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Abstract—Mission-driven sensor networks usually have special lifetime requirements. However, the density of the sensors may not be

large enough to satisfy the coverage requirement while meeting the lifetime constraint at the same time. Sometimes, coverage has to

be traded for network lifetime. In this paper, we study how to schedule sensors to maximize their coverage during a specified network

lifetime. Unlike sensor deployment, where the goal is to maximize the spatial coverage, our objective is to maximize the spatial-

temporal coverage by scheduling sensors’ activity after they have been deployed. Since the optimization problem is NP-hard, we first

present a centralized heuristic whose approximation factor is proved to be 1
2 , and then, propose a distributed parallel optimization

protocol (POP). In POP, nodes optimize their schedules on their own but converge to local optimality without conflict with one another.

Theoretical and simulation results show that POP substantially outperforms other schemes in terms of network lifetime, coverage

redundancy, convergence time, and event detection probability.

Index Terms—Wireless sensor network, coverage, sensor scheduling, distributed protocol, parallel algorithm.
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1 INTRODUCTION

IN wireless sensor networks, there is a trade-off between
network lifetime and sensor coverage. To achieve a

better coverage, more sensors have to be active at the same
time, then more energy would be consumed and the
network lifetime is reduced. On the other hand, if more
sensors are put into sleep to extend the network lifetime,
the coverage will be adversely affected. The trade-off
between network lifetime and sensor coverage cannot be
simply solved at the deployment stage, because it is hard
to predict the network lifetime requirement, which
depends on the application and may change as the mission
changes. For example, in a surveillance application, the
initial mission is to monitor the battle field for 6 hours. As
the battle goes on, the commander finds that the battle may
have to last for 10 hours. Then, the mission of the sensor
network is changed, which requires the network to last for
10 hours. Since it may not be possible to deploy more
sensors, some sensors have to sleep longer during each
duty cycle to extend the network lifetime. As a result,
sensor coverage needs to be traded for network lifetime.

The coverage issue in sensor networks has been studied
extensively [1], [2], [3], [4], [5], [6], where scheduling
algorithms are proposed to maximize the network lifetime
while maintaining some predefined coverage degree.1

However, if the same coverage degree is maintained all
the time, the lifetime requirements may not be satisfied as

network condition and mission change. For example, the
sensor density may drop over time and the coverage
requirement may vary according to the application’s
demand. Different from existing works, we study how to
schedule sensor nodes to maximize coverage under the
constraint of network lifetime. This reverse formulation is
especially useful when the number of nodes is not enough
to maintain the required coverage degree for a specified
time period, as shown in the above example.

In this paper, we aim to resolve the conflict between the
static status of sensor deployment and the dynamic nature
of mission requirements. As mission dynamically changes,
the lifetime and coverage requirement may not be satisfied
at the same time. Then, the coverage needs to be traded for
the network lifetime. Our work is thus complementary to
the existing work, which can be applied when the sensor
density is sufficient to sustain both the lifetime and
coverage requirement. To fulfill this goal, we have to
consider the coverage in both spatial and temporal domain.
In particular, we define a new spatial-temporal coverage
metric, in contrast to the traditional area coverage. The
spatial-temporal coverage of each small area is defined as
the product of the area size and the length of the period
during which the area is covered. Then, our objective
becomes how to schedule the sensor’s on-period to
maximize the global spatial-temporal coverage, calculated
as the sum of individual spatial-temporal coverage over all
the areas. This new formulation arises naturally from the
mission critical applications with the network lifetime
constraint and differentiates itself from most existing works
which only consider the spatial domain.

Consider a surveillance example shown in Fig. 1a. Three
sensors monitor a rectangular area, where the overlap
between sensor 1 and senor 2 is four units, and the overlap
between sensor 2 and sensor 3 is one unit. Suppose the
network is required to provide full coverage and operate for
10 hours. Since the battery lifetime is 6 hours for each
sensor, the coverage and lifetime requirement cannot be
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satisfied. Most existing coverage-oriented algorithms in
such a case would activate the three sensors simultaneously
for 6 hours, without considering the network lifetime
constraint. However, we trade the coverage for lifetime by
dividing the mission duration of 10 hours into 10 cycles,
and within each cycle, each sensor is active for 6=10 ¼ 0:6
hour. Then, the scheduling issue becomes how to place the
0.6 hour in each cycle so that the spatial-temporal coverage
of the overlapping regions is maximized. Fig. 1b shows two
solutions. From the spatial coverage point of view, the two
schedules make no difference because each sensor covers
the same area for the same length of time in different
schedules. But from the spatial-temporal perspective,
schedule I is better because the four-unit overlapping
region is covered for a full cycle in schedule I but for only
0.6 cycle in schedule II. The spatial-temporal coverage of the
overlapping regions in schedule I is 4� 1þ 1� 1 ¼ 5 and
4� 1þ 1� 0:6 ¼ 4:6 in schedule II.

The above example shows that different schedules may
result in different coverage redundancy. Although the
optimal solution for this example can be easily found
(schedule I is actually the optimal solution) in a complex
network setting where thousands of sensors are arbitrarily
deployed, we need a systematic way to address the problem.
Our contribution in this paper can be summarized as
follows: First, we formalize the sensor scheduling problem
in the spatial and temporal dimension with the objective to
maximize the spatial-temporal coverage with network life-
time constraint. We further prove that it is equivalent to
minimize the coverage redundancy under certain condi-
tions. Second, we prove that the problem is NP-hard and
propose a centralized greedy algorithm with an approxima-
tion factor of 1

2 . Third, we propose a distributed heuristic, the
parallel optimization protocol (POP), where nodes not only
optimize their schedules on their own but also converge to
local optimality without conflict with one another.

The rest of the paper is organized as follows: Section 2
presents the problem formulation. Section 3 shows the
problem complexity and proposes a centralized approxima-
tion algorithm. Section 4 presents the distributed heuristic.
Performance evaluations are done in Section 5. Section 6
gives related work and Section 7 concludes the paper.

2 PROBLEM FORMULATION

When the sensor density is not sufficient to satisfy both the
lifetime and coverage requirements, the coverage has to be
traded for lifetime. In such a case, the sensors have to make

their best efforts to provide the coverage while meeting the
lifetime constraint. To achieve this, we divide the network
lifetime L into cycles and turn on each sensor within each
cycle for a period proportional to its battery life. We further
designate that the same schedule repeats in each cycle, such
that the sleep schedule can be implemented, e.g., using the
Power Saving Mode of 802.11. Then, the purpose of the
scheduling is to place the on-periods within each cycle, such
that the total spatial-temporal coverage can be maximized.
We formalize it as a maxCov problem in Section 2.1, and
then, transform it to a minRed problem in Section 2.2 whose
objective is to minimize the overall coverage redundancy.

2.1 Maximize the Spatial-Temporal Coverage

Problem MaxCov. Given a unit-disk graph GðN;EÞ with
n nodes, the battery life of each sensor Bi; i ¼ 1 . . .n, and a
mission lifetime of L, where Bi � L, we want to calculate an
“on” schedule per cycle for each sensor such that the overall
spatial-temporal coverage is maximized.

To quantify the overall spatial-temporal coverage (or
coverage, for short), we first define elementary region as the
minimum region formed by the intersection of a number of
sensing disks. Notice that different points belonging to the
same elementary region are covered for the same length of
time. Therefore, the spatial-temporal coverage of each
elementary region can be calculated as the product of its
area size and the length of time during which the region is
covered by at least one sensor. Note that for each elementary
region, the area size is fixed after the sensors are deployed,
but the coverage time varies depending on the different
sensor schedule.

