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Abstract. We consider a broad class of stochastic lattice predator-prey models whose main

features are overviewed. In particular, this article aims at drawing a picture of the influence

of spatial fluctuations, which are not accounted for by the deterministic rate equations, on the

properties of the stochastic models. Here, we outline the robust scenario obeyed by most of

the lattice predator-prey models with an interaction à la Lotka-Volterra. We also show how a

drastically different behavior can emerge as the result of a subtle interplay between long-range

interactions and a nearest-neighbor exchange process.

1. Introduction. Understanding biodiversity is a central challenge in modern evolution-

ary and theoretical biology [May]. In this realm, studying population dynamic models to

understand and identify the mechanisms allowing for coevolution of competing species

is an important topic. The latter is classically addressed by considering deterministic

nonlinear differential equations. Within this approach, the set of equations devised many

decades ago by Lotka and Volterra [Lot] is certainly a paradigm. These authors consid-

ered two coupled nonlinear differential equations mimicking the evolution of a two-species

competing system. Hence, within their model, Lotka and Volterra demonstrated that the

coexistence of the species always occurs and that the densities of the populations regularly

oscillate in time. In spite of their popularity, the Lotka-Volterra equations have often been

criticized as being biologically unrealistic and mathematically unstable [May]. Actually,
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to gain some more realistic and fundamental understanding on population coevolution

and biodiversity, it is important to take into account discrete spatial degrees of freedom by

going beyond the deterministic picture. In this context, various stochastic predator-prey

models have recently been investigated. In this article, based on Refs. [Mob1,Mob2] where

more details can be found, we aim at drawing a brief overview of the robust properties

of these lattice systems with Lotka-Volterra interactions. Also, by considering a simple

ecological model, we will show how the subtle interplay between the degree of mixing of

a stochastic system and long-range interaction can give rise to surprising features.

2. Deterministic rate equations. It is useful to first review some results of the deter-

ministic approach for the two-species system, where predators (A) and prey (B) interact

according to the following reactions: A → ⊘ (death rate µ), A + B → A + A (preda-

tion rate λ) and A → A + A (reproduction rate σ). Neglecting any spatial variations of

the densities a(t) and b(t) of predators and prey, respectively, one obtains the classical

Lotka-Volterra equations:

ȧ(t) = λa(t)b(t) − µa(t); ḃ = σb(t) − λa(t)b(t). (1)

A linear stability analysis of these equations show that the densities oscillate around the

center (neutrally stable) fixed point (ac, bc) = (σ/λ, µ/λ) with a characteristic frequency

f =
√

µσ/2π. In addition, the existence of a conserved first integral K(t) = λ[a(t) +

b(t)] − σ ln a(t)− µ ln b(t) implies oscillatory kinetics and coexistence in the whole phase

portrait, which is characterized by cyclic trajectories.

As the above deterministic cycles are unstable against any perturbations and the so-

lutions of Eqs. (1) display amplitudes depending on the initial conditions, which is clearly

an unrealistic feature, the rate equations are often rendered more realistic by including

growth-limiting terms. For instance, by assuming that the prey carrying capacity is ρ,

one is led to the following equation for species B:

ḃ(t) = σb(t)[1 − b(t)/ρ] − λa(t)b(t). (2)

In this case, the new rate equations exhibit an extinction threshold and have two sta-

ble fixed points: (i) (0, ρ), corresponding to a system full of prey and extinction of the

predators, which is a stable node when λ < λc = µ/ρ (extinction threshold); and (ii)

([1 − µ/λρ]σ/λ, µ/λ), which is associated with the coexistence phase and is either a sta-

ble node (near the extinction threshold) or a focus (deep in the coexistence phase). The

existence of a Lyapunov function ensures that these fixed points are actually globally

stable [May, Mob1, Mob2].

3. The stochastic lattice Lotka-Volterra model (and its variants). To probe the

deterministic approach and gain some understanding on the role of spatial fluctuations

and correlations, we have studied a stochastic lattice Lotka-Volterra model (SLLVM). The

latter is formulated in the natural language of reaction-diffusion systems and is defined on

a d−dimensional lattice, on which the above Lotka-Volterra reactions are implemented. In

our modeling, we mimic spatial limitation of the resources by assuming that each lattice

site can be at most occupied by one predator or one prey (site restriction). Monte Carlo

simulations of the SLLVM show that, in dimensions d > 1, the phase portrait displays
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Fig. 1 (color online). Reproduced from [Mob2]. Snapshots of the time evolution (time increases

from left to right) of the SLLVM on a 512 × 512 lattice, with rates σ = 4.0, µ = 0.1, λ = 2.2.

The red (light grey), blue (grey) and dark dots respectively represent the prey, predators and

empty sites. Initially the system is homogeneous with densities a(0) = b(0) = 1/3.

qualitatively the behavior predicted by the rate equations with growth-limiting term (see

Fig. 1 of [Mob2]). In fact, it is found that above some critical threshold both predators

and prey coexist. The related fixed point is either a node or, for high predation rate, a

focus which is associated with spiraling flows. In the latter case, as shown in Fig. (1),

rich spatiotemporal patterns of persistent predator-prey “pursuit and evasion” waves (see

e.g. Murray’s book [May]) develop and translate into erratic damped population density

oscillations [Mob2]. Obviously these features are not captured by the rate equations

