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Abstract

A hierarchical statistical model is made up generically of a data model, a process
model, and occasionally a prior model for all the unknown parameters. The process
model, known as the state equations in the filtering literature, is where most of the
scientist’s physical/chemical/biological knowledge about the problem is used. In the
case of a dynamically changing configuration of objects moving through a spatial
domain of interest, that knowledge is summarized through equations of motion
with random perturbations. In this paper, our interest is in dynamically filtering
noisy observations on these objects, where the state equations are nonlinear. Two
recent methods of filtering, the Unscented Particle filter (UPF) and the Unscented
Kalman filter, are presented and compared to the better known Extended Kalman
filter. Other sources of nonlinearity arise when we wish to estimate nonlinear
functions of the objects positions; it is here where the UPF shows its superiority,
since optimal estimates and associated variances are straightforward to obtain.
The longer computing time needed for the UPF is often not a big issue, with the
ever faster processors that are available. This paper is a review of spatial-temporal
nonlinear filtering, and we illustrate it in a Command and Control setting where the
objects are highly mobile weapons, and the nonlinear function of object locations
is a two-dimensional surface known as the danger-potential field.

Key Words: battlespace, danger-potential field, Kalman filter, particle filter,
resampling, scaled unscented transformation, sequential importance sampler,
unscented particle filter.
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1 Introduction

The Kalman filter (e.g. Anderson and Moore (1979)) was instrumental in
allowing humans to land on the moon and return safely with their samples
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to Earth. Vehicles move through a space-time continuum according to the
laws of motion, but what is often not clear is the intent of the commanders
at the controls of the vehicles. Based on current and past (noisy) mea-
surements on the position of a vehicle, a model for measurement, and a
model for vehicle movement, one can estimate the current position of the
vehicle. The algorithm that yields the estimate is usually called a filter;
the ubiquitous Kalman filter is based on both models being linear.

In this article, we review some of the recent developments in spatial-
temporal nonlinear filtering, by putting the filtering problem in a hierar-
chical-statistical-model setting. In this context, our approach is empirical
Bayesian, since we do not impose a prior distribution on unknown param-
eters. We feature a filter known as the Unscented Particle filter (UPF),
which was recently proposed in van der Merwe et al. (2001, 2000) and is
based on sequential importance sampling. While computationally demand-
ing, the ever faster processors available often make this filter preferable to
the better known Extended Kalman filter.

A natural application of this nonlinear-filtering methodology is to Com-
mand and Control (C2) and the monitoring of objects in a battlespace. C2
involves a body of applications used by all branches of the armed forces.
These include, but are not limited to, command applications, operations
applications, intelligence applications, fire-support applications, logistics
applications, and communications applications. In developing tools for C2,
great flexibility is required, as the questions a commander needs answered
during a battle may change quickly. Information needs to be updated in
a timely fashion, and the analysis should be scalable so that consistent
information is delivered for large-scale operations as well as unit tactics.

One tool for describing the state of the battlespace is the mapping of
the danger-potential field (Cressie et al. (2002)). The danger potential of a
single weapon depends on two major factors, the location of the weapon and
the weapon’s damage potential. In a battlespace with multiple weapons,
the danger-potential field (or, for short, danger field) is assumed here to be
a sum of the danger potentials for the individual weapons.

In our development of the notion of danger potential, it is assumed
that an ordinance from a weapon affects a continuous region and is a non-
increasing function of distance from its impact point. The following formula
describes one possible form of damage potential at a distance r from the
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impact point:

δ(r) =

{
α(1 − (r/R)p1)p2 , for 0 ≤ r ≤ R

0, otherwise,
(1.1)

where α,R, p1, and p2 are all parameters defined for the weapon of interest.
With this definition, a single location in the battlespace can be affected
by damage resulting from nearby impacts in the space, and the damage
potential will vary with distance from the impact.

Before continuing with the technical definition of the danger field, con-
sider the following notation. Let w denote the location impacted by an
ordinance from a weapon that is positioned at Y = (y1, y2) in the bat-
tlespace D. Of course, battlespaces are not static, so we introduce the time
component t and let Xt denote the state of the weapon at time t, which in-
cludes its location Yt plus possibly other information, such as the weapon’s
speed and direction. Further, let f(w|s,Xt) denote the probability density
function of an impact at w given the weapon’s state Xt, and given it is aim-
ing at a location s in D. Often the density function f will only depend on
the weapon’s state through its location Yt, which is assumed here. Finally,
let Zit denote the i-th observer’s reported location of the enemy weapon at
time t. For example, Z1t might correspond to a radar observation, and Z2t

might correspond to a satellite observation.