Further, define the k-redundant elementary region as the
elementary region formed by the intersection of k sensors,
where k � 2. For example, in Fig. 2a, there are seven
elementary regions and four of them are redundant elemen-
tary regions, whose area sizes are a1 ¼ a2 ¼ a3 ¼ a4 ¼ 1.
a1, a2, and a3 refer to the two-redundant elementary regions
and a4 refers to the three-redundant elementary region. The
nonredundant elementary regions are covered by only a single
sensor, such as those elementary regions other than a1, a2, a3,
and a4 in Fig. 2. Since the coverage time of the nonredundant
elementary region is the same as the “on” period of that
sensor, its spatial-temporal coverage is constant irrespective
of the sensors’ schedule. Therefore, to devise a better “on”
schedule per cycle for each sensor, we only need to focus on
the redundant elementary regions to maximize their total
spatial-temporal coverage.

Given the schedule in Fig. 2b, the spatial-temporal
coverage of the two-redundant elementary region can be
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Fig. 1. A surveillance example with three sensors.

Fig. 2. An example to illustrate how to calculate the redundancy for
k-redundant elementary regions.



calculated similar to that of Fig. 1. For example, the spatial-
temporal coverage for a1 is the product of the area of a1 and
the time during which a1 is covered by either s1 or s2, or
both, i.e., 1� 1 ¼ 1. Similarly, the coverage for a2 and a3 is
1� 1 ¼ 1 and 1� 0:6 ¼ 0:6, respectively. For the three-
redundant elementary region a4, we need to find out the
length of time during which it is covered by at least one of
the three sensors, which is 1 time unit in Fig. 2. Therefore,
the total spatial-temporal coverage over all the redundant
elementary regions in Fig. 2 is 1þ 1þ 0:6þ 1 ¼ 3:6.

In general, we can formalize the problem in the form of
mathematical programming. Before giving the formulation,
we first define some notations that will be used throughout
the paper.

. N;E: the node set and the edge set of the graph.

. si; NðiÞ: sensor i and the neighbor set of sensor i, i.e.,
NðiÞ ¼ fjj sensor sj is the neighbor of sensor sig.

. I: the index set of the redundant elementary regions,
i.e., I ¼ fij region i is a redundant elementary regiong.

. IðmÞ: the index set of the redundant elementary
regions within the sensing disk of sensor m.

. AðiÞ: the index set of sensors whose intersection of
sensing disks forms the ith redundant elementary
region, with jAðiÞj denoting its cardinality.

. ai: the area size of the ith redundant elementary
region.

. Ti: the time during which the ith redundant
elementary region is covered by at least one sensor.

. L; l: L is the network lifetime and l is the length of the
cycle, so there are L

l number of cycles, assuming L
l is

an integer. l should not be too small so that the switch
overhead between the on/off state is negligible.

. Bi; bi: Bi is the battery life of si and bi is the length of
si’s on-period per cycle. Since there are L

l number of
cycles, we have bi � L

l ¼ Bi.
. si:start, si:end: the start and end of si’s on-period,

respectively, where si:end� si:start ¼ bi.
. C: the total coverage of all the redundant elementary

regions.

With these notations, we can calculate the total coverage
as the sum of the product of area size and coverage time,
over all the redundant elementary regions. Thus, our
objective function and constraints are

Max C ¼
X
i2I

ai � Ti; ð1Þ

ST : 0 � si:end � l; i 2 N; ð2Þ

bi ¼ Bi �
l

L
; i 2 N; ð3Þ

si:end� si:start ¼ bi; i 2 N: ð4Þ

The purpose of the above optimization is to determine the
variables si:end (or si:start) to maximize the spatial-
temporal coverage subjecting to the constraints (2), (3), and
(4). In the objective function, ai is the area size of the
ith redundant elementary region, which could be in
arbitrary shape and Ti is the time during which the
ith redundant elementary region is covered by at least one
sensor, which depends on the schedules of all the neighbor-
ing sensors. Constraint (2) shows that the on-period may fall

on the boundary of the cycle, so si:end ranges from 0 to l.
Constraint (3) requires that each node’s on-period within a
cycle is proportional to its battery life. Constraint (4)
establishes the relationship between si:end; si:start and the
length of its on-period.

2.2 Minimize the Coverage Redundancy

In this section, we consider the coverage maximization
problem from another perspective and propose a new
formulation. In the previous section, the objective is to
maximize the total spatial-temporal coverage, which desires
the total coverage time of each redundant elementary
region to be as large as possible. Alternatively, we can
achieve the same goal by minimizing the schedule overlap
of the sensors that monitor the same redundant elementary
region. Toward this direction, we propose another metric,
spatial-temporal coverage redundancy, whose value depends
on the area size, the overlapping “on” periods, and the
number of sensors that monitor the area in each period.
With the concept of spatial-temporal coverage redundancy
(or coverage redundancy, for short), the problem of “max-
imizing coverage under the constraint of network lifetime”
becomes “minimizing the coverage redundancy under the
constraint of network lifetime” (called minRed problem).
We can prove that the two objectives are equivalent under
certain conditions.

We first use Fig. 2 as an example to illustrate how to
calculate the coverage redundancy of the redundant
elementary regions. For instance, the coverage redundancy
for a1 is the area of a1 times the schedule overlap of s1 and
s2, i.e., 1� 0:2 ¼ 0:2. Similarly, the redundancy for a2 and a3

is 0.2 and 0.6, respectively. The coverage redundancy of a4

consists of two parts, i.e., the part of time when a4 is
covered by exactly two sensors, and the part of time when it
is covered by exactly three sensors. Intuitively, the two parts
should have different contribution to the coverage redun-
dancy, because more resources will be wasted as more
sensors overlap in time. To reflect this, we assign different
weight to different periods during which the same region is
monitored by different number of sensors. In particular, a4

is solely monitored by s1 and s2 for 0 unit of time, by s1 and
s3 for 0.4 unit of time, by s2 and s3 for 0 unit of time, all of
which are assigned weight 1. On the other hand, a4 is solely
monitored by s1, s2, and s3 for 0.2 unit of time, and it is
assigned weight 2. Then, the total coverage redundancy is
the weighted sum of the product of area size and time
overlap over all the redundant elementary regions. For
example, in Fig. 2, the total redundancy is

ð0:2Þ þ ð0:2Þ þ ð0:6Þ þ ð1� 1� 0þ 1� 1� 0:4þ 1� 1

� 0þ 3� 1� 0:2Þ ¼ 2:

To study the problem from the perspective of coverage
redundancy, we need to define more notations in addition
to those used in the previous section.

. tjiðSÞ; S � AðiÞ: the time during which the ith re-
dundant elementary region is covered by exactly
j sensors that include all the sensors in S. S can be an
empty set ;.

. aiaj: the area overlap (i.e., the size of the overlapping
area) between si and sj.
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. sisj: the time overlap (i.e., the length of the over-
lapping on-period) between si and sj.

. R: the coverage redundancy of the whole network.