(1,2). In finite systems, the quasiperiodic fluctuations appear on a global scale, with

amplitudes vanishing with the system size. We have analyzed the spatial structure and

the time evolution of the above complex patterns by computing the stationary two-point

correlation functions and the power spectrum [Mob2]. This has led us to an understanding

of the typical size of the clusters reported on Fig. (1, rightmost) and has shown that the

characteristic frequency of the SLLVM is markedly smaller than the ones predicted by the

deterministic equations [Mob2]. A completely different picture emerges when the reactive

fixed point is a node, just above the extinction threshold (λc) for the predators. Here, one

observes clouds of predators effectively diffusing in a sea of prey (see Fig. 3 of [Mob2]). At

the critical value, the system undergoes an active-to-absorbing phase transition. Various

critical exponents were computed (both in 2D and 3D) and found to be in agreement

with those of the directed percolation (DP) [Jans]. By deriving an equivalent field-theory

action from the master equation of the SLLVM and by mapping it (near λc) onto Reggeon

field-theory, we provided analytic arguments supporting the numerical indications that

such a transition is in the DP universality class [Mob2]. Similar DP exponents were found

numerically in many other stochastic predator-prey models (see e.g. [Ant]). As a further

probe of the robustness of the above scenario, we have considered different variants of the

stochastic model, namely the SLVVM supplemented with (i) diffusing predators and prey

(with same diffusivities); (ii) biased diffusion of both species; (iii) predators “following”

the prey, with biased hoping rates towards neighboring sites occupied by prey. In all these

cases, the above features were reproduced. Let us also note that for SLLVM without site

restriction it was shown that predators and prey always coexist in 1D and 2D [Wash].
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Fig. 2. Reproduced from [Mob1]. Effect of stirring on the phase portrait of the 2D stochastic

lattice predator-prey with NNN interaction (rates η = µ = σ = 1, δ = 10, system size: 256×256).

From left to right: ‘stirring’ rate D = 0, 2, 5.

4. Mean-field behavior through short-range stirring. We have outlined the robust

properties of most lattice predator-prey models. Among these characteristics, we have

seen that deep in the coexistence phase the systems display complex clusters of activities

at the interfaces of which the dynamics takes place. These features are not affected by

the diffusion of either predators or prey. On the other hand, it is important to identify

if there are ecological mechanisms able to render stochastic predator-prey models more

tractable by means of deterministic equations. This requires to find processes allowing to

efficiently stir the system by bringing the reactants within the interfaces of the clusters.

Arguably, the simplest candidate is the process allowing any neighboring sites to exchange

their content (a prey can avoid an incoming predator): X + Y → Y + X, with X, Y ∈
{A, B,⊘}. To test the efficiency of this ingredient, we have focused on a model whose

mean-field (MF) behavior is markedly different from that of Eqs. (1,2). Actually, it is

natural to split the Lotka-Volterra predation reaction by introducing two independent

time scales and the new processes: (i) reproduction of the predators in the vicinity of

a prey (favorable environment), according to the next-nearest-neighbor (NNN) reaction

A+⊘+B → A+A+B (with rate proportional to δ); and (ii) consumption of a prey by a

neighboring predator, as A+B → ⊘+B (with rate proportional to η). The MF equations

for this model, which can be viewed as comprising also a nearest-neighbor reproduction

reaction (A + ⊘ → A + A) taking place on a much longer time scale, read [Mob1]

ȧ(t) = δa(t)b(t)[1 − a(t) − b(t)] − µa(t); ḃ(t) = σb(t)[1 − a(t) − b(t)] − ηa(t)b(t). (3)

In stark contrast to Eqs. (1,2), these equations admit two stable fixed points above a given

threshold δc: one is (always) a node and corresponds to an absorbing steady state (system

full of prey), while the other fixed point (either a node or a focus) is reactive (coexistence

of prey, with a density < 1/2, and predators). Hence, according to MF theory, for δ > δc

this model undergoes a first-order phase transition. To check when these MF predictions

actually apply to the stochastic lattice model, the latter has been numerically simulated

in the presence of the exchange process (with stirring rate proportional to D) [Mob1]. It

turns out that there is a subtle interplay between the NNN interaction and the exchange

process. As illustrated in Fig. 2, the latter can be summarized as follows: (a) For vanishing

mixing (D small compared to the other rates), fluctuations have a drastic effect and

invalidate the MF picture in dimensions 1 < d ≤ 4, where the system undergoes an active-
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to-absorbing state transition belonging again to the DP universality class. (b) When

one allows for short-range particle exchange (D > 0), the phase portrait flows change

dramatically (Fig. 2, center). (c) When the exchange process becomes sufficiently fast

(e.g. D ≈ δ) a reactive fixed point is also available (in any dimension), as demonstrated

in Fig. 2 (right). In this case, the system undergoes a first-order phase transition as

predicted by the MF theory and, for ‘fast’ stirring, the latter becomes very accurate. We

have also found that the stable reactive fixed point is either a node or a focus. In the

latter case, the coexistence phase is again characterized by moving activity fronts but, as

the system is more mixed, these clusters appear less prominent than in Fig. 1 [Mob1].

5. Conclusion. We have outlined the robust features of a class of stochastic lattice

models with Lotka-Volterra interactions and discussed how their deterministic (mean-

field) descriptions are altered by spatial fluctuations and correlations. We have also shown

that the rate equations can aptly describe the dynamics of a stochastic model in the

presence of an efficient short-range exchange process. We have illustrated this point by

considering a system with NNN interaction which exhibits either a first- or second-order

phase transition, depending on the stirring rate.
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