08 dB, which are very close to the average
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deployment gains. Because Sg0(0.5) > Sg1(0.5) > Sg2(0.5),
in terms of the deployment gain, the deployment of the point
set of the urban region is the best, followed by the point set
of the rural region 1 and then the point set of the rural region
2.
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Fig. 18. The coverage curves of the experimental data (the urban region) and
the curves of the PPP right shifted by the corresponding average deployment
gains Ŝg = 2.93, 2.36, 2.11, 2.09, 2.10, 2.19 (dB) under different values of
α = 2.5, 3, 3.5, 4, 4.5, 5.

In the above case, the path loss exponent α = 4 is fixed.
If the value of α varies, Sg(0.5) and Ŝg will also change.
Fig. 18 shows the coverage curves of the experimental data
(the urban region) and the curves of the PPP right shifted
by the corresponding Ŝg under different values of α. For the
triangular lattice, as the parameter η of the triangular lattice
in the SIR can be eliminated, the coverage probability and
the average deployment gain do not depend η. Fig. 19 shows
the deployment gains Sg(0.5) and the average deployment
gains Ŝg of all point sets and the triangular lattice when α
takes different values, which indicates that Ŝg and Sg(0.5)
are not monotonic as a function of α, but first decrease and
then increase as α increases from 2.5 to 5. In this figure, the
lines or dashed lines indicate the average deployment gains,
and the marks indicate the deployment gains. The inequality
|Sg(0.5) − Ŝg|/Ŝg < 5% is also satisfied here. The figure
also reveals that Sg0(0.5) > Sg1(0.5) > Sg2(0.5) for all
α ∈ {2.5, 3, 3.5, 4, 4.5, 5}, and the deployment gain of the
triangular lattice gives an upper bound.

We have demonstrated that in all cases considered, the
coverage probability is very closely approximated by the
coverage curve of the PPP, right shifted along the SIR axis
by the deployment gain. This general behavior has important
implications for the analysis of point process models that are
more accurate than the PPP: for the performance evaluation
of an arbitrary cellular model, we can simply take the value
analytically obtained for the PPP, and adjust the SIR threshold
T by the deployment gain.
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Fig. 19. The deployment gains Sg(0.5) and the average deployment gains
Ŝg of the experimental data and the triangular lattice when α takes different
values. (Sg(0.5): the marks, Ŝg : the lines or dashed lines.)

VI. CONCLUSION

We propose a general procedure for point process fitting
and apply it to publicly available base station data. To the
best of our knowledge, this is the first time public data was
used for model fitting in cellular systems. We also define the
deployment gain, which is a metric on the regularity of a point
set or a point process, and greatly simplifies the analysis of
general point process models.

In this paper, two methods are used to fit different point
processes to real deployments of BSs in wireless networks in
the UK. One is the method of maximum pseudolikelihood, the
other is a new method which minimizes the vertical average
squared error between the point process model and the point
set. The latter method is shown to be more effective than the
former.

Further, the deployment gain is defined to compare the
coverage performances of different point sets analytically,
which has considerable practical significance in system design.
For example, it can help guide the placement of additional
BSs and judge the goodness of a concrete deployment of BSs,
which includes recognizing how much better the deployment is
than the PPP and how much the deployment could be improved
theoretically.

Our work sheds light on real BSs modeling in cellular
networks, in terms of coverage. For a specified BS data
set, we can use the methodology in this paper to model it.
The SP, the PHCP and the perturbed triangular lattice are
shown to be accurate models. However, for detailed theoretical
analyses, these models may not be suitable. They do not have
the tractability of the PPP, since their probability generating
functionals are unknown. We can carry out the analysis for the
PPP instead and then add the deployment gain to the coverage
curve to evaluate the performance of the real deployments.
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