With these notations, the problem minRed is formulated
as follows, with the objective to minimize the total coverage
redundancy:

Min R ¼
X
i2I

XjAðiÞj
j¼2

wðjÞ � ai � tjið;Þ; ð5Þ

ST : 0 � si:end � l; i 2 N; ð6Þ

bi ¼ Bi �
l

L
; i 2 N; ð7Þ

si:end� si:start ¼ bi; i 2 N: ð8Þ

In the objective function, the total coverage redundancy
is calculated as the weighted sum of the product of area
overlap and time overlap, first, over the possible coverage
degrees within each region, and then, over all the
redundant elementary regions. Specifically, tjið;Þ is the time
during which the ith redundant elementary region is
covered by exactly j sensors, which depends on the
schedules of the j sensors. Intuitively, a larger j contributes
more redundancy, so the weight factor wðjÞ is used in the
objective function to reflect this, which should be a
monotonically increasing function of j. In the following,
we can prove that this new objective function (5) is
equivalent to the previous objective function (1) with a
properly set weight factor:

Theorem 1. With the same graph, network lifetime requirement,
and battery constraints, the objective to maximize the total
spatial-temporal coverage is equivalent to minimize the total
spatial-temporal coverage redundancy when setting the weight
factor to be wðjÞ ¼ j� 1.

Proof. We first rewrite the objective of total coverage, i.e.,
(1), by decomposing the coverage time Ti into a multi-
tude of subperiods according to the different coverage
degree.

C ¼
X
i2I

ai � Ti ¼
X
i2I

XjAðiÞj
j¼1

ai � tjið;Þ: ð9Þ

Then, we add the two objective functions together, i.e.,
(5) and (9). Since wðjÞ ¼ j� 1, we have

C þR ¼
X
i2I

XjAðiÞj
j¼1

j� ai � tjið;Þ: ð10Þ

Note that a set of sensors AðiÞ monitor the elementary

region ai, and each sensor k 2 AðiÞ is active for bk period

of time per cycle. So each active period bk can be

decomposed into subperiods according to the different

coverage degrees of region ai, i.e., bk ¼
PjAðiÞj

j¼1 tjiðskÞ.
Therefore, if we sum up bk; k ¼ 1; . . . ; jAðiÞj, each tjið;Þ
would be counted exactly j times. Then, we have

X
k2AðiÞ

bk ¼
XjAðiÞj
j¼1

j� tjið;Þ: ð11Þ

Combining (10) and (11), we have

C þR ¼
X
i2I

ai
X
k2AðiÞ

bk;

which is a constant value. This implies that maximizing
the total coverage C is equivalent to minimizing the total
coverage redundancy R. tu

3 CENTRALIZED ALGORITHM DESIGN

In this section, we first prove that the maxCov problem is
NP-hard, and then, propose a centralized greedy algorithm
whose approximation factor is 1

2 .

Theorem 2. The problem maxCov is NP-hard.

Proof. Theorem 1 tells that the problem maxCov can be
transformed to the problem minRed. Therefore, we only
need to prove that problem minRed is NP-hard.

The minRed problem can be proved to be NP-hard via
a reduction from the graph k-coloring problem, which
asks whether a given graph G can be colored using
k colors such that no two neighboring vertexes have the
same colors [7]. Given an instance I of graph k-coloring
problem, we can construct an equivalent instance I 0 of
minRed decision problem in polynomial time, such that
instance I has a solution if and only if instance I 0 has a
solution. The decision problem can be stated as follows:
let the node battery life B and network life L satisfy
L
B ¼ k. In the same graph G of k-coloring problem, is there
a node scheduling scheme such that the total coverage
redundancy is 0 in the minRed decision problem?

To see the equivalence of the two problems, we divide
each cycle in instance I 0 into k ¼ L

B time slots, with each
time slot mapped to a distinct color in instance I. In
essence, the instance I concerns about the assignment of
one of the k colors to each node, while the instance I 0

concerns about the allocation of one of the k time slots to
each node. Then, it can be observed that if there exists a
k-coloring scheme where each node is assigned a color
different from that of its neighbors’, there also exists a
corresponding scheduling scheme where each node is
allocated a different time slot from that of its neighbors,
with the total coverage to be 0.

On the other hand, suppose there is a scheduling
scheme for instance I 0where the total coverage is 0, we can
always find a solution to the instance I of graph k-coloring
problem. Since the “on” period may not exactly occupy a
time slot, we need to first preprocess the schedule by
aligning the on-period of each node with its left time slot.
By doing this, the total coverage remains 0 and the aligned
schedule is still the solution for instance I. After that, to
construct a solution to the instance I 0 simply becomes
equivalent to “color” each vertex using one of the k time
slots, such that no neighboring vertexes have the same
colors. In this regard, the solution of instance I 0 readily
produces a corresponding solution for instance I.

To sum up, G can be k-colored if and only if there is a
zero coverage redundancy scheduling scheme for G,
which means that the graph coloring problem can be
reduced to minRed decision problem in polynomial
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time. As the graph k-coloring problem is NP-hard, the
minRed decision problem is NP-hard. On the other hand,
the minRed optimization problem is at least as hard as its
decision problem, and thus, is also NP-hard. tu

Despite the problem complexity, we propose the greedy
heuristics for the problem maxCov, with the pseudocode
listed in Algorithm 1. Assume that the area size ai is known
for each elementary region i. The algorithm is executed in
iterations. During each iteration, it calculates the maximal
additional spatial-temporal coverage �Ci that each sensor si
can provide based on the existing schedule and picks the
sensor with the largest �Ci. Each time a new sensor is
picked, the existing schedule within a cycle is augmented by
placing the active period of the selected sensor in the
optimal position of the cycle (i.e., where the sensor can
provide the maximum coverage). This process will be
repeated iteration after iteration, until no more sensors can
be picked to increase the total spatial-temporal coverage.

Algorithm 1. Greedy Algorithm.

Input: graph GðN;EÞ, mission lifetime L, the battery life
Bi; i ¼ 1 . . .n, the area of each redundant elementary

region ai; i 2 I
Output: a subset of sensors Sgre with their schedules

determined, the overall spatial-temporal coverage Cgre
Procedure:

1: S0 ¼ N;Sgre ¼ ;
2: while S0 6¼ ; and �Ck 6¼ 0 do

3: for each i 2 S0 do

4: identify all the end points of the active periods

among the neighbors whose schedule has been

determined. Use Se to denote the collection of these

end points. Se ¼ Se þ f0g
5: calculate �Ci ¼ maxsi:start2Se

PjAðiÞj
j¼2 aj ��Tj, and the

corresponding si:start that achieve the optimal

schedule

6: end for

7: find the sensor sk that can provide the maximum

coverage, i.e., �Ck ¼ maxi2S0
�Ci

8: if �Ck 6¼ 0 then

9: S0 ¼ S0 � fskg, Sgre ¼ Sgre þ fskg, Cgreþ ¼ �Ck.

10: update the current schedule by adding the on-period

of sk
11: end if

12: end while

13: Output Sgre, and Cgre.

Define �Ci ¼
P

j2IðiÞ aj ��Tj as the sum of the product
of area size aj and additional coverage time �Tj over all the
redundant regions covered by sensor si. The process of
deriving an optimal schedule is to calculate the maximum
�Ci for each sensor si by choosing the right si:start. Given
an existing schedule among sensor i’s neighbors whose on-
periods are determined by its si:start (or si:end), it turns out
that it takes just OðjNðiÞjÞ computational effort to derive
maxf�Cig, where jNðiÞj is the number of the neighbors of
sensor si. The linear computational efficiency results from
the observation that the maximum �Ci is achieved when
si:start is at one of the end points of the active periods of
si’s neighbors. This is because when si:start moves between

two neighboring end points, the value of �Ci changes (i.e.,

increases or decreases) linearly. Therefore, we first identify

the end points, i.e., sj:start and sj:end, for each neighbor j of

si, and then, select si:start among those end points where

�Ci can be maximized.
To analyze the performance of the algorithm, we cannot

simply borrow the techniques from the traditional coverage
model in the spatial domain. Due to the unique challenges
of coverage issue in the spatial-temporal domain, the
algorithm not only needs to select sensors but also needs
to determine their corresponding schedules. In addition, the
scheduling decision needs to be made in a continuous
space, while there are infinite possibilities to place the on-
period in a cycle. As a result, some traditional modeling
approaches such as the set cover model [8] cannot be simply
applied. Therefore, we need new techniques to analyze the
algorithm complexity.

Theorem 3. Algorithm 1 achieves an approximation factor of 1
2

for the maxCov problem.

Proof. Suppose there are total n sensors picked in the
greedy algorithm. Sensor sgi is picked in the ith iteration,
which provides �Cg

i additional coverage with its active
period placed at the optimal position of the cycle. Use the
vector V g

i ¼ ðv
g
i1; v

g
i2 . . . ; vgijIjÞ to denote the coverage

provided by sgi , with each component corresponding to
each redundant elementary region. Since there are total
jIj redundant elementary regions, there are jIj compo-
nents for each vector. Each vgij denotes the time periods
during which the region j is covered by sgi . For example,
vgij ¼ f½1; 3�; ½5; 6�g means that region j is covered by
sensor sgi during the periods [1, 3] and [5, 6]. It can be
seen that each period in vgij is determined by a start time
and an end time, with no overlap between the different
periods. If region j is not covered by sensor sgi , set
vgij ¼ ½0; 0�. Further, use jvgijj to denote the total length of
time during which region j is covered by sgi . For
example, if vgij ¼ f½1; 3�; ½5; 6�g, then jvgijj ¼ 3.

Define the norm of the vector V g
i in the form of a

weighted sum, i.e., jV g
i j ¼

PjIj
j¼1 aj � jv

g
ijj, where the

weight is the area size aj. For example, if V g
i ¼

ðf½1; 3�; ½5; 6�g; ½0; 0�; f½2�; ½4�gÞ, then jV g
i j ¼ 3a1 þ 2a3. It

can be seen that jvgijj denotes the total spatial-temporal

coverage provided by sgi .
Further, suppose V g

i and V g
j are two different vectors,

then define the vector addition/substraction as follows:

V g
i þ V

g
j ¼ ðvi1 [ vj1; vi2 [ vj2; . . . ; vijIj [ vjjIjÞ; ð12Þ

V g
i � V

g
j ¼ ðvi1 � vi1 \ vj1; . . . ; vijIj � vijIj \ vjjIj: ð13Þ

Thus, the total coverage vector generated by the greedy
algorithm is V g ¼

Pn
i¼1 V

g
i and the total coverage is

Cgre ¼
Xn
i¼1

�Cg
i ¼ jV gj ¼

����
Xn
i¼1

V g
i

����: ð14Þ

Suppose there are total m iterations in the optimal
algorithm and during each iteration, one sensor is
picked. Then, we rearrange the order of sensors selected
in the optimal algorithm, such that if a sensor is also
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chosen by the greedy algorithm, it is chosen in the same
iteration in both the algorithms. Since the schedule of
each sensor remains intact, changing the order of sensors
selected will not affect the outcome of the optimal
algorithm. Similar to the greedy algorithm, we also
define the notations soi ; V

o
i ; jV o

i j; voij; jvoijj;�Co
i ; V

o; Copt for
the optimal algorithm.

In the ith iteration, the greedy algorithm picks sensor

sgi and enhances the total coverage by �Cg
i . Thus, we

have �Cg
i ¼ jV

g
i �

Pi�1
j¼1 V

g
j j. According to the definition

of the greedy algorithm, during each iteration, it picks

the sensor that can provide the maximum additional

coverage, thus jV g
i �

Pi�1
j¼1 V

g
j j � jV o

i �
Pi�1

j¼1 V
g
j j, where

V o
i is the coverage vector of the sensor soi picked in the

same iteration by the optimal algorithm. In other words,

the greedy algorithm picks sgi instead of soi because sgi can

provide more additional coverage than soi . On the other

hand, V g �
Pi

j¼1 V
g
j for 8i ¼ 1 . . .n. Therefore, we have

�Cg
i �

����V o
i �

Xi�1

j¼1

V g
j

���� � ��V o
i � V g

��; 8i ¼ 1 . . .n: ð15Þ

Since n sensors are picked in the greedy algorithm
and m sensors are picked in the optimal algorithm, to
make the above equation also hold when m < n, let V o

i ¼
ð½0; 0�; . . . ; ½0; 0�Þ for 8i 2 ðm;n�. Then, adding all the
inequalities denoted by (15) gives

Xn
i¼1

�Cg
i ¼ Cgre �

Xn
i¼1

��V o
i � V g

��: ð16Þ

Note that the spatial-temporal coverage of each sensor
is denoted by a vector and each component of a vector is
a collection of time periods. Then, based on the vector
analysis and the addition/substraction defined in (12)
and (13), it is not hard to see

Xn
i¼1

jV o
i � V gj �

����
Xn
i¼1

�
V o
i � V g

����� �
����
Xn
i¼1

V o
i

����� jV gj: ð17Þ

As Copt ¼ j
Pn

i¼1 V
o
i j and Cgre ¼ jV gj, combining (16)

and (17) gives

Cgre � Copt � Cgre: ð18Þ

The above relationship shows that the approximation
ratio of Algorithm 1 is 1

2 . tu

The centralized algorithm has theoretical favor, as it
gives a constant factor performance bound. However, it is
not practical as it is difficult to enumerate and compute
each ai and let each node have such global knowledge.
Thus, in the next section, we propose the distributed
heuristics based on the local coverage redundancy.

4 DISTRIBUTED ALGORITHM DESIGN

From the above discussion, we know that in a complex
network of large scale, it is computationally infeasible to
enumerate each elementary area ai and list each period tjið;Þ
during which area i is covered by exactly j sensors. Therefore,
in the distributed design, we focus on the pair-wise sensors

and let each node minimize its own local coverage redundancy,
defined as the sum of pair-wise redundancy with its
neighbors. Although the global optimal is computationally
infeasible to achieve, we can design a class of algorithms in
which each node is able to achieve the local optimal if certain
conditions can be satisfied. The basic idea is to let each node
first generate a random schedule independently. Then, each
node adjusts its schedule individually to minimize the local
coverage redundancy with its neighbors, until everyone
converges to its local optimality. The seemingly simple idea
has several challenges:

. How to do the local optimization? Does it have
polynomial time algorithms to achieve the local
optimal?

. If each sensor adjusts the schedule individually, is
the algorithm able to converge?

. How to eliminate conflicts caused by simultaneous
adjustments of the neighboring nodes?

The following sections will address these challenges one
by one.

4.1 Local Optimization

Without loss of generality, suppose sensor s0 has jNð0Þj
neighbors. The local optimization problem at s0 can be
formalized as follows:

Given the area overlap between s0 and its neighbors (i.e.,
a0ai; i 2 Nð0Þ), the individual schedule of its neighbors, we want
to decide s0’s own schedule, such that the local sum of the
coverage redundancy with its neighbors R½0� ¼

P
i2Nð0Þ a0ai �

s0si can be minimized.
It can be seen that the local coverage redundancy (i.e.,

R½i� ¼
P

j2NðiÞ aiaj � sisj) is much easier to calculate than
the global redundancy (5). Suppose two sensors si and sj,
whose sensing radius is r and the distance between them is
d. Their area overlap and time overlap can be simply
computed by

aiaj ¼ 2r2 arccosð d2rÞ � d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � d2

4

q
; if d < 2r;

aiaj ¼ 0; if d � 2r;
s0sj ¼ maxfminðs½i�:end; s½j�:endÞ
�maxðs½i�:start; s½j�:startÞ; 0g:

8>>><
>>>:

ð19Þ

Each node has its own reference cycle. The cycles at
different nodes are not required to be synchronized. Each
node only needs to know the relative position of its
neighbor’s on-period. This can be easily achieved via
exchange of hello packets with its neighbors.

Note that si’s schedule per cycle is solely determined by
the start of its on-period si:start and the end of its on-period
si:end, where si:end� si:start ¼ bi. Then, the objective of
local optimization at s0 is to decide s0:end (or s0:start)
within its own reference cycle such that R½0� is minimized.
However, because s0:end could be any value between 0 and
l, it is not realistic to enumerate all the possibilities. In our
solution, we only focus on some crucial points, which could
jointly determine the redundancy R½0� at every possible
value of s0:end.

Line traversal algorithm. s0 first selects its own reference
cycle and places each neighbor’s schedule (i.e., on-period)
in the cycle. Then, s0’s on-period traverses from the left of
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the cycle (i.e., s0:end ¼ 0) to the right of the cycle (i.e.,
s0:end ¼ l), during which the local redundancy R½0� over the
whole range can be recorded. In the end, the points
corresponding to the minimum R½0� are identified and
selected as s0’s schedule. For example, in Fig. 3, s0 has s1, s2,
and s3 as neighbors, whose schedules are given. For ease of
illustration, assume bi ¼ bj; i; j ¼ 0 . . . 3. However, the algo-
rithm is not limited in the homogeneous case but allows the
heterogeneous battery states at different nodes. Fig. 3 shows
the relationship between R½0� and s0:end by executing the
line traversal algorithm.

The algorithm is based on the observation that the
coverage redundancy R½0� increases/decreases linearly as
s0:end traverses from left to right, and the slope k shifts only
at some crucial points, which corresponds to the following
four cases:

. Case I: the end of s0’s on-period enters the start of
si’s on-period, i.e., s0:end ¼ si:start, then the slope
increases by a0ai, i.e., k ¼ kþ a0ai.

. Case II: the end of s0’s on-period leaves the end of
si’s on-period, i.e., s0:end ¼ si:end, then the slope
decreases by a0ai, i.e., k ¼ k� a0ai.

. Case III: the start of s0’s on-period enters the start of
si’s on-period, i.e., s0:start ¼ si:start, then the slope
decreases by a0ai, i.e., k ¼ k� a0ai.

. Case IV: the start of s0’s on-period leaves the end of
si’s on-period, i.e., s0:start ¼ si:end, then the slope
increases by a0ai, i.e., k ¼ kþ a0ai.

We use Case I as an example to illustrate why the slope k
is updated in such a way. When the end of s0’s on-period
enters the start of si’s on-period (such as at point P3 in Fig. 3),
the time overlap between s0 and si starts to increase as s0:end

traverses to the right. Thus, the slope of R½0�will increase by
a0ai, i.e., k ¼ kþ a0ai, where a0ai is the area overlap between
s0 and si.

Since the on-period may fall on the boundary of the cycle,
we let s0:end traverse from 0 to l, and count the coverage
redundancy R½0� over the range ½�b0; l�. Because each crucial
point corresponds to one of the above four cases and s0 has
Nð0Þ neighbors, there are 4 	Nð0Þ crucial points, denoted
as Pj; j ¼ 1 . . . 4N½0�. Adding two points s0:end ¼ 0 and
s0:end ¼ l, denoted as P0, P4N½0�þ1, there are total 4N ½0� þ 2

crucial points. Since the slope k only changes at the crucial
points, the relationship between R½0� and s0:end can be

presented by a piecewise curve, as seen from Fig. 3. Note
that some crucial points may overlap. For example, in Fig. 3,
P1 and P2 overlap because s0:end enters b2 and s0:start

leaves b1 at the same time; P4 and P5 overlap because s0:end

leaves b2 and s0:start enters b2 at the same time. We use
R½0�½j� to denote the coverage redundancy at Pj and use k½j�
to denote the slope between points Pj and Pjþ1, then we

have the following recursive relationship:

R½0�½jþ 1� ¼ R½0�½j� þ k½j�ðPjþ1 � PjÞ
R½0�½0� ¼ 1

2

P
i2Nð0Þ a0ai � s0si:

�
ð20Þ

The above recursive relationship shows that the value of
R½0� at the current crucial point can be determined by its
value at the previous point and the slope in between. For

example, in Fig. 3, initially at P0; s0:end ¼ 0; R½0� ¼ 1
2 a0ai �

s0s1, and k½0� ¼ �a0a1. As s0:end moves right, R½0� decreases
linearly until it hits P1. At P1; s0:end enters b2 and s0:start

leaves b2, so the slope k increases by ða0a1 þ a0a2Þ. Then,

R½0� begins to increase linearly with k½1� ¼ �a0a1 þ a0a1 þ
a0a2 ¼ a0a2 until it reaches P2. Similarly, as s0:end continues
to move right, the value of k varies at the subsequent crucial
points. When s0:end arrives at P13, the value of R½0� over the

whole range of ½0; l� can be obtained, after which the same
cycle is repeated.

With all the values of R½0� at different points, the
minimum R½0� and its corresponding s0:end can be

identified. In Fig. 3, at P1; P2, where s0:end ¼ b0=2; R½0� ¼ 0

is the minimum. In this case, s0:end ¼ b0=2 is the only
optimal schedule. However, in other cases, it is possible that
the minimum R½0� is achieved at multiple s0:end. Then, we

can break the tie arbitrarily and pick any optimal s0:end.
The complexity of Line Traversal Algorithm is only OðdÞ,

where d is the node degree. Suppose a node has d

neighbors, then there are at most 4 	 dþ 2 crucial points
to be examined, and at each point, only linear algebraic

operation is performed.

4.2 Convergence Property

In our distributed algorithm, each node locally optimizes its
own schedule as long as its schedule does not remain

locally optimal. Since altering a node’s schedule can affect
the redundancy of its neighbors, the schedule adjustment at
different nodes may conflict with each other and the

adjustment process may never end. For example, if two
neighboring nodes adjust their own schedules at the same
time, they may not be aware that their neighbor’s schedule
has been changed and cannot achieve local optimality.

Next, we provide guidelines to guarantee that each node
can converge to its local optimality.

Theorem 4. Given a graph G and arbitrary schedules, a

distributed algorithm will terminate in a finite number of

steps and after termination, each node’s schedule will converge

to the local optimality, if

. no neighboring nodes optimize their schedules at the
same time;

. each node’s local adjustment continues as long as its
local objective can be improved for at least a predefined
threshold �.
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Fig. 3. An example to illustrate the line traversal algorithm. The
piecewise curve depicts the relationship between R½0� and s½0�:end.
There are total 14 crucial points, at which the slope k of the curve
changes.