The danger potential at time t, generated by a single weapon element
in state Xt, is defined as the expected damage at any location s:

g(s, t;Xt) =

∫
δ(rs,w)f(w|s,Xt)dw; s ∈ D, (1.2)

where rs,w is the distance between the target location s and the impact
point w, and the other terms are as described above; also see Cressie et al.
(2002). The aiming-accuracy distribution, f(w|s,Xt), is assumed to be
based on a lognormal/normal cone shooting probability distribution, which
is described in Section 3.

It should be noted that the danger field g(·, t;Xt) can be computed in
advance for various possible values of Xt. Then, when a filter produces X∗t
based on present and past data, the “plug-in” estimate of the danger at s,
g(s, t;X∗t ), is readily available.

In this paper, it is assumed that the danger potential is summable.
That is, the danger potential at s from the k-th enemy weapon, which is in
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state Xkt, contributes to the total danger field as follows:

g(s, t; {Xkt}) =
∑

k

∫
δ(rs,wk

)f(wk|s,Xkt)dwk, (1.3)

where wk is the location impacted by an ordinance from the k-th weapon
aiming at s. More generally, if there are weapons of different types, f might
depend on k also.

For the purpose of analysis, it is sufficient to consider the single-weapon
case, although in the application in Section 5 we obtain the total danger
field (1.3) for five tanks. The only unknown in (1.2) is the state Xt. In this
paper, its estimation, and the consequences of that estimation on making
inference on its associated danger potential, are studied. Let the set of
all observations on the weapon up to and including time t be denoted by
Z1:t ≡ (Z1,Z2, . . . ,Zt), where for the convenience of presentation, obser-
vation times are equally spaced. Then one possible estimate of the danger
field is

ĝ(s, t;Z1:t) ≡ E[g(s, t;Xt)|Z1:t] =

∫
g(s, t;Xt)p(Xt|Z1:t)dXt, (1.4)

where p(Xt|Z1:t) is the conditional density of the weapon’s state at time t
given the current and past data. The estimate (1.4) minimizes the Bayes
risk based on the squared-error-loss function (Ferguson (1967)).

The state of the weapon at time t can be estimated by

X̂t = E[Xt|Z1:t]. (1.5)

Hence, an alternative estimator of the danger field would be to use the
“plug-in” method mentioned earlier and substitute (1.5) into (1.2) to ob-
tain,

g̃(s, t;Z1:t) ≡ g(s, t; X̂t). (1.6)

Note that this estimator g̃ is different from ĝ given by (1.4). While (1.4) is
an unbiased estimator of the danger field in the sense that E[ĝ] = E[g], the
estimator (1.6) will generally be biased. The size of the bias depends on
the degree of non-linearity of the damage-potential function δ(·); see (1.1)
for an example of a non-linear δ(·).

While (1.4) has many nice properties, such as optimality under squared-
error loss, calculating this estimator usually requires non-trivial computa-
tion. At the heart of the problem of estimating the danger field using (1.4),
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is the evaluation of p(·|Z1:t), the conditional density of Xt given all of the
data up to and including time t. Since the movement of the weapons may
be given by highly non-linear dynamic models, standard Kalman filter (KF)
approaches based only on second moments may result in poor approxima-
tions to this conditional distribution. This is further complicated by the
danger potential being a non-linear function of the weapon’s state.

There are a number of approaches for analyzing non-linear systems
that go beyond the standard Kalman filter. A widely used approach is
the Extended Kalman filter (EKF) (Anderson and Moore (1979)). In this
approach, the non-linear system is linearized, and then the standard KF
is applied to this linearized system. Unfortunately, for many problems,
the EKF does not give an accurate approximation to the posterior means,
variances, and covariances of the unknown state variables in Xt.

Another approach is the Unscented Kalman filter (UKF), due to Julier
and Uhlmann (1997); see also van der Merwe et al. (2000). This is based on
the Unscented Transformation and the Scaled Unscented Transformation
(Julier (1999)). Here, instead of linearizing the system, specially chosen
realizations of Xt given Xt−1 are determined. These realizations are based
on all the eigenvectors of the variance matrix of Xt given Xt−1. The data
Z1:t are then combined with these realizations to give approximations to
the posterior mean and variance of Xt. This approach has a number of
advantages over the EKF. First, the distribution of the underlying state
process Xt is being approximated, not the non-linear function describing
the evolution of Xt from Xt−1, as with the EKF. This allows the UKF to
partially incorporate information about skewness and kurtosis of the dis-
tribution, improving the accuracy. Also, the posterior means and variances
of Xt can be calculated using standard vector and matrix operations, and
no Jacobians are needed, unlike for the EKF. This suggests that the UKF
can be much faster to compute than the EKF. A description of the UKF is
given in Appendix A.

A similar approach to the UKF is the Ensemble Kalman filter (EnKF)
(Evensen (1994); Heemink (2000)). Instead of a deterministic scheme for
generating realizations of Xt, a Monte Carlo approach is taken. This ap-
proach has similar advantages to the UKF, as it approximates the distri-
bution of Xt and not the non-linear function describing the evolution of Xt

from Xt−1. However, as the errors in the approximation are statistical in
nature, the EnKF tends not to be as accurate as the UKF when the same
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number of chosen realizations are generated.

Another approach that is similar to the UKF is the Reduced Rank
Square Root filter (RRSRF) (Cohn and Todling (1996); Heemink (2000)).
It is similar in that the realizations of Xt given Xt−1 are generated in a
deterministic fashion. However, they are only generated in the directions of
the q leading eigenvectors of the variance matrix of Xt given Xt−1, where
q is less than or equal to the dimension of the state space. The choice of
q is important as it will affect the accuracy of the approximation. In fact,
the UKF can be thought of as a generalization of this approach with all
eigenvector directions being chosen, whereas the RRSRF appears to go only
in the positive eigenvector direction. While this may speed up calculations,
it could lead to a poor approximation as it is unable to handle skewness in
the distribution of Xt, given Xt−1. A combination of EnKF and RRSRF,
the Partially Orthogonal Ensemble Kalman filter (POEnKF) attempts to
combine the advantages of the individual approaches (Heemink (2000)).
However, as for the EnKF, its approximations are statistical in nature and
it tends not to be as accurate as the UKF.

In all of these Kalman-filter type approaches, only approximations to
the first two moments of the posterior distribution of the state variables are
obtained. Unless the model can be described by a linear Gaussian process,
these two moments do not completely describe the distribution and thus
may lead to poor estimates of many (typically non-linear) properties of the
state process.

To overcome these problems, sequential Monte Carlo approaches known
as Sequential Importance Samplers (SIS), or particle filters, have been pro-
posed (see van der Merwe et al. (2000); Liu et al. (2001); Gordon et al.
(2001)). SIS has been used successfully to analyze data from terrain navi-
gation (Bergman (2001)), genetics (Irwin et al. (1994)), and image analysis
(Blake et al. (2001)), for example. Another Monte Carlo approach, known
as Markov Chain Monte Carlo, or MCMC (Smith and Roberts (1993);
Gelman et al. (1995)), is also possible, although it is less suitable to the
sequential (or dynamic) nature of this problem; see the discussion in Sec-
tion 6. These simulation approaches give many thousands of realizations

{X(i)
t : i = 1, . . . , N}, from the complete posterior distribution of the state

process, which allows inference on any functional of the posterior distribu-
tion, not just the first two moments. Thus, SIS can be used for estimating
the danger field using (1.4), by approximating it with the (weighted) av-
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erage of the associated danger fields
{
g(s, t;X

(i)
t ) : i = 1, . . . , N

}
. Clearly,

the main disadvantage when compared to the various forms of Kalman fil-
tering, is the increased amount of computational time involved, something
that will be addressed in this paper. A detailed presentation of SIS is given
in Section 2.

Statistical inference on functionals of the danger field is straightforward
using SIS. Suppose that a commander has a number of queries about the
danger field, which may include the following.

1. Minimum and maximum danger: The locations of the minimum and
maximum danger could be of great use to a commander, suggesting
areas that may need to be supported further or avoided, or regions
that could be attacked.

2. Danger thresholds: Regions that need to be supported further or to
be avoided can also be examined by investigating I(g(s, t;Xt) ≥ G),
the indicator of whether the danger exceeds a given threshold G.

3. Changes over time: Given s and t2 > t1, evaluate

g(s, t2;Xt2) − g(s, t1;Xt1).

4. Regional danger: A commander may be interested in danger over a
set of disjoint regions B1, B2, . . . , Bm. The regions of interest may be
arbitrary in terms of shape and size.

When there are potentially many questions or summaries of interest to
a commander, a particle-filtering approach has an important advantage.
The realizations from the simulation can be re-used to answer the different
questions of interest. However, for the various forms of Kalman filtering re-
viewed earlier, a different filter needs to be run for each of the commander’s
queries.

While the Kalman-filter methods may not give optimum answers to
solving non-linear problems, they can in fact be used to improve SIS. In
Section 2, it is seen that SIS relies on the specification of a proposal distri-
bution, the optimal choice of which is not always computationally feasible.
One approach is to use the Extended Kalman filter to give the proposal dis-
tribution, which is known as the Extended Kalman particle filter (Doucet
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(1998); Pitt and Shephard (1999)). A more promising suggestion is the Un-
scented particle filter (UPF), where the Unscented Kalman filter is used to
generate the proposal distribution (van der Merwe et al. (2000, 2001)); see
Appendix B. The advantages that the Unscented Kalman filter has over the
Extended Kalman filter, carry through to their associated particle filters.

In Section 2, an SIS is developed, resulting in the UPF, which can also
be used for inference on the danger field. In Section 3, a description of a
battlespace is given, and in Section 4, a simulated battlespace dataset is
described. Analysis of this dataset by the Unscented particle filter (UPF),
the Unscented Kalman filter (UKF) and the Extended Kalman filter (EKF),
follow in Section 5. Finally, in Section 6, possible future directions are
discussed.

2 Sequential importance sampling

In the three subsections that follow, we give a generic description of se-
quential importance sampling. Application of this methodology is found in
Section 5.

2.1 Basic sequential importance sampler

Recall the definition of Z1:t; in a like manner, define X1:t to be the sequence
of state variables up to and including time t. In an ideal situation, it would
be possible to simulate directly from p(X1:t|Z1:t), the posterior distribution
of X1:t given the data Z1:t, where

p(X1:t|Z1:t) =
p(X1:t)p(Z1:t|X1:t)

p(Z1:t)
∝ p(X1:t)p(Z1:t|X1:t), (2.1)

by Bayes’ Theorem. Both the state-variable density p(X1:t), and the mea-
surement model p(Z1:t|X1:t), may have parameters associated with them.
When implementing the methodology presented in the paper, these param-
eters will have to be estimated, leading to what is sometimes called an
empirical Bayesian methodology. Alternatively, a fully Bayesian approach
could be taken, where these parameters are given prior distributions and
then averaged out (Gelman et al. (1995)).

Regardless of the method chosen to deal with the parameters, in many
situations it is possible to use importance sampling techniques to simulate
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from the desired posterior distribution. The basic idea is as follows. Instead
of simulating directly from the posterior distribution, a tractable approxi-
mation, q(X1:t|Z1:t), is used as the proposal distribution for sampling, and
the realizations are reweighted as follows:

Ep[h(X1:t)|Z1:t] =

∫
h(X1:t)p(X1:t|Z1:t)dX1:t

=

∫
h(X1:t)

p(X1:t|Z1:t)

q(X1:t|Z1:t)
q(X1:t|Z1:t)dX1:t

=

∫
h(X1:t)wt(X1:t)q(X1:t|Z1:t)dX1:t

= Eq[h(X1:t)wt(X1:t)|Z1:t], (2.2)

where h is a function of interest on the state variables, and

wt(X1:t) ≡
p(X1:t|Z1:t)

q(X1:t|Z1:t)

is known as the unnormalized importance sampling weight. Furthermore,
the proposal distribution q is known as the importance sampling distri-

bution. Thus, given an importance sample {X(1)
1:t , . . . ,X

(N)
1:t } generated

from q(·|Z1:t) with associated importance sampling weights {wt(X(1)
1:t ), . . . ,

wt(X
(N)
1:t )}, the quantity of interest, Ep[h(X1:t)|Z1:t], can be consistently

estimated by

Êp[h(X1:t)|Z1:t] ≡
∑N

i=1 h(X
(i)
1:t)wt(X

(i)
1:t)∑N

i=1wt(X
(i)
1:t)

=
N∑

i=1

h(X
(i)
1:t)w̃t(X

(i)
1:t), (2.3)

where w̃t(X
(i)
1:t) are the normalized importance sampling weights given by,

w̃t(X
(i)
1:t) ≡

wt(X
(i)
1:t)∑N

j=1wt(X
(j)
1:t )

; i = 1, . . . , N.

There are many possible choices for the proposal distribution q. One
form that is useful for many filtering problems is the Sequential Importance
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Sampler (SIS), where the importance sampling distribution has the form

q(X1:t|Z1:t) = q(X1|Z1)

t∏

k=2

q(Xk|X1:k−1,Z1:k). (2.4)

Thus, to implement this sampler, a choice must be made for q(Xt|X1:t−1,Z1:t)
for each time t. As has been shown by (Doucet et al. (2002)), an optimal
choice for q is given by q∗(Xt|X1:t−1,Z1:t) = p(Xt|X1:t−1,Z1:t). This choice
is optimal in that it minimizes the variance of the importance sampling
weights conditional on X1:t−1 and Z1:t. This possibility has also been ad-
vocated by others (Kong et al. (1994); Irwin et al. (1994); Liu and Chen
(1998)). Another popular choice is to set q(Xt|X1:t−1,Z1:t) = p(Xt|X1:t−1),
the conditional distribution of the current state Xt given its past states.
This proposal has the advantage that it is often easy to implement, but the
disadvantage of having potentially much higher Monte Carlo variation as
it does not incorporate the current and past observations Z1:t.

Note that with SIS, the set of unnormalized importance sampling weights{
wt(X

(i)
1:t)
}

can be decomposed as,

wt(X
(i)
1:t) = wt−1(X

(i)
1:t−1)

p(X
(i)
1:t|Z1:t)

q(X
(i)
t |X(i)

1:t−1,Z1:t)p(X
(i)
1:t−1|Z1:t−1)

. (2.5)

For many models, the multiplicative factor,

p(X
(i)
1:t|Z1:t)

q(X
(i)
t |X(i)

1:t−1,Z1:t)p(X
(i)
1:t−1|Z1:t−1)

,

is easy to compute.

Consider the case where the state process is described by a first-order
Markov process, so that

p(X1:t) = p(X1)
t∏

k=2

p(Xk|Xk−1); (2.6)

and suppose that the measurements are conditionally independent given
the states, so that

p(Z1:t|X1:t) =
t∏

k=1

p(Zk|Xk). (2.7)



Spatial-Temporal Nonlinear Filtering 259

Then recall that the optimal choice for q is,

q∗(Xt|X1:t−1,Z1:t) = p(Xt|X1:t−1,Z1:t) ∝ p(Xt|Xt−1)p(Zt|Xt). (2.8)

However, even though the structure is relatively simple, (2.8) may still
not be tractable for easy generation of importance samples; the model to
be presented in Section 5 is one such example. Often, the importance
sampling distribution (2.8) can be well approximated by a Gaussian dis-
tribution, such as when the measurement-model components, {p(Zk|Xk) :
k = 1, . . . , t}, are Gaussian. Then a Gaussian approximation to (2.8) is,
up to a normalizing constant, p̃(Xt|Xt−1)p(Zt|Xt), where p̃(Xt|Xt−1) is
a Gaussian approximation to the state-transition distribution p(Xt|Xt−1).
One possible way to obtain p̃(Xt|Xt−1) is to use the Scaled Unscented
Transformation (van der Merwe et al. (2000)) on p(Xt|Xt−1), leading to
the Unscented particle filter (UPF). This is the principal method we use
for analyzing the danger field in Section 5. Further details, with pseudo
code for this situation, are given in Appendix B. Alternatively, one might
consider a Taylor-series approximation, yielding the Extended particle fil-
ter, however this approximation will tend to break down as p(Xt|Xt−1)
deviates from a linear process.

In the case where q(Xt|X1:t−1,Z1:t) in (2.4) depends on (X1:t−1,Z1:t)
through only (Xt−1,Zt), and assuming the first-order Markov model (2.7),
the update formula (2.5) for the unnormalized importance sampling weights
satisfies,

wt(X
(i)
1:t) ∝ wt−1(X

(i)
1:t−1)

p(X
(i)
t |X(i)

t−1)p(Zt|X
(i)
t )

q(X
(i)
t |X(i)

t−1,Zt)
. (2.9)

Thus, for most problems of this type, the multiplicative factor that
updates the weights is easy to compute. For the UPF, the multiplicative
factor will often not vary greatly. However, in the case where the process
model is used for the proposal (i.e., q(Xt|Xt−1,Zt) = p(Xt|Xt−1)), the
multiplicative factor for the weight update is p(Zt|Xt). This will often lead
to very variable weights, yielding a much less efficient filter.

2.2 Resampling adaptations

One potential problem with the SIS algorithm is that the variance of the
importance sampling weights increases over time (Kong et al. (1994)). This
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implies that, as t increases, more and more realizations will have normalized
importance sampling weights close to zero. Thus, only one, or very few
realizations will get the bulk of the weight in the approximation. This can
occur, even if the optimal choice of the proposal distribution is used.

To avoid these problems, resampling approaches have been proposed
(see Liu et al. (2001); van der Merwe et al. (2000)). In these approaches,
realizations from the SIS are sampled, possibly a multiple number of times,
and these realizations are used in the next SIS step. Three sampling proce-
dures that have been proposed are Multinomial Sampling (Gordon (1994)),
Residual Sampling (Higuchi (1997); Liu and Chen (1998)), and Minimum
Variance Sampling (Kitagawa (1996); Crisan (2001)).

In this paper, the Minimum Variance Sampling procedure will be used.
To implement it, one samples N points {U1, . . . , UN} in the interval [0, 1],
with each of the points a distanceN−1 apart (that is, U1∼Uniform[0, N−1],
and Ui ≡ U1+(i−1)N−1; i = 2, . . . , N .) Then the i-th resampled realization,

X̃
(i)
1:t, is X

(l)
1:t, where

∑l−1
j=1 w̃t(X

(j)
1:t ) ≤ Ui <

∑l
j=1 w̃t(X

(j)
1:t ). Thus, Nl, the

number of times X
(l)
1:t appears in the resample, is the number of points from

{Ui} that are between
∑l−1

j=1 w̃t(X
(j)
1:t ) and

∑l
j=1 w̃t(X

(j)
1:t ), and Nl satisfies

bNw̃t(X(l)
1:t)c ≤ Nl ≤ dNw̃t(X(l)

1:t)e. This procedure can be implemented
efficiently since only a single uniform random number on [0, N−1] needs to
be generated; the other two procedures may require the generation of up
to N random numbers. In addition, this resampling procedure induces a
smaller variance on the {Nl}.

After a resampling step, the resulting sample X̃
(1)
1:t , . . . , X̃

(N)
1:t is an equally

weighted sample from p(X1:t|Z1:t). Therefore, the unnormalized weights

wt(X
(i)
1:t), after resampling, must be reset to N−1. After making this adjust-

ment, the weights at future times, t+1, t+2, . . . (until the next resampling),
are determined by equation (2.5).

How often to resample will depend on the problem of interest and the
choice of proposal distribution. One approach is to set a fixed resampling
schedule. That is, resample at times t = m, 2m, 3m, . . ., where m is a
prespecified resampling rate. A second approach is to monitor the weights

{w̃t(X(i)
1:t)} and resample when they start to become badly behaved. Liu

(2001) recommends monitoring the weights by their coefficient of variation
and resampling when this exceeds a certain level. In the examples that
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follow, a fixed resampling schedule is used with m = 1.

2.3 Using a single sample to answer multiple questions

As exhibited by equations (2.2) and (2.3), the expectation of any integrable
function of the state variables can be easily estimated with realizations from
the importance sampling distribution. For example, the posterior mean of
the state Xt can be estimated by

Êp[Xt|Z1:t] =
N∑

i=1

X
(i)
t w̃t(X

(i)
1:t);

and the danger field at location s and time t, as described in Section 1, can
be estimated by

Êp[g(s, t;Xt)|Z1:t] =
N∑

i=1

g(s, t;X
(i)
t )w̃t(X

(i)
1:t),

where the importance samples are obtained from SIS. Thus, in theory, a
single SIS run can be used to answer multiple questions. However, the
number of realizations N needed for the estimator to reach a specified level
of precision will depend on the variance of the function of interest. So, in
choosing N , one should have a good idea of the quantities of interest and it
should be chosen so that the estimation variance of each quantity be within
a pre-specified precision.

3 Description of the battlespace

To examine the properties of SIS and compare its associated UPF to the
UKF and the EKF, data generated by an object-oriented combat simula-
tion program (Cressie et al. (2002)) was used. The program simulates the
movement of five tanks in a 100 km by 100 km battlespace, [0, 100]×[0, 100].
The battlespace is assumed to consist of flat terrain, with a town located
in the southern part centered at (57.5, 18.5); see Figure 1.

Each of the five tanks has the same damage-potential parameters. The
damage-potential function δ(·) is given by (1.1) with maximum damage
potential α = 1, explosive radius R = 0.05 km (50 meters), and powers
p1 = p2 = 3. The maximum range of the ordinance is 4 km.
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Figure 1: Battlespace features. The solid lines, in different grey scales, show the

five true paths of the tanks in the 100 km x 100 km battlespace. The dotted lines

show the range of the two radar stations. Also displayed are the locations of the

two radar stations and the town.

The aiming-accuracy distribution f is described by a lognormal/normal
cone shooting distribution: For a weapon at Y and a target at s, denote
the true distance between the two locations by r0 ≡ ‖Y− s‖ and the angle
(in radians) from Y to s by θ0. Then r, the distance from the weapon at
Y to the impact location w, is distributed as

r = r0 × εr,

where εr has a lognormal distribution with mean 1 and standard deviation
σr. The angle from Y to w, θ, is distributed as

θ = θ0 + εθ,

where εθ ∼ N(0, σ2
θ) and εr and εθ are independent. In the example, σr =

0.01 and σθ = π/180 radians (or 1◦).
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4 Battlespace data

The five tanks start out in two groups, with two in the northwest (at (5,90)
and (10,90)) and three in the northeast (at (80,90), (85,90), and (90,88)).
Each tank has a sequence of three spatial waypoints to reach along its
path, with the last waypoint for each near the town. A waypoint W of an
object is, in general, a point in space and time that the object attempts to
reach (see Wendt et al. (2002)). Note that for this example, the tanks have
proximate waypoints and they are travelling at comparable velocities; the
true paths of the tanks are shown in Figure 1.

4.1 Movement algorithm

The movement of the five tanks are independent given each of their way-
points, and the path of each tank is updated every 15 seconds for a period
of 5 hours. Except for the waypoints, the movement algorithm is the same
for each tank, so for the purpose of explanation, we concentrate on a single
object moving through the two-dimensional battlespace. At time t, assume
that the tank is at location Yt = (y1t, y2t), moving at speed vt in direction
θt (vt and θt are the speed and angle that resulted in the object’s moving
from position Yt−1 to Yt). The speed and angle used to derive the object’s
new position at time (t+ 1) are given by the random processes,

vt+1 = ρvvt + (1 − ρv)Vt+1,

θt+1 = ρθθt + (1 − ρθ)Θt+1, (4.1)

where ρv and ρθ are autocorrelation parameters (both specified to be 0.1 in
the simulation), and Vt+1 and Θt+1 are random speed and angle changes.
The random speed and angle changes are specified to fluctuate around the
targeting speed and the direction that the object is trying to maintain,
respectively. The targeting speed was fixed at 20 km/h for the whole sim-
ulation, and Vt+1 was generated according to,

Vt+1 = 20 × εV,t+1,

where εV,t+1 has a lognormal distribution with mean 1 and standard devi-
ation 0.2. However, the targeting angle changes at each time point.

The targeting angle at time t, At, is specified to be the angle from the
current location of the object, Yt, to its next waypoint, W. The random
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angle deviation was then generated according to,

Θt+1 = At + εΘ,t+1,

where εΘ,t+1 has a normal distribution with mean 0 and standard deviation
π/9 radians (or 20◦). This results in a (wrapped) normal distribution for
Θt+1 centered at At. The position of the object at time (t + 1), Yt+1, is
then given by,

y1,t+1 = y1t + (vt+1∆t) cos(θt+1),

y2,t+1 = y2t + (vt+1∆t) sin(θt+1), (4.2)

where the time increment ∆t is specified to be 15 seconds. That is, ∆t =
(0.25/60) hours.

4.2 Observations

To observe the movement of the tanks, two radar stations were specified to
be at (10,5) and (90,5). Each radar has an observation radius of 60 km, as
shown in Figure 1. Notice that each radar can observe each tank for only
part of its path, so that at any time a tank may be observed by 0, 1, or 2
radar stations.

Observations on the tank locations within range are taken every 15 sec-
onds during the battlespace simulation, and these observations are specified
to have a distribution given by the radius-angle distribution (Cressie et al.
(2002)). Specifically, if the true angle between a radar station and a target
at Y is θ1, then the observed angle is θ = θ1+εθ, where εθ is distributed with
mean 0 and variance σ2

θ ; and if the true distance is r1, then the observed
distance r is randomly distributed with mean r1/(1 − 1

2σ
2
θ) and variance

σ2
r . Note that although r is biased for r1, this choice allows the observed

locations, Z, to be approximately unbiased estimators of the true locations,
after converting back to standard Cartesian coordinates. More precisely,
by applying Taylor series approximations, the observed location Z has,

E[Z|Y] ' Y

var[Z|Y]' [σ2
r − r21(1 − γ)−σ2

θ(σ
2
r − r21γ)]pp′+σ2

θ [σ
2
r − r21γ]qq′, (4.3)

where p = (cos θ1, sin θ1)
′,q = (sin θ1,− cos θ1)

′, and γ = (1 − 1
2σ

2
θ)
−2.

Both radar stations have the same measurement-error parameters with σr =
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0.005 and σθ = π/360 radians (or 0.5◦). The observed weapon locations
were assumed to be normally distributed with mean vector and covariance
matrix as given above. For the purpose of illustration, Figure 2 shows tank
3’s true path and its observed locations for the last 20 minutes.

54 55 56 57 58 59
20

21

22

23

24

25

26

Truth

Radar1 

Radar2 

Figure 2: True path for tank 3 along with the two sets of radar observations for

the last 20 minutes.

5 Analysis of battlespace data

5.1 Battlespace features of interest

To investigate the properties of the three estimation procedures of interest,
the Unscented particle filter (UPF), the Unscented Kalman filter (UKF),
and the Extended Kalman filter (EKF), a number of features of the bat-
tlespace will be investigated. First, estimates of the paths of the five tanks
will be obtained. Next, estimates of the danger field for the whole bat-
tlespace at two times (3 and 5 hours) during the simulation will be cal-
culated. Finally, three features of the danger at (57.5, 18.5), the center
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of the town, for the last 20 minutes of the simulation will be investigated.
Specifically, the danger due to each tank, the probability that the danger
due to each tank exceeds 0.25 damage units, and the combined danger of
all five tanks will be examined.

A secondary factor of interest is the effect of data-collection frequency
on the danger-field estimates. What happens when data are collected every
15 seconds is compared to what happens when data are collected every 60
seconds during the simulation. The latter dataset is generated from the
original dataset by keeping every fourth observation.

5.2 Movement model used for analysis

Without loss of generality, consider a single object moving through the
battlespace. The state of the object at time t is defined as Xt ≡ (Yt, vt, θt),
where Yt = (y1t, y2t) is its position, vt is its speed, and θt is its direction
of travel at time t. We assume that {Xt} is obtained from the following
movement equations:

log vt+1 = log vt + εv,t+1,

θt+1 = θt + εθ,t+1, (5.1)

where εv,t+1 and εθ,t+1 are independently distributed with εv,t+1 ∼ N(0, σ2
v)

and εθ,t+1 ∼ N(0, σ2
θ). Then, given the object is in state Xt at time t, its

position Yt+1 at time (t+ 1) is given by,

y1,t+1 = y1t +
1

2
(vt+1 cos θt+1 + vt cos θt)

y2,t+1 = y2t +
1

2
(vt+1 sin θt+1 + vt sin θt), (5.2)

and its state at time (t + 1) is Xt+1 = (Yt+1, vt+1, θt+1). Clearly, {Xt} is
a first-order Markov process; see (2.6).

This is a generic movement model that assumes constant acceleration
and change in angle between time t and time (t + 1). Notice that the
movement model (5.1), (5.2) does not match the algorithm that describes
the manner in which the data were simulated; see (4.1), (4.2). It was
deliberately chosen this way, since in practice one cannot expect to know
the true movement process of an object under consideration.
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The measurement process Zt given Xt is described in Section 4.2. How-
ever, since the variance matrix (4.3) depends on the unknown parameters
r1 and θ1, they need to be estimated. Let r̂1 be the distance between Zt
and the radar station, and let θ̂1 be the angle from the radar station to Zt.
Then substituting r̂1 and θ̂1 into (4.3), an estimate of the variance matrix
used by each of the filters is obtained.

To implement the three filters, the two variances, σ2
v and σ2

θ , need to be
specified. In this instance, they were obtained from the true simulated paths
by matching moments, yielding the values σv = 0.1 and σθ = 0.2 radians.
In addition, a starting state is needed for each weapon. For each tank,
the true state of the weapon just prior to being detected by the first radar
was used. For the UPF and UKF, the Scaled-Unscented-Transformation
parameters were set to α = 1, β = 2, and κ = 0; see Appendix A. For
the UPF, analyses are based on N = 1000 imputations for each tank with
resampling done at each step. This choice for the number of imputations
was based on timing and accuracy considerations and test runs.

5.3 Results

Estimates for the various features of interest described in Section 5.1 were
obtained for the three filters (UPF, UKF, and EKF). Implementation was
in MATLAB and analysis were performed on Red Hat Linux 7.3 servers with
dual AMD Athlon 1800+ MP processors running at 1.533 GHz with 3 GB
RAM.

Path estimates

The three filters tend to give similar path estimates during intervals between
waypoints when the direction and speed of the tanks do not vary greatly.
However, after the tank passes a waypoint where there is an abrupt change
of direction, the UKF and EKF deviate further from the true path. Clearly,
the movement of the tank during the change is not consistent with the
movement model (5.1) and (5.2) used for analysis, but the UPF can adapt
to this more quickly than the UKF or the EKF. This is apparent from
Figures 3 and 4.
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Figure 3: Estimated path for tank 3 for the three estimators, during the abