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Spatial Temporal Graph Deconvolutional Network
for Skeleton-Based Human Action Recognition

Wei Peng , Jingang Shi, and Guoying Zhao , Senior Member, IEEE

Abstract—Benefited from the powerful ability of spatial tem-
poral Graph Convolutional Networks (ST-GCNs), skeleton-based
human action recognition has gained promising success. However,
the node interaction through message propagation does not al-
ways provide complementary information. Instead, it May even
produce destructive noise and thus make learned representations
indistinguishable. Inevitably, the graph representation would also
become over-smoothing especially when multiple GCN layers are
stacked. This paper proposes spatial-temporal graph deconvolu-
tional networks (ST-GDNs), a novel and flexible graph deconvo-
lution technique, to alleviate this issue. At its core, this method
provides a better message aggregation by removing the embedding
redundancy of the input graphs from either node-wise, frame-wise
or element-wise at different network layers. Extensive experiments
on three current most challenging benchmarks verify that ST-GDN
consistently improves the performance and largely reduce the
model size on these datasets.

Index Terms—Graph neural network, skeleton-based action
recognition, over-smoothing.

I. INTRODUCTION

R ECENT years, skeleton-based action recognition has at-
tracted great attention since the data is more compact

and more robust to complex background, when compared to
RGB inputs [1]–[6]. Formerly, deep neural models, including
both convolutional neural networks (CNNs) [1], [7]–[10] and
Recurrent Neural Networks (RNNs) [4], [11], [12], achieve
promising results and become mainstream methods since they
are able to automatically learn more distinguishable features
from data. Nevertheless, just like for another irregular data, con-
ventional neural networks like CNNs and RNNs are designed in
Euclidean space thus the skeleton-based action recognition does
not significantly benefit from the neural networks. Fortunately,
by introducing GCNs into this task, remarkable improvements
have been witnessed [13]–[19]. Yan et al. first proposed to
use spatial-temporal GCN for this task [14] and it becomes
one of the most common framework to skeleton-based action

Manuscript received November 10, 2020; revised December 24, 2020; ac-
cepted December 27, 2020. Date of publication January 6, 2021; date of current
version February 4, 2021. This work was supported in part by the ICT2023
Project under Grant 328115, in part by the Academy of Finland for Project
MiGA under Grant 316765, in part by the Infotech Oulu, and also with the
National Natural Science Foundation of China under Grant 62002283. The
associate editor coordinating the review of this manuscript and approving it for
publication was Prof. Dezhong Peng. (Corresponding author: Guoying Zhao)

Wei Peng and Guoying Zhao are with the Faculty of Information Technology
and Electrical Engineering, University of Oulu, 90570 Oulu, Finland (e-mail:
ikerpeng@gmail.com; guoying.zhao@oulu.fi).

Jingang Shi is with the School of Software Engineering, Xi’an Jiaotong
University Xi’an 710049, China (e-mail: jingang.shi@oulu.fi).

Digital Object Identifier 10.1109/LSP.2021.3049691

Fig. 1. Illustration of the ST-GDNs block. There are two core models in the
block, spatial models including both GCNs and GDNs, and a temporal model,
which can be either normal temporal filter (TCN) or temporal deconvolutional
networks (TDN). Our ST-GDNs are different combinations of them. Here,

⊕
is the element-wise summation.

⊗
denotes matrix multiplication.

recognition. Derived from ST-GCN, Shi et al. proposed to add
virtual typology to involve more semantic information [18].
Likewise, Peng et al. [19] turn to neural architecture search,
NAS [20], and automatically construct ST-GCN module [19]
for this task.

Nevertheless, as mentioned before, ST-GCNs capture and
extract graph embeddings via a message passing paradigm,
which makes the representation from different nodes indistin-
guishable to each other. Message propagation has the ability
to enhance the interactions between nodes with correlation
especially from topology structure. However, interaction with
unrelated nodes May not get complementary information but
noise which May even harm the original node representation.
Especially from the high semantic level, node interactions based
on topology connections May lead to very similar embeddings,
which is unreasonable.

In this letter, we propose a novel graph neural architecture,
referred as spatial temporal graph deconvolutional network (ST-
GDN), to deal with the aforementioned issue. As shown in
Fig. 1, the deconvolution operation provides a filter which can
reshape and transform the graph features before the filtering.
By changing the coordinates in a new feature space, the feature
embeddings are standardized and unrelated to each other. With
the deconvolutional operations, we remove the correlations and
redundancy of the graph representations from either node-wise
level, frame-wise level, or element-wise level. Finally, we evalu-
ate our model on three current most challenging skeleton-based
human action recognition tasks. Our contribution can be sum-
marized as follows:
� We present a novel and flexible Graph Deconvolution

Network (GDN), which is designed to address the graph
over-smoothing problem and also can be easily plugged
into variant graph neural networks.
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� We provide various ST-GCNs from different levels. By
combining them at different layers, we present a brand-
new graph neural network, named ST-GDN, which could
largely reduce the model parameters as well as improve the
feature representative ability.

� We utilize this model to deal with skeleton-based human
action recognition tasks. The results on three current most
challenging datasets show that we can get the best perfor-
mance on any given evaluation metrics with an efficient
fashion.

II. PROPOSED APPROACH

In this section, we will detail the theory of our approach and
four various blocks, referring as ST-GDNs, including Node-
wise ST-GDN (ST-GDN2), frame-wise ST-GDN (ST-GDN-T),
element-wise ST-GDN (ST-GDN-E), and a combination of GCN
and GDN (ST-GDCN).

1) ST-GCNs: The basic GCN model here is designed based
on the chebyshev polynomial approximation [21], [22], in which
the matrixL has a complete set of orthonormal eigenvectorsU =
[u1, u2, .., un], which are the Laplacian eigenvectors associated
with non-negative eigenvalue {λl}nl=1 such that L = UΛU T

for Λ = diag({λl}nl=1). Then, taking the eigenvectors of the
normalized Laplacian matrix as a set of bases, the graph convo-
lution operator is defined by the Fourier transformation. Current
GCNs approximate this convolution operations with (K − 1)-th
order polynomial expansion. Since our inputs are a sequence of
skeletons, we introduce temporal filters to capture the dynamic
information from the inputs. Inspired from (2+1)D convolution
networks [23], we make the above mentioned GCN be followed
by a temporal filter, thus the output representation should be

y = Θτt

(
U

(
K−1∑
k=0

θkλ
k

)
U Tx

)
. (1)

where Θtτ is an 1D temporal convolutional filter with kernel size
of τ , θk is the polynomial coefficient for the k-th order.

1) ST-GDNs: The basic architecture in the network is a spa-
tial graph model(s) followed by a temporal model, as illustrated
in Fig. 1. The spatial model can be either a GCN, a node-wise
GDN, or their combinations. The temporal model can be a
temporal convolutional filter (TCN) or a temporal deconvolu-
tional network (TDN). Given a sequence of human skeletons
or skeleton feature embeddings, the ST-GDNs output higher
level representations (Output Graph Features in Fig. 1) and a
dynamic graph embedding matrix (Matrix A in Fig. 1). Based
on the representations, a dynamic graph embedding matrix is
also provided for each GCN layer. We stack multiple ST-GDNs
to learn the graph embedding.

Over-smoothing leads to very similar representations for each
node or even each feature element. Our ST-GDNs address this
problem via filtering graph with representation standardization.
By changing the coordinates in a new feature space, the feature
embeddings are standardized and unrelated to each other, thus
the issue is relieved. Here, we begin to introduce the proposed
node-wise deconvolution firstly. It is very easy to generalize to
frame-wise and element-wise models. Assume X ∈ RN×T×F
is the N node graph representations for a T frames skeleton
sequence and the feature dimension for each node is F . From
Eq. (1) we know that, a convolutional filter will be introduced

to capture the node embeddings for the tensor X . Assume that
the kernel size of the convolutional filter is k1 × k2. In practice,
the filter multiples with an unfold tensor of X , in which there
are much redundancy and unavoidable will lead to the over-
smoothing issue. Suppose we unfold the embedding X to m
feature blocks while each block containsN × k1 × k2 elements.
The number of feature block m can be represented by

m =
∏

i={1,2}

(
Si + 2× pi − di × (ki − 1)− 1

ti
+ 1

)
. (2)

The index i belongs to the set {1, 2} since the GCN is a 2D
operation. Si = {T, F} is the length of feature along each di-
mension. The parameters pi, di, ki and ti are the padding value,
dilation value, kernel size and stride value for the corresponding
dimension, respectively. Thus, we can obtain the unfolded fea-
ture embedding X ∈ R(N×k1×k2)×m. Instead of directly filter
this tensor, we preform the deconvolution on it. Therefore, once
getting this unfolded embedding, we first calculate the mean
node embedding μ ∈ RN×k1×k2 for them feature blocks. Then,
a covariance matrix can be written as

C = (X − μ)T (X − μ) + εI . (3)

To make it more stable, a very small value ε is added to the
diagonal of the matrix. The graph deconvolution operation can
be a GCN on the transformed input feature with the covariance
matrix, that is:

Y = U

(
K−1∑
k=0

θkλ
k

)
U T ((X − μ)C− 1

2 ). (4)

Here, the transformed feature representation (X − μ)C− 1
2 has

an identity matrix since its covariance is

((X − μ)C− 1
2 )T ((X − μ)C− 1

2 ) = I . (5)

By changing the coordinates in a new feature space, the feature
embeddings are standardized and unrelated to each other. This
operation can be considered as a deconvolution since it can
negates the process of convolution. It means that for a delta
kernel δ, the transformed feature XC− 1

2 will not be changed
by using kernel C

1
2 δ. In this case, the deconvolution kernel

is C− 1
2 · vec(δ), where vec(δ) is equal to slicing the middle

row/column of C− 1
2 and reshaping it to the kernel size.

However, calculating the inverse square root of a matrix is
still computationally expensive and unstable. Instead of directly
computing it, like [24], we further use coupled Newton-Schulz
iterations to reduce the cost. The iteration starts with Y0 =
C,Z0 = I , and could be executed by

Yk+1 =
1

2
Yk(3I − ZkYk), Zk+1 =

1

2
(3I − ZkYk)Zk. (6)

Once the iteration is done, the final result of Zk will converge
to C− 1

2 . Then, the value of Zk could be utilized to approximate
the C− 1

2 as a trade-off between efficiency and accuracy.
Here, the deconvolutional operation in Eq. (4) can be further

simplified by only considering the first-order polynomial ap-
proximation and setting the polynomial coefficients θ = θ0 =
−θ1. Then, the learnable θ is expected to make the approxi-
mation more robust and higher-order node connections can be
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captured by stacking multiple layers. Thus, the output from
single GDN layer can be represented as

Y = θ(I − L)((X − μ)C− 1
2 ). (7)

To break the limitation for the higher level graph embed-
ding, like [19], instead of providing a predefined correlation
embedding matrix, we introduce self attention mechanism to
automatically compute a dynamic embedding matrix based on
the representation similarity:

Ai,j =
eφ(h(xi))

⊗
ψ(h(xj))∑n

j=1 e
φ(h(xi))

⊗
ψ(h(xj))

. (8)

Here,Ai,j is the correlation between node i and node j. The two
projection functions φ(·) and ψ(·) are used to map features to
another feature space, where the Gaussian similarity is used to
measure the node correlation strength.

Based on the above structure, we construct four kinds of
deconvolution models. First, the node-wise graph deconvolu-
tional networks ST-GDN2, which combines the mentioned graph
model and a TCN together. To further benefit from the original
GCN, we design a ST-GDCN, which replaces the graph model of
ST-GDN2 by a union of GCN and GDN. Both convolutional and
deconvolutional feature embeddings are involved to promote the
graph representation learning. Next, we extend deconvolution
to frame-wise, in which we first rearrange the feature shape
along the temporal dimension. So the feature representation
X ∈ RN×T×F could be reshaped to X ∈ RT×N×F . Then, the
ST-GDN-T will be built by a normal GCN followed by a TDN,
where the TDN is a temporal filter based on Eq. (7) and the
matrix (I − L) switches to an identity matrix. Finally, with above
two models (ST-GDN2 and ST-GDN-T), we combine GDN and
TDN to build an element-wise ST-GDN, which is referred as
ST-GDN-E.

III. EXPERIMENTS

Here, we carry out comparative experiments on three skeleton
datasets, i.e., NTU RGB+D [4], NTU RGB+D [25] and Kenitics-
Skeleton [14], to evaluate our method.

A. Experiment Settings

Our model has seven graph neural layers. Like previous
works [14], [18], [19], a residual skip connection is applied
on graph convolutional block. The projection functions, as de-
scribed in Eq. 8, are implemented by two channel-wise convolu-
tional filters. The number of channels at each level are consistent
with the current state-of-the-art methods [14], [18], [19] for fair
comparison. The last output feature maps are averaged to a
vector and then a fully connected layer is used for final class
prediction. All the experiments are performed on PyTorch [26]
and we train 50 epochs for our models with cross-entropy
loss. A SGD with Nesterov momentum (0.9) is applied in the
optimization algorithm. The weight decay is set to 0.0005. The
learning rate is set as 0.1 and is decreased based on a cosine
function. We execute five iterations for coupled Newton-Schulz.

Fig. 2. Visualization of the features from ST-GCN and ST-GDN2.

B. Visualization

We first visualize the features of each node at the last graph
layer to observe whether this block could distinguish the em-
beddings. To this end, we compare ST-GCN network to the
ST-GDN2, which is designed from the node-wise, on NTU
RGB+D dataset under the Cross-Subject (CS) evaluation.

After training these two networks for 50 epochs, we choose
all the samples from the same class for evaluation. Since there
are 25 nodes in each graph, we assign one different color to
each node. We average the feature along the temporal dimension
such that we get a 256-D representation for each node. Then
we visualize it by using t-SNE [27]. Features from ST-GCN
are shown in Fig. 2(a), while Fig. 2(b) presents for features
obtained by ST-GDN2. In Fig. 2(a), nodes from the same graph
are nearly located at the same location since different nodes
are with very similar feature representations. This is obviously
an over-smoothing problem caused by GCN. On the contrary,
as shown in Fig. 2(b), we can find very distinguishable repre-
sentations for the nodes from ST-GDN2, which proves that our
method could alleviate this problem.

C. Ablation Experiments

Here, we evaluate the effectiveness of our method on the
NTU RGB+D dataset under the CS evaluation. Here, current
state-of-the-art 2S-AGCN [18] is utilized as the baseline. We
also implement a seven-layer network, 2S-AGCN-7l, based
on the block from 2s-AGCN. 2S-AGCN-7l is with the same
architecture settings of ST-GDNs and is much smaller than
2S-AGCN. In this way, we want to know how well our model
could perform when compared with GCN using the same setting.
Finally, we combine all our ST-GDNs and expect to get a better
graph network. Here, we empirically design our ST-GDN like
this: for the first four layers, we put four ST-GDCN to capture
richer representation of the input. For the fifth layer, we insert
a node-wise deconvolution, ST-GDN2. Inspired by [19], we set
our ST-GDN with temporal-wise deconvolution and element-
wise deconvolution at higher layers (layers six and seven) to
enhance the importance of temporal information. In this way,
we build a more powerful network (i.e., ST-GDN) for this task.

It can be seen from Table I that all our networks can achieve
better results when compared to the baseline method 2S-AGCN.
If we reduce 2S-AGCN to seven layers, which is the depth of
our networks, our ST-GDN could even outperform it by 6.4%
and 9.1% on joint and bone data, respectively. This shows the
effectiveness of our method. Besides, results show that network
benefits more from frame-level deconvolution (ST-GDN-T),
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TABLE I
ABLATION EXPERIMENT

TABLE II
COMPARISONS ON NTU RGB+D DATASET

which is reasonable since over-smoothing caused by 300 frames
could be more serious than that caused by 25 nodes. We could
also find that directly adding deconvolution to all elements
can not ensure the improvement when compared ST-GDN-E
to ST-GDN-T. This also proves the architecture of ST-GDN is
reasonable.

D. Comparison With the State-of-the-Art Methods

NTU RGB+D dataset Here, we compare with 14 state-of-
the-art skeleton-based action recognition approaches under two
evaluation metrics, i.e., CS and Cross-View (CV) metrics. All
the comparison results are listed in Table II. In this task, like [18],
[19], we build two stream networks and report the best result after
performing the score-level fusion on joint and bone data. It can be
seen from Table II that our model achieves the best performance
in terms of either evaluation metrics. Specifically, our model
gets the current best result 89.7% and 95.9% on CS and CV
evaluations, respectively. Note that, our model even outperforms
the NAS-based GCN method [19]. Besides, the model size of the
proposed method also decreases by three times when compared
with [19].

NTU RGB+D 120 dataset We compare with 14 skeleton-
based action recognition approaches under CS and Cross-Setup
(CST) evaluation metrics. Here, we report the best result on joint
data. All the comparison results are listed in Table III. We can
see from Table III that our model outperforms other compared
approaches under both CS and CST metrics. When compare to
the current best CNN-based method [31], GCN-based methods
could get more than 10% improvements on average. That proves
the graph convolutional networks are much suitable for this task.
Comparison in the GCN-based methods could also show our
superiority. For instance, when compared to the AS-GCN [17],
which is the previous best model for this task, we can still get

TABLE III
COMPARISONS ON NTU RGB+D 120 DATASET

TABLE IV
COMPARISONS ON KINETICS-SKELETON DATASET

3.4% and 3.1% improvements under the CST and CS evaluation
metrics, respectively.

Kinetics-skeleton dataset We compare our method to seven
different approaches. Like [18], [19], we report both top1 and
top5 accuracy since this task is much challenging. All the
comparison results are listed in Table IV.

It can be seen from Table IV that our model achieves the
best performance on both of the metrics. Specifically, we get the
best Top-1(37.3%) and Top-5(60.5%) performance on Kinetics-
Skeleton dataset, which presents the score-level fusion results.
For either using joint or bone data, we can always get the best
results when compared with methods using the same data. Also,
the size of the proposed model is smaller than the current best
one [19] by three times.

IV. CONCLUSION

In this letter, we provide a novel and flexible spatial temporal
graph deconvolutional network, ST-GDN, to address the graph
over-smoothing issues in skeleton-based action recognition. The
ST-GDN provides a new graph deconvolutional operation which
not only performs a feature extraction but also provides a
transformation of the graph representation such that it could
be standardized. Based on this model, we build four different
kinds of ST-GDNs and empirically insert them at the different
levels of the networks. In this way, we construct our ST-GDN
which could capture more powerful graph embeddings for the
graph sequences. Compared to many state-of-the-art methods,
the proposed model presents its efficiency and accuracy with
corresponding metrics.
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