Proof. First, we want to show that if the local objective

improves (i.e., the redundancy at a node decreases), the

global pair-wise redundancy will improve as well (i.e.,

the total redundancy decreases). Without loss of

generality, suppose a node s0 optimizes its local

schedule. Because R½0� ¼
P

i2Nð0Þ a0ai � s0si, we have

�R½0� ¼
P

i2Nð0Þ�R½i�. Further, because the sum of the

local redundancy is Rs ¼
Pn

i¼1 R½i�, we have �Rs ¼
�R½0� þ

P
i2Nð0Þ�R½i�. It is followed that �Rs ¼ 2�R½0�,

which shows that each time the local objective at s0 is

improved by �R½0�; Rs is improved by 2�R½0�. Second,

it can be shown that the global pair-wise redundancy is

bounded, i.e., Rs �
Pn

i¼1

P
j2NðiÞ aiaj � minfbi; bjg,

where ai; aj and bi; bj are constant values. Therefore,

the algorithm could terminate after a finite number of

steps if the stated conditions are satisfied, where the

threshold � could be set arbitrarily small to approximate

the local optimal point. tu

4.3 Distributed Protocol Design

Theorem 4 tells us that for a distributed protocol to
converge, all three conditions have to be satisfied. Before
presenting our distributed protocol, let’s see two simple
algorithms:

. Random Algorithm: each node generates a random
schedule individually.

. Serial Optimization Algorithm: each node first gener-
ates a random schedule, based on which the schedule
is locally optimized one by one. This serial optimiza-
tion process is repeated until no improvement can be
made beyond the predefined threshold �.

Each of the above algorithms has its pros and cons. The
random algorithm is simple, distributed, and has no message
complexity. It can serve as a baseline for comparison.
The serial optimization algorithm uses the Line Traversal
Algorithm as a functional module to ensure that every node
can achieve its local optimality, but it is centralized. In
addition, for the serial algorithm to converge, many itera-
tions are needed until no improvement can be made.
Therefore, the serial algorithm takes a long time to terminate.

To retain the merit of the serial algorithm and remedy its
weakness, we propose a POP. The basic idea of POP is to let
many nodes locally optimize their schedules (using Line
Traversal Algorithm) in parallel, so that it can converge
much faster than the serial algorithm. According to
Theorem 4, a set of nonneighboring nodes can adjust their
own schedules simultaneously without causing any conflict.
From the algorithmic point of view, to search for such a set
of nonneighboring nodes is equivalent to finding an
Independent Set [9], which is defined as a subset of nodes
among which there is no edge between any two nodes. The
set is a maximal independent set (MIS) if no more edges can be
added to generate a bigger independent set. To find the MIS,
each node independently determines whether it belongs to
the set by comparing its weight with its neighbors. If it has
the best weight in the neighborhood, it elects itself as
belonging to the set, and then, no other neighbors can be
chosen. In general, the algorithm can be denoted as
MISðweight; criteriaÞ, where the weight can be id, degree,

energy, etc., and the criteria can be either smallest or largest.
The criteria are used to interpret the meaning of best
weight, i.e., the smallest or the largest.

Algorithm 2 lists the pseudocode of the POP protocol
which can be implemented in a distributed manner. For
clarity of presentation, we first introduce the protocol in a
centralized manner, and then, give guidance to its dis-
tributed operation. Initially, all nodes are unlabeled. Then,
each node individually determines whether it belongs to the
MIS by comparing its weight with the neighbors. The
labeled nodes locally optimize their schedules, after which
the MIS algorithm will continue to run among the
remaining unlabeled nodes. We term the time a round if
during this period, an MIS is found and local optimization
is executed in parallel at the nodes of the MIS. Several
rounds comprise an iteration during which the coalition of
the MIS elected can have all the nodes labeled. The MIS
algorithm continues to run round after round and iteration
after iteration until no improvements can be made to any
node’s schedule.

Algorithm 2. Line Traversal Algorithm.
Input: Graph G, the schedules of s0’s neighbors

si; i 2 Nð0Þ;
Output: Node 0’s schedule, s0:end;

Procedure:

1: enumerate the set of crucial points in terms of the value

of s0:end; � ¼ fxjx 2
P

i2Nð0Þ [fsi:start; si:end,

si:startþ b0; si:endþ b0g; x 2 ½0; l�g
2: sort the crucial set � in increasing order
3: R½0�½0� ¼ 1

2

P
i2Nð0Þ a0ai � s0si; P0 ¼ 0; k½0�

¼
P

i2A a0ai �
P

i2B a0ai
/*the traversal starts at s0:end ¼ 0. A;B denote the set

of neighbors whose on-period spans across 0 and �b0

(equivalently l� b0), respectively.*/

4: j ¼ 1 /*the index of the crucial point*/

5: while � 6¼ ; do

6: R½0�½j� ¼ R½0�½j� 1� þ k½j� 1�ðPj � Pj�1Þ
7: if s0:end ¼¼ si:start then

8: k½j� ¼ k½j� 1� þ a0ai
9: end if

10: if s0:end ¼¼ si:startþ b0 then

11: k½j� ¼ k½j� 1� � a0ai
12: end if

13: if s0:end ¼¼ si:end then

14: k½j� ¼ k½j� 1� � a0ai
15: end if

16: if s0:end ¼ si:endþ b0 then

17: k½j� ¼ k½j� 1� þ a0ai
18: end if

19: � ¼ �� fPjg; j ¼ jþ 1

20: end while

21: R½0�½i� ¼ R½0�½0� /*the traversal ends at s0:end ¼ l */

22: connect the neighboring points piecewise by lines
23: select the optimal s0:end with the minimum R½0�

At the end of an iteration, all nodes’ labels are removed
and a new iteration starts with the criteria reversed, i.e.,
“smallest” becomes “largest” and vice versa. Therefore, the
iterations alternate between the increasing and decreasing
order of weight in executing the MIS algorithm. The criteria
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are reversed to facilitate the distributed operation, so that

the nodes belonging to the MIS in the last round of previous

iteration can start a new iteration.

Algorithm 3. Parallel Optimization Algorithm

Input: a graph GðN;EÞ
Output: the local optimal schedule of each node,

i.e., si:end; i ¼ 1 . . .n

Procedure:

1: each node generates a random schedule independently

2: discover neighbors and exchange the schedule with

each other

3: initialize improve ¼ Threshold; criteria ¼ smallest,
weight ¼ id

4: while improve � Threshold do

5: unlabel all the nodes /*start a new iteration*/
6: while there are still nodes unlabeled do

7: /*start a new round*/

8: run distributed algorithm MISðweight; criteriaÞ
9: run local optimization algorithm (i.e., line traversal

algorithm) for each node of MIS, record improve

10: end while

11: if criteria ¼¼ smallest then

12: criteria ¼ largest
13: else

14: criteria ¼ smallest
15: end if

16: end while

Fig. 4 shows an example. In the first round, after

MISðid; smallestÞ is executed, nodes s1; s3; s4 which have

the smallest id among its neighbors are selected to form an

MIS and optimize their schedules simultaneously without

conflict. Then, the MIS algorithm is executed for two more

rounds among the remaining nodes, during which the MIS

obtained in the second and third round consists of s2 and s5,

respectively. So far all the nodes are labeled, so the first

iteration ends. After that, nodes are unlabeled again and the

second iteration starts. The algorithm MISðid; largestÞ is

executed with the criteria reversed, so that s5 (with the

largest id among its neighbors) can initiate the second

iteration. Similar to the first iteration, three rounds are

needed in both the second and the third iteration. Note that

the last round of the previous iteration coincides with

the first round of the current iteration because their

respective MIS is the same and there is no need to optimize

the schedule of the same MIS twice. Overall seven rounds

are needed for nodes to adjust their schedules in three

iterations. This is much faster than the serial algorithm

which needs 5� 3 ¼ 15 rounds.

It is straightforward to make Algorithm 2 distributed.
Since both the MIS algorithm and the local optimization
algorithm are distributed, the issue here is to let each node
know when to elect itself to the MIS, when to start a new
iteration with the reversed criteria, and when to terminate.
To achieve this, we define a control packet in the format of
msgðid; criteria; scheduleÞ. After a node elects itself as
belonging to the MIS and adjusts its schedule, it broad-
casts msgðid; criteria; scheduleÞ to its neighbors. If the
criteria are the “smallest” (or “largest”), the neighbors
with the larger (or smaller) id will have the sender labeled,
and check the sender’s schedule to see whether it has
changed. After an MIS is elected, all the nodes in the MIS
will be labeled by their neighbors. Therefore, at least one
unlabeled node’s id will become the smallest (or largest)
among the remaining unlabeled neighbors, and thus,
eligible to adjust its own schedule.

To start a new iteration, the criteria need to be reversed.
If an elected node finds itself to be the last node among its
neighbors to be elected, it will realize that it is its
responsibility to reverse the criteria, and start a new
iteration by broadcasting an updated message. When other
nodes receive the message with the reversed criteria for the
first time, they will realize that a new iteration starts, so the
labels of their neighbors are reset. A timer is set to control
the termination of the algorithm at each node. If the node
cannot improve its schedule beyond the predefined thresh-
old � after a few more iterations, it will exist and start using
the calculated schedule.

The message complexity of the POP protocol is OðnÞ,
which grows linearly with the number of nodes. This is
because each node in each iteration broadcasts two
messages: one is to exchange the id, criteria, and schedule
in the beginning, while the other is to announce its labeled
status after being selected to the MIS. Therefore, the
message complexity of each node is Oð2T Þ, where T is the
number of iterations required for the protocol to terminate.
According to our experiments in Section 5, T is a small
constant with the typical parameter setting, e.g., T � 5
when � ¼ 1; n � 500 and battery/network lifetime ratio is 1

5 .

4.4 Discussions and Future Work

In this paper, we assume that the disk sensing model is
used, where the sensing range is modeled by a disk and a
point is covered if and only if it falls within the sensing disk
of one of the sensors. While the disk model provides
valuable high-level guidelines, it may not accurately reflect
the performance in reality. Recently, some researchers have
started to investigate the impact of link irregularity and
the corresponding nondisk model on the performance of the
sensor networks [10], [11], [12], [13]. For example, the work
in [12] employs an empirical approach to estimate the
sensing range. A probability model is used in [13] to depict
the coverage property of the sensor network, where the
coverage probability of a point depends on the distance
from the monitoring sensors.

To adapt the POP protocol to the nondisk model, we can
leave the big framework intact but change the method to
calculate the local coverage redundancy. The algorithm still
executes in iterations, but during each iteration, each node
calculates the pair-wise coverage redundancy based on the
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Fig. 4. An example to illustrate the POP protocol.



specific nondisk model. Taking the probability model as an
example, the local coverage redundancy of node s0 can be
calculated by R½0� ¼

P
i2Nð0Þ

R 2�
�¼0

Rw
�¼0 P ð�; �Þ � s0si, as com-

pared with R½0� ¼
P

i2Nð0Þ a0ai � s0si in the disk model. The
new calculation is based on the polar coordinate system,
with the middle point of the line connecting the pair-wise
neighboring sensors as the pole. In particular, P ð�; �Þ is the
coverage probability calculated based on the specific model,

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � d2 sin �2
p

� d cos �

2

and s0si follows (19). In general, extension of the coverage
property to the nondisk model is still an open issue in many
situations. We leave the complete design and evaluation to
the future work.

Another issue worth of further investigation is the
connectivity property of the sensor network. Although in
this paper, we consider network lifetime as a constraint and
connectivity is not our focus, achieving continuous con-
nectivity is still valuable for the data delivery. It has been
proved that when the communication range is at least twice
the sensing range, the full coverage implies the connectivity
of the sensor network [4]. However, in our paper, we study
the scenario where the sensors may not be sufficient enough
to sustain both coverage and lifetime, so sometimes,
coverage has to be traded for lifetime, resulting in the
partial coverage. As far as we know, the condition under
which the connectivity can be achieved in the partially
covered sensor network is still an open issue. Although we
did not solve it in this paper, we point out that this is an
interesting issue for the future research and have proposed a
remedy solution in our previous work [14]. In [14], we
design a new set of routing protocols for the data delivery
over the intermittently connected network. In an intermit-
tently connected network, the network may not be physi-
cally connected at all instants, but the data can still be
delivered to the destination in a store-and-forward fashion.

5 PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the proposed
POP protocol. In the simulation, n sensors are randomly

deployed in a 10� 10 square area, with n varying from 100
to 500. The sensing range is 1 unless, otherwise, specified.
We specifically examine the scenario where the coverage
and lifetime requirement cannot be satisfied at the same
time. For example, when n ¼ 500 and the battery/network
lifetime ratio is 2

5 , the full coverage cannot be maintained
throughout the network lifetime using the algorithm in [4].
Both homogeneous and heterogeneous battery states are
considered. In the homogeneous case, every node has the
same battery/network lifetime ratio �, but in the hetero-
geneous case, �i is a random variable uniformly distributed
in ½�=2; 3�=2� with � as the average ratio. The experiments
are done over a customized C++ simulator.

Three schemes are evaluated, namely, random, serial, and
POP, in terms of coverage redundancy, convergence time,
and event detection probability. As the global coverage/
coverage redundancy is infeasible to compute, we use the
sum of local coverage redundancy as an approximation. The
randomized event is considered whose location of occur-
rence is uniformly distributed in time and space, and whose
length of occurrence e is normalized as the event/cycle ratio,
i.e., e

l . The event detection probability is calculated by
simulating 1,000 randomized events.

To compare with the existing schemes, we implement an
extended version of the Coverage Configuration Protocol
(CCP), which is shown to outperform other schemes in most
of the scenarios [4]. While the objective of the original CCP
is to select the minimum number of sensors to provide the
full coverage, we extended it to a continuously operational
case where the sensor node may die of limited battery. After
a sensor dies, each sleeping sensor needs to decide whether
it should be activated to remedy the coverage hole based on
the eligibility rule in [4]. We evaluate CCP in terms of
coverage redundancy and network lifetime. The network
lifetime is defined as the period during which half of the
nodes fail.

5.1 Determine the Optimization Threshold �

� is the threshold of improvement made at each step. It
determines how accurate the algorithm can approach the
local optimality and how fast the algorithm can converge.

474 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 5, APRIL 2011

Fig. 5. Relationship between the coverage redundancy and �
(homogeneous).

Fig. 6. Relationship between the convergence time and � (homo-
geneous).



From Figs. 5 and 6, it can be seen that � affects the coverage
redundancy and the convergence time in different ways. As
� increases, the redundancy will rise but the convergence
time goes down. In other words, the objectives of
redundancy and convergence time conflict with each other
from the perspective of �. To make the coverage redun-
dancy better, a smaller � should be used, but to improve the
convergence time, a larger � should be employed. To
balance coverage redundancy and convergence time, we set
� to be 1 in the following experiments.

5.2 Comparing POP with Other Schemes

Figs. 7 and 8 show that the number of nodes n and the on-
period/network lifetime ratio � affect the system perfor-
mance in a similar way. Both coverage redundancy and
convergence time increase as more sensors are deployed or
as larger on-periods are used. In terms of redundancy, serial
and POP have similar performance, and both outperform the
random algorithm substantially. The improvement gradu-
ally decreases as the number of nodes increases. For instance,
the performance improvement is more than 100 percent
when n ¼ 200 but reduces to about 80 percent when n ¼ 400.
This is because as more sensors are deployed, it is more likely

that the random algorithm can produce a relatively good

schedule. In terms of convergence time, POP is much faster

than the serial algorithm because parallel optimizations can

take place at the same time. As shown in Fig. 8, irrespective

of the number of nodes, the convergence time of POP is only
1
10 of the serial algorithm.

Figs. 9 and 10 compare the different schemes in terms of
event detection probability. In Fig. 9, the x-axis corresponds
to the number of nodes, and in Fig. 10, the x-axis
corresponds to the event/cycle ratio. It can be observed
that for all the schemes, the detection probability increases
as the number of nodes increases. The initial detection
probability is below 50 percent when n ¼ 100 but gradually
approaches 1 as n increases to 500. Another observation is
that the detection probability also increases as the length of
event increases. This can be understood since the longer
the event persists, the easier it should be detected. Among
the different schemes, the serial algorithm and POP have
almost the same performance, both of which outperform the
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Fig. 7. Comparison of coverage redundancy (homogeneous).

Fig. 8. Comparison of convergence time (homogeneous, � ¼ 1
5 ).

Fig. 9. Comparison of event detection probability (homogeneous).

Fig. 10. Comparison of event detection probability (homogeneous).



random algorithm. The improvement is about 15 percent in
terms of event detection probability.

Figs. 7 and 8 study the performance of homogeneous
cases. The same trend exists in the heterogeneous case as
shown in Figs. 11 and 12.

Figs. 13 and 14 compare the proposed schemes with CCP.
In Fig. 13, it is shown that CCP is not able to meet the
lifetime requirement in the scenarios simulated. However,
as more sensors are deployed, it can support a longer
network lifetime. For example, when n ¼ 600, it maintains
almost 90 percent of the required lifetime with the full
coverage. By contrast, the randomized algorithm and POP
divide network lifetime into cycles and within each cycle,
the locations of their “on” periods are different. Therefore,
both the algorithms bear the lifetime constraint in mind and
can satisfy the lifetime requirement regardless of the node
density, as seen in Fig. 13. In Fig. 14, it is shown that CCP’s
coverage redundancy is consistently larger than that of POP.
Compared with the randomized algorithm, the performance
of POP is close to the randomized algorithm when the
number of sensors is small, but substantially improves as
more sensors are deployed. This is because when sensor
node density becomes larger, the network lifetime will

increase (as shown in Fig. 13), then the coverage redun-
dancy will reduce as a result.

6 RELATED WORK

The sensor coverage problem has been extensively studied
in the literature. Depending on the subject covered, most
existing works can be classified into area coverage, point
coverage, and barrier coverage [2]. In terms of area
coverage, many works focus on how to select the minimum
number of sensors to preserve the coverage degree (e.g.,
1-degree or k-degree) [3], [4], [5], [6], [15], [16], [17], but they
provide no network lifetime guarantee. In [18], a centralized
scheduling algorithm is proposed to sequentially activate
the sensor cover and guarantees a OðlognÞ factor of the
maximum network lifetime, where n is the total number of
nodes. Further, in [19], a distributed scheduling algorithm is
proposed which achieves a Oðlogn 	 lognBÞ performance
factor, where B is the upper bound of the initial battery.
Besides coverage requirement, the connectivity property
also attracts lots of research attention. For example, when
the coverage requirement can be satisfied, the conditions to
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Fig. 14. Comparison of coverage redundancy with CCP (heterogeneous,
� ¼ 2

5 ).

Fig. 13. Comparison of network lifetime with CCP (heterogeneous,
� ¼ 2

5 ).
Fig. 11. Comparison of coverage redundancy (heterogeneous).

Fig. 12. Comparison of convergence time (heterogeneous).



achieve the communication connectivity have been derived
in [4], [20]. When the coverage requirement cannot be
satisfied all the time, e.g., in presence of partial coverage,
there are routing protocols proposed in [14] to ensure the
delivery of the data to the sink in the store-and-forward
fashion over the intermittent link.

The model of point coverage is studied in [21], [1], with
the objective to maximize the network lifetime when only a
given set of targets needs to be covered. The model is NP-
hard, in general, so some greedy heuristics are proposed
based on the linear programming relaxation [21]. But with
the assumption that one sensor covers only one target a time,
the optimal schedule can be derived based on the technique
of matrix decomposition [1]. In the special case, each target
to be covered is the sensor node itself, e.g., in the scenario of
network monitoring. In [22], [23], distributed algorithms are
proposed to construct the monitoring architecture for sensor
networks where sensor nodes can monitor each other within
a predefined communication range.

The concept of barrier coverage is first proposed by [24],
with the objective to minimize the probability of undetected
penetration through the barrier. In [25], a global algorithm
is proposed to determine whether a region is k-barrier
covered. Although it has been proved that given a sensor
deployment, sensors cannot locally determine whether the
deployment provides global barrier coverage, a distributed
algorithm is proposed based on the concept of local barrier
coverage [26] assuming that the intruders move along
restricted crossing paths in rectangular areas. Later, the
restriction on crossing paths is removed in [27], [28], where
the barrier construction algorithm is proposed when the
sensors are deployed according to a Poisson point process
[27] or along a line [28].

While all of the above works treat the lifetime as
objective, we consider the network lifetime as a constraint
and aim to schedule each sensor’s on-period to minimize
the total spatial-temporal coverage redundancy. This
reverse formulation is especially useful for mission-driven
sensor networks, where the network lifetime may have
higher priority over coverage and the predeployed re-
sources may not meet the changing mission requirements
all the time. Thus, our work is complementary to the
existing works, which can be applied when the sensor node
density is sufficient to provide the preferred coverage
degree for a specified length of time.

There are other application-driven scheduling algo-
rithms, e.g., for minimum latency routing [29], [30], [31],
target tracking [32], [33], [34], [35], event detection [36], and
throughput optimization [37]. All these works support only
a single mission and do not treat network lifetime as the
objective or constraint. By contrast, our objective is to
maximize the spatial-temporal coverage with the network
lifetime as the constraint. Our model is different from the
traditional maximum coverage problem in the spatial
domain, which is known to have a ð1� 1=eÞ-approximation
bound [8]. This is because in the spatial-temporal domain,
we not only need to select sensors but also need to determine
their corresponding schedules in a continuous cycle. There-
fore, the ð1� 1=eÞ ratio cannot be applied here. By contrast,
we model the spatial-temporal coverage as a vector and
propose a 1

2 -approximation algorithm for our problem.

7 CONCLUSIONS

As mission-driven sensor networks usually have stringent
lifetime requirement, sometimes coverage has to be traded
for network lifetime. In this paper, we studied how to
schedule sensor active time to maximize the spatial-
temporal coverage while meeting the lifetime constraint.
While the optimization of the global objective is NP-hard,
we have proposed both centralized and distributed algo-
rithms with low complexity. It was proved that the
centralized algorithm has an approximation ratio of 1

2 , and
the distributed parallel optimization protocol can ensure
each node to converge to local optimality without conflict
with each other. The computational complexity of POP is
only OðdÞ per node, where d is the maximum node degree,
and its message complexity is OðnÞ, which is linear with the
number of nodes. Theoretical and simulation results
showed that POP substantially outperforms other schemes
in terms of coverage redundancy, convergence time,
network lifetime, and event detection probability.
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