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Abstract

Despite the recent success of deep learning in continuous
sign language recognition (CSLR), deep models typically fo-
cus on the most discriminative features, ignoring other poten-
tially non-trivial and informative contents. Such characteris-
tic heavily constrains their capability to learn implicit visual
grammars behind the collaboration of different visual cues
(i,e., hand shape, facial expression and body posture). By in-
jecting multi-cue learning into neural network design, we pro-
pose a spatial-temporal multi-cue (STMC) network to solve
the vision-based sequence learning problem. Our STMC net-
work consists of a spatial multi-cue (SMC) module and a
temporal multi-cue (TMC) module. The SMC module is ded-
icated to spatial representation and explicitly decomposes vi-
sual features of different cues with the aid of a self-contained
pose estimation branch. The TMC module models temporal
correlations along two parallel paths, i.e., intra-cue and inter-
cue, which aims to preserve the uniqueness and explore the
collaboration of multiple cues. Finally, we design a joint op-
timization strategy to achieve the end-to-end sequence learn-
ing of the STMC network. To validate the effectiveness, we
perform experiments on three large-scale CSLR benchmarks:
PHOENIX-2014, CSL and PHOENIX-2014-T. Experimental
results demonstrate that the proposed method achieves new
state-of-the-art performance on all three benchmarks.

1 Introduction

Sign language is the primary language of the deaf commu-
nity. To facilitate the daily communication between the deaf-
mute and the hearing people, it is significant to develop sign
language recognition (SLR) techniques. Recently, SLR has
gained considerable attention for its abundant visual infor-
mation and systematic grammar rules (Cui, Liu, and Zhang
2017; Huang et al. 2018; Koller et al. 2019; Pu, Zhou, and
Li 2019; Li et al. 2019). In this paper, we concentrate on
continuous SLR (CSLR), which aims to translate a series of
signs to the corresponding sign gloss sentence.

Sign language mainly relies on, but not limits to, hand
gestures. To effectively and accurately express the desired
idea, sign language simultaneously leverages both manual
elements from hands and non-manual elements from the
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face and upper-body posture (Koller, Forster, and Ney 2015).
To be specific, manual elements include the shape, position,
orientation and movement of both hands, while non-manual
elements include the eye gaze, mouth shape, facial expres-
sion and body pose. Human visual perception allows us to
process and analyze these simultaneous yet complex infor-
mation without much effort. However, with no expert knowl-
edge, it is difficult for a deep neural network to discover the
implicit collaboration of multiple visual cues automatically.
Especially for CSLR, the transitions between sign glosses
may come with temporal variations and switches of differ-
ent cues.

To explore multi-cue information, some methods rely on
external tools. For example, an off-the-shelf detector is uti-
lized for hand detection, together with a tracker to cope with
shape variation and occlusion (Cihan Camgoz et al. 2017;
Huang et al. 2018). Some methods adopt multi-stream net-
works with inferred labels (i.e., mouth shape labels, hand
shape labels) to guide each stream to focus on individual
visual cue (Koller et al. 2019). Despite their improvement,
they mostly suffer two limitations: First, external tools im-
pede the end-to-end learning on the differentiable structure
of neural networks. Second, off-the-shelf tools and multi-
stream networks bring repetitive feature extraction of the
same region, incurring expensive computational overhead
for such a video-based translation task.

To temporally exploit multi-cue features, an intuitive idea
is to concatenate features and feed them into a temporal fu-
sion module. In action recognition, two-stream fusion shows
significant performance improvement by fusing temporal
features of RGB and optical flow (Simonyan and Zisserman
2014; Feichtenhofer, Pinz, and Zisserman 2016). Neverthe-
less, the aforementioned fusion approaches are based on two
counterpart features in terms of the representation capability.
But when it turns to multiple diverse cues with unequal fea-
ture importance, how to fully exploit the synergy between
strong features and weak features still leaves a challenge.
Moreover, for deep learning based methods, neural networks
tend to merely focus on strong features for quick conver-
gence, potentially omitting other informative cues, which
limits the further performance improvement.

To address the above difficulties, we propose a novel
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spatial-temporal multi-cue (STMC) framework. In the SMC
module, we add two extra deconvolutional layers (Zeiler et
al. 2010; Xiao, Wu, and Wei 2018) for pose estimation on
the top layer of our backbone. A soft-argmax trick (Chapelle
and Wu 2010) is utilized to regress the positions of keypoints
and make it differentiable for subsequent operations in the
temporal part. The spatial representations of other cues are
acquired by the reuse of feature maps from the middle layer.
Based on the learned spatial representations, we decompose
the temporal modelling part into the intra-cue path and inter-
cue path in the TMC module. The inter-cue path fuses the
temporal correlations between different cues with temporal
convolutional (TCOV) layers. The intra-cue path models the
internal temporal dependency of each cue and feeds them
to the inter-cue path at different time scales. To fully ex-
ploit the potential of STMC network, we design a joint opti-
mization strategy with connectionist temporal classification
(CTC) (Graves et al. 2006) and keypoint regression, making
the whole structure end-to-end trainable.

Our main contributions are summarized as follows:

• We design an SMC module with a self-contained pose es-
timation branch. It provides multi-cue features in an end-
to-end fashion and maintains efficiency at the same time.

• We propose a TMC module composed of stacked TMC
blocks. Each block includes intra-cue and inter-cue paths
to preserve the uniqueness and explore the synergy of dif-
ferent cues at the same time.

• A joint optimization strategy is proposed for the end-to-
end sequence learning of our STMC network.

• Through extensive experiments, we demonstrate that our
STMC network surpasses previous state-of-the-art mod-
els on three publicly available CSLR benchmarks.

2 Related Work

In this section, we briefly review the related work on sign
language recognition and multi-cue fusion.

A CSLR system usually consists of two parts: video rep-
resentation and sequence learning. Early works utilize hand-
crafted features (Cooper and Bowden 2009; Buehler, Zisser-
man, and Everingham 2009; Yin, Chai, and Chen 2016) for
SLR. Recently, deep learning based methods have been ap-
plied to SLR for their strong representation capability. 2D
convolutional neural networks (2D-CNN) and 3D convolu-
tional neural networks (3D-CNN) (Ji et al. 2013; Qiu, Yao,
and Mei 2017) are employed for modelling the appearance
and motion in sign language videos. In (Cui, Liu, and Zhang
2017), Cui et al. propose to combine 2D-CNN with tem-
poral convolutional layers for spatial-temporal representa-
tion. In (Molchanov et al. 2016; Pu, Zhou, and Li 2018;
Zhou, Zhou, and Li 2019; Wei et al. 2019), 3D-CNN is
adopted to learn motion features in sign language.

Sequence learning in CSLR is to learn the correspondence
between video sequence and sign gloss sequence. Koller et
al. (Koller, Ney, and Bowden 2016; Koller, Zargaran, and
Ney 2017; Koller et al. 2018) propose to integrate 2D-CNNs
with hidden markov models (HMM) to model the state tran-
sitions. In (Cihan Camgoz et al. 2017; Wang et al. 2018;

Cui, Liu, and Zhang 2017; 2019), connectionist temporal
classification (CTC) (Graves et al. 2006) algorithm is em-
ployed as a cost function for CSLR, which is able to pro-
cess unsegmented input data. In (Huang et al. 2018; Guo et
al. 2018), the attention-based encoder-decoder model (Bah-
danau, Cho, and Bengio 2014) is adopted to deal with CSLR
in the way of neural machine translation.

The multiple cues of sign language can be separated
into categories of multi-modality and multi-semantic. Early
works about multi-modality utilize physical sensors to col-
lect the 3D space information, such as depth and infrared
maps (Molchanov et al. 2016; Liu et al. 2017). With the
development of flow estimation, Cui et al. (Cui, Liu, and
Zhang 2019) explore the multi-modality fusion of RGB
and optical flow and achieve state-of-the-art performance on
PHOENIX-2014 database. In contrast, multi-semantic refers
to human body parts with different semantics. Early works
use hand-crafted features from segmented hands, tracked
body-parts and trajectories for recognition (Buehler, Zisser-
man, and Everingham 2009; Pfister, Charles, and Zisserman
2013; Koller, Forster, and Ney 2015). In (Cihan Camgoz
et al. 2017; Huang et al. 2018), feature sequence of hand
patches captured by a tracker is fused with feature sequence
of full-frames for further sequence prediction. In (Koller et
al. 2019), Koller et al. propose to infer weak mouth labels
from spoken German annotations and weak hand labels from
SL dictionaries. These weak labels are used to establish the
state synchronization in HMM of different cues, including
full-frame, hand shape and mouth shape. Unlike previous
methods, we propose an end-to-end differentiable network
for multi-cue fusion with joint optimization, which achieves
excellent performance.

3 Proposed Approach

In this section, we first introduce the overall architecture
of the proposed method. Then we elaborate the key com-
ponents in our framework, including the spatial multi-cue
(SMC) module and temporal multi-cue (TMC) module. Fi-
nally, we detail the sequence learning part and the joint
loss optimization of our spatial-temporal multi-cue (STMC)
framework.

3.1 Framework Overview

Given a video x = {xt}
T
t=1 with T frames, the target of

CSLR task is to predict its corresponding sign gloss se-
quence ℓ = {ℓi}

L
i=1 with L words. As illustrated in Figure 1,

our framework consists of three key modules, i.e., spatial
representation, temporal modelling and sequence learning.
First, each frame is processed by an SMC module to gen-
erate spatial features of multiple cues, including full-frame,
hand, face and pose. Then, a TMC module is leveraged to
capture the temporal correlations of intra-cue features and
inter-cue features at different time steps and time scales.
Finally, the whole STMC network equipped with bidirec-
tional Long-Short Term Memory (BLSTM) (Hochreiter and
Schmidhuber 1997) encoders utilizes connectionist tempo-
ral classification (CTC) for sequence learning and inference.
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Figure 1: An overview of the proposed STMC framework. The SMC module is firstly utilized to decompose spatial features of
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Figure 2: The SMC Module. The keypoints are estimated
for patch cropping of face and hands. The output of SMC
includes features from full-frame, hands, face and pose.

3.2 Spatial Multi-Cue Representation

In spatial representation module, 2D-CNN is adopted to gen-
erate multi-cue features of full-frame, hands, face and pose.
Here, we select VGG-11 model (Simonyan and Zisserman
2015) as the backbone network, considering its simple but
effective neural architecture design. As depicted in Figure 2,
the operations in SMC are composed of three steps: pose
estimation, patch cropping and feature generation.

Pose Estimation. Deconvolutional networks (Zeiler et al.
2010) are widely used in pixel-wise prediction. For pose es-
timation, two deconvolutional layers are added after the 7-th
convolutional layer of VGG-11. The stride of each layer is
2. So, the feature maps are 4× upsampled from the resolu-
tion 14× 14 to 56× 56. The output is fed into a point-wise
convolutional layer to generate K predicted heat maps. In
each heat map, the position of its corresponding keypoint is
expected to show the highest response value. Here, K is set
to 7 for keypoints at the upper body, including the nose, both
shoulders, both elbows and both wrists.

To make the keypoint prediction differentiable for subse-
quent sequence learning, a soft-argmax layer is applied on
these heat maps. Denoting K heat maps as h = {hk}

K
k=1

, each heat map hk ∈ R
H×W is passed through a spatial

softmax function as follows,

pi,j,k =
ehi,j,k

∑H

i=1

∑W

j=1 e
hi,j,k

, (1)

where hi,j,k is the value of heat map hk at position (i, j)
and pi,j,k is the probability of keypoint k at position (i, j).
Afterwards, the expected values of coordinates along x-axis
and y-axis over the whole probability map are calculated as
follows,

(x̂, ŷ)k=

⎛

⎝

H
∑

i=1

W
∑

j=1

i−1

H−1
pi,j,k,

H
∑

i=1

W
∑

j=1

j−1

W−1
pi,j,k

⎞

⎠ .

(2)
Here, Jk=(x̂, ŷ)k ∈ [0, 1] is the normalized predicted posi-
tion of keypoint k. The corresponding position of (x, y) in a
H ×W feature map is (x̂(H−1) + 1, ŷ(W−1) + 1).

Patch Cropping. In CSLR, the perception of detailed vi-
sual cues is vital, including eye gaze, facial expression,
mouth shape, hand shape and orientations of hands. Our
model takes predicted positions of the nose and both wrists
as the center points of the face and both hands. The patches
are cropped from the output (56 × 56 × C4) of 4-th convo-
lutional layer of VGG-11. The cropping sizes are fixed to
24 × 24 for both hands and 16 × 16 for the face. It’s large
enough to cover body parts of a signer whose upper body
is visible to the camera. The center point of each patch is
clamped into a range to ensure that the patch would not cross
the border of the original feature map.

Feature Generation. After K keypoints are predicted,
they are flattened to a 1D-vector with dimension 2K and
passed through two fully-connected (FC) layers with ReLU
to get the feature vector of pose cue. Then, feature maps of
the face and both hands are cropped and processed by sev-
eral convolutional layers, separately. Most sign gestures rely
on the cooperation of both hands. So we use weight-sharing
convolutional layers for both hands. The outputs of them are
concatenated along the channel-dimension. Finally, we per-
form global average pooling over all the feature maps with
spatial dimension to form feature vectors of different cues.

All features are extracted by passing frames x = {xt}
T
t=1

through our spatial multi-cue (SMC) module as follows,

{

{ft,n}
N

n=1 , {Jt,k}
K

k=1

}T

t=1
= {Ωθ(xt)}

T

t=1 , (3)

where Ωθ(·) denotes SMC module and θ denotes the param-
eters of it. Jt,k ∈ R

2 is the position of keypoint k at the t-th

frame. ft,n ∈ R
Cn is the feature vector of visual cue n at the
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Figure 3: The TMC Module.

t-th frame. In this paper, we set N = 4, which represents
visual cues of full-frame, hand, face and pose, respectively.

3.3 Temporal Multi-Cue Modelling

Instead of simple fusion, our proposed temporal multi-cue
(TMC) module intends to integrate spatiotemporal informa-
tion from two aspects, intra-cue and inter-cue. The intra-cue
path captures the unique features of each visual cue. The
inter-cue path learns the combination of fused features from
different cues at different time scales. Then, we define a
TMC block to model the operations between the two paths
as follows,

(ol, fl) = Blockl(ol−1, fl−1), (4)

where (ol−1, fl−1) and (ol, fl) are the input pair and out-
put pair of the l-th block. ol ∈ R

T×Co denotes the feature
matrix of the inter-cue path. fl ∈ R

T×Cf denotes the fea-
ture matrix of the intra-cue path which is the concatenation
of vectors from different cues along channel-dimension. As
the first input pair, o1=f1=[f1,1, f1,2, · · · , f1,N ], where [·]
is the concatenating operation and N is the number of cues.

The detailed operations inside each TMC block are shown
in Figure 3 and can be decomposed into two paths as fol-
lows. ( C is the number of output channels in each path)

Intra-Cue Path. The first path is to provide unique fea-
tures of different cues at different time scales. The temporal
transformation inside each cue is performed as follows,

fl,n = ReLU(K
C
N

k (fl−1,n)), (5)

fl = [fl,1, fl,2, · · · , fl,N ]. (6)

Here, fl,n ∈ R
T× C

N denotes the feature matrix of n-th cue.

K
C
N

k denotes the kernel of a temporal convolution, where k

is the temporal kernel size and C
N

is the number of output
channels.

Inter-Cue Path. The second path is to perform the tempo-
ral transformation on the inter-cue feature from the previous

block and fuse information from the intra-cue path as fol-
lows,

ol = ReLU([K
C
2

k (ol−1),K
C
2

1 (fl)]), (7)

where K
C
2

1 is a point-wise temporal convolution. It serves as
a project matrix between the two paths. Note that fl is the
output of intra-cue path in the present block.

After each block, a temporal max-pooling with stride 2
and kernel size 2 is performed. In this paper, we use two
blocks in the TMC module. The kernel size k of all tempo-
ral convolutions is set to 5, except the point-wise one. The
number of output channels C in each path is set to 1024.

3.4 Sequence Learning and Inference

With the proposed SMC and TMC module, the network can

generate inter-cue feature sequence o = {ot}
T ′

t=1 and N

intra-cue feature sequences fn = {ft,n}
T ′

t=1. Here, T ′ is the
temporal length of the final output of the TMC module. The
question then is how to utilize these two feature sequences
to accomplish the sequence learning and inference.

BLSTM Encoder. Recurrent neural networks (RNN) can
use their internal state to model the state transitions in the
sequence of inputs. Here, we use RNN to map the spatial-
temporal feature sequence to its sign gloss sequence. RNN
takes the feature sequence as input and generates T ′ hidden
states as follows,

ht = RNN(ht−1, ot), (8)

in which ht is the hidden state at time step t and the ini-
tial state h0 is a fixed all-zero vector. In our approach,
we choose the bidirectional Long Short-Term Memory
(BLSTM) (Sutskever, Vinyals, and Le 2014) unit as the re-
current unit for its ability in processing long-term depen-
dencies. BLSTM concatenates forward and backward hid-
den states from bidirectional inputs. Afterward, the hidden
state of each time step is passed through a fully-connected
layer and a softmax layer,

at = W · ht + b, yt,j =
eat,j

∑

k e
at,k

, (9)

where yt,j is the probability of label j at time step t. In
CSLR task, label j comes from a given vocabulary.

Connectionist Temporal Classification. Our model em-
ploys connectionist temporal classification (CTC) (Graves et
al. 2006) to tackle the problem of mapping video sequence

o = {ot}
T ′

t=1 to ordered sign gloss sequence ℓ = {ℓi}
L
i=1

(L ≤ T ), where the explicit alignment between them is un-
known. The objective of CTC is to maximize the sum of
probabilities of all possible alignment paths between input
and target sequence.

CTC creates an extended vocabulary V with a blank la-
bel “−”, where V = Vorigin ∪ {−}. The blank label repre-
sents stillness and transitions which have no precise mean-
ing. Denote the alignment path of the input sequence as

π = {πt}
T ′

t=1, where label πt ∈ V . The probability of align-
ment path π given the input sequence is defined as follows,

p(π|o) =
T ′

∏

t=1

p(πt|o) =
T ′

∏

t=1

yt,πt
. (10)
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Define a many-to-one mapping operation B which re-
moves all blanks and repeated words in the alignment path
(e.g., B(II−miss−−you) = I,miss, you). In this way, we
calculate the conditional probability of sign gloss sequence
ℓ as the sum of probabilities of all paths that can be mapped
to ℓ via B:

p(ℓ|o) =
∑

π∈B−1(ℓ)

p(π|o), (11)

where B−1(ℓ)={π|B(π)=ℓ} is the inverse operation of B.
Finally, the CTC losses of inter-cue feature sequence o and
intra-cue feature sequence fn are defined as follows,

LCTC−o = − ln p(ℓ|o), (12)

LCTC−fn
= − ln p(ℓ|fn). (13)

Joint Loss Optimization. During the training process, we
take the optimization of the inter-cue path as the primary ob-
jective. To provide the information of each individual cue for
fusion, the intra-cue path plays an auxiliary role. Hence, the
objective function of the entire STMC framework is given
as follows,

L = LCTC−o + α
∑

n
LCTC−fn

+ Lβ
R. (14)

Here, α and β are hyper-parameters, where α is to balance
the ratio of auxiliary loss for the intra-cue path, and β is
to make the regression loss LR of pose estimation have the
same order of magnitudes with others. Given the estimated
keypoints Jt,k ∈ R

2 which is calculated in Eq. 3, its cor-

responding ground-truth is Ĵ , and the smooth-L1 (Girshick
2015) loss function of pose estimation branch is calculated
as follows,

Lβ
R =

1

2TK

∑

t

∑

k

∑

i∈(x,y)

smoothL1
β(Jt,k,i − Ĵt,k,i),

(15)
in which,

smoothL1
(x) =

{

0.5x2 if |x| < 1,

|x| − 0.5 otherwise.
(16)

Inference. For inference, we pass video frames through
the SMC and TMC modules. Only the inter-cue feature se-
quence and its BLSTM encoder are used to generate the pos-
terior probability distribution of glosses at all time steps. We
use the beam search decoder (Hannun et al. 2014) to search
the most probable sequence within an acceptable range.

4 Experiments

4.1 Dataset and Evaluation

Dataset. We evaluate our method on three datasets, in-
cluding PHOENIX-2014 (Koller, Forster, and Ney 2015),
CSL (Huang et al. 2018; Guo et al. 2018) and PHOENIX-
2014-T (Cihan Camgoz et al. 2018).

PHOENIX-2014 is a publicly available German Sign
Language dataset, which is the most popular benchmark for
CSLR. The corpus was recorded from broadcast news about
the weather. It contains videos of 9 different signers with a
vocabulary size of 1295. The split of videos for Train, Dev
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Figure 4: The effect of weight parameter α in Eq. 14.

and Test is 5672, 540 and 629, respectively. Our method is
evaluated on the multi-signer database.

CSL is a Chinese Sign Language dataset, which has 100
sign language sentences about daily life with 178 words.
Each sentence is performed by 50 signers and there are 5000
videos in total. For pre-training, it also provides a matched
isolated Chinese Sign Language database, which contains
500 words. Each word is performed 10 times by 50 signers.

PHOENIX-2014-T is an extended version of PHOENIX-
2014 and has two-stage annotations for new videos. One is
sign gloss annotations for CSLR task. Another is German
translation annotations for sign language translation (SLT)
task. The split of videos for Train, Dev and Test is 7096,
519 and 642, respectively. It has no overlap with the previ-
ous version between Train, Dev and Test set. The vocabulary
size is 1115 for sign gloss and 3000 for German.

Pose Annotation. To obtain the keypoint positions for
training, we use the publicly available HRNet (Sun et al.
2019) toolbox to estimate the positions of 7 keypoints in
upper-body for all frames on three databases. The toolbox
gives 2D coordinates (x, y) in the pixel coordinate system.
We thus represent each normalized keypoint with a tuple of
(x, y) and record it as an array of 7 tuples.

Evaluation. In CSLR, Word Error Rate (WER) is used
as the metric of measuring the similarity between two sen-
tences (Koller, Forster, and Ney 2015). It measures the least
operations of substitution (sub), deletion (del) and insertion
(ins) to transform the hypothesis to the reference:

WER =
#substitutions + #deletions + #insertions

#words in reference
. (17)

4.2 Implementation Details

In our experiments, the input frames are resized to 224×224.
For data augmentation in one video, we add random crop
at the same location of all frames, random discard of 20%
frames and random flip of all frames. For inter-cue features,
the number of output channels after TCOVs and BLSTM
are all set to 1024. There are 4 visual cues. For each intra-
cue feature, the number of output channels after TCOVs and
BLSTM are all set to 256.

Following the previous methods (Koller, Zargaran, and
Ney 2017; Pu, Zhou, and Li 2019; Cui, Liu, and Zhang
2019), we utilize a staged optimization strategy. First, we
train a VGG11-based network as DNF (Cui, Liu, and Zhang
2019) and use it to decode pseudo labels for each clip. Then,
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Table 1: Evaluation of different module combinations (the
lower the better).

Method
Dev Test

del/ins WER del/ins WER

VGG+1D-CNN 9.0/3.0 25.1 8.4/3.0 25.5
SMC+1D-CNN 7.6/3.8 22.7 7.4/3.5 22.4
SMC+TMC w/o JL 6.6/4.7 22.1 6.7/3.8 21.9
SMC+TMC 7.7/3.4 21.1 7.4/2.6 20.7

Table 2: Evaluation of different paths in TMC on Dev set.

Path Inter-Cue
Intra-Cue

full hand face pose

WER 21.1 25.0 30.5 35.0 51.4

we add a fully-connected layer after each output of the TMC
module. The STMC network without BLSTM is trained with
cross-entropy and smooth-L1 loss by SGD optimizer. The
batch size is 24 and the clip size is 16. Finally, with fine-
tuned parameters from the previous stage, our full STMC
network is trained end-to-end under joint loss optimization.
We use Adam optimizer with learning rate 5× 10−5 and set
the batch size to 2. In all experiments, we set α to 0.6 and
β to 30. In fact, the experiment results are insensitive to the
slight change of α (see Fig. 4), except α = 0.

Our network architecture is implemented in PyTorch. For
finetuning, we train the STMC network without BLSTM for
25 epochs. Afterward, the whole STMC network is trained
end-to-end for 30 epochs. For inference, the beam width is
set to 20. Experiments are run on 4 GTX 1080Ti GPUs.

4.3 Framework Effectiveness Study

For a fair comparison, experiments in this subsection are
conducted on PHOENIX-2014, which is the most popular
dataset in CSLR.

Module Analysis We analyze the effectiveness of each
module in our proposed approach. In Table 1, different com-
binations of spatial and temporal modules are evaluated. The
baseline model is composed of VGG11 and 1D-CNN with
a BLSTM encoder. With the aid of multi-cue features, the
SMC module provides about 3% improvement compared
with baseline on the test set. However, with no extra guid-
ance, the TMC module doesn’t show expected gain by re-
placing the 1D-CNN. With joint loss optimization, the intra-
cue path is guided by CTC loss to learn temporal depen-

Table 3: Comparison of inference time. (PE: an external
VGG11-based model for pose estimation)

Method FLOPs Time WER (Dev)

VGG+1D-CNN 7.5G 264ms 25.1
VGG+TMC+PE 17.3G 628ms 21.7
SMC+TMC 10.3G 352ms 21.1

dency of each cue and provides 1.6% and 1.7% extra gain
on the dev set and test set, compared with 1D-CNN. Com-
pared with the baseline model, our STMC network reduces
the WER on the test set by 4.8%.

Intra-Cue and Inter-Cue Paths With further optimiza-
tion, the BLSTM encoder of each cue in the intra-cue path
can also serve as an individual sequence predictor. In Ta-
ble 2, WERs of different encoders in both paths are evalu-
ated on the dev set. Among the four cues, the performance of
pose is worst. With only the position and orientation of joints
in upper-body, it’s difficult to distinguish the subtle varia-
tions in the appearance of sign gestures. The performance
of hand is superior to that of face, while full-frame achieves
relatively better performance. By leveraging the synergy of
different cues, the inter-cue path shows the lowest WER.

Inference Time To clarify the effectiveness of the self-
contained pose estimation branch, we evaluate the inference
time in Table 3. The inference time depends on the video
length. In average, it takes around 8 seconds (25FPS) for a
sign sentence. For a fair comparison, we evaluate the infer-
ence time of 200 frames on a single GPU. Compared with in-
troducing an external VGG-11 based model for pose estima-
tion, our self-contained branch saves around 44% inference
time. It’s notable that our framework with the self-contained
branch still shows slightly better performance than an off-
the-shelf model. We argue that the differentiable pose esti-
mation branch plays the role of regularization and then alle-
viate the overfitting of neural networks.

Qualitative Analysis Figure 5 shows an example gener-
ated by different cues. It’s clear to see that the result of the
inter-cue path can effectively learn correlations of multiple
cues and make a better prediction.

4.4 State-of-the-art Comparison

Evaluation on PHOENIX-2014. In Table 4, we compare
our approach with methods on PHOENIX-2014. CMLLR
and 1-Mio-Hands belong to traditional HMM-based model
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Table 4: Comparison with methods on PHOENIX-2014 (the lower the better).

Method
Cue Dev Test

full hand face pose del/ins WER del/ins WER

CMLLR (Koller, Forster, and Ney 2015) � � � 21.8/3.9 55.0 20.3/4.5 53.0
1-Mio-Hands (Koller, Ney, and Bowden 2016) � � � 16.3/4.6 47.1 15.2/4.6 45.1
CNN-Hybrid (Koller et al. 2016) � 12.6/5.1 38.3 11.1/5.7 38.8
SubUNets (Cihan Camgoz et al. 2017) � � 14.6/4.0 40.8 14.3/4.0 40.7
Staged-Opt (Cui, Liu, and Zhang 2017) � 13.7/7.3 39.4 12.2/7.5 38.7
Re-sign (Koller, Zargaran, and Ney 2017) � - 27.1 - 26.8
LS-HAN (Huang et al. 2018) � � - - - 38.3
Dilated (Pu, Zhou, and Li 2018) � 8.3/4.8 38.0 7.6/4.8 37.3
Hybrid CNN-HMM (Koller et al. 2018) � - 31.6 - 32.5
IAN (Pu, Zhou, and Li 2019) � 12.9/2.6 37.1 13.0/2.5 36.7
DenseTCN (Guo et al. 2019) � 10.7/5.1 35.9 10.5/5.5 36.5
CNN-LSTM-HMM (Koller et al. 2019) � � - 26.0 - 26.0
DNF (Cui, Liu, and Zhang 2019) (RGB) � 7.8/3.5 23.8 7.8/3.4 24.4
DNF (Cui, Liu, and Zhang 2019) (RGB+Flow) � 7.3/3.3 23.1 6.7/3.3 22.9

SMC (ours) � � � � 7.6/3.8 22.7 7.4/3.5 22.4
STMC (ours) � � � � 7.7/3.4 21.1 7.4/2.6 20.7

Table 5: Comparison with methods on CSL.
Method Split I Split II

S2VT (Venugopalan et al. 2015) 25.5 67.0
LS-HAN (Huang et al. 2018) 17.3 -
HLSTM-attn (Guo et al. 2018) 10.2 64.1
CTF (Wang et al. 2018) 11.2 -
CTM (Guo, Tang, and Wang 2019) - 61.9
DenseTCN (Guo et al. 2019) 14.3 44.7
IAN (Pu, Zhou, and Li 2019) - 32.7

STMC (ours) 2.1 28.6

Table 6: Comparison with methods on PHOENIX-2014-T.
(f: full-frame, m: mouth, h: hand)

Method Dev Test

1 stream (f) (Koller et al. 2019) 24.5 26.5
2 stream (f+m) (Koller et al. 2019) 24.5 25.4
3 stream (f+m+h) (Koller et al. 2019) 22.1 24.1

STMC (ours) 19.6 21.0

with hand-crafted features. In SubUNets and LS-HAN, full-
frame features are fused with features of hand patches,
which are captured by an external tracker. In CNN-LSTM-
HMM, two-stream networks are trained with weak hand
labels and sign gloss labels, respectively. Our STMC out-
performs two recent multi-cue methods, i.e., LS-HAN and
CNN-LSTM-HMM by 17.6% and 5.3%. Moreover, com-
pared with DNF which explores the fusion of RGB and opti-
cal flow modality, STMC still surpasses this best competitor
by 2.2%. Based on the RGB modality, we propose a novel
STMC framework and achieves 20.7% WER on the test set,
a new state-of-the-art result on PHOENIX-2014.

Evaluation on CSL. In Table 5, we evaluate our approach
on CSL under two settings. CSL dataset contains a smaller
vocabulary compared with PHOENIX-2014. Following the

works of (Huang et al. 2018; Guo et al. 2018), the dataset is
split by two strategies in Table 5. Split I is a signer indepen-
dent test: the train and test sets share the same sentences with
no overlap of signers. Split II is an unseen sentence test: the
train and test sets share the same signers and vocabulary with
no overlap of same sentences. Between two settings, Split
II is more challenging for that recognizing unseen combina-
tions of words is difficult in CSLR. In IAN, their alignment
algorithm of CTC decoder and LSTM decoder shows no-
table improvement, compared with previous methods. Ben-
efiting from multi-cue learning, our STMC framework out-
performs the best competitor on CSL by 4.1% on WER.

Evaluation on PHOENIX-2014-T. In Table 6, we pro-
vide a result of our method on PHOENIX-2014-T. As a
newly proposed dataset (Cihan Camgoz et al. 2018) for sign
language translation, PHOENIX-2014-T provides an ex-
tended database with sign gloss annotation and spoken Ger-
man annotation. CNN-LSTM-HMM utilizes spoken Ger-
man annotation to infer the weak mouth shape labels for
each video. It provides results of multi-cue sequential par-
allelism, including full-frame, hand and mouth. Our method
surpasses all three combinations of CNN-LSTM-HMM.

5 Conclusion

In this paper, we present a novel multi-cue framework for
CSLR, which aims to learn spatial-temporal correlations of
visual cues in an end-to-end fashion. In our framework, a
spatial multi-cue module is designed with a self-contained
pose estimation branch to decompose spatial multi-cue fea-
tures. Moreover, we propose a temporal multi-cue module
composed of the intra-cue and inter-cue paths, which aims to
preserve the uniqueness of each cue and explore the synergy
of different cues at the same time. A joint optimization strat-
egy is proposed to accomplish multi-cue sequence learning.
Extensive experiments on three large-scale CSLR datasets
demonstrate the superiority of our STMC framework.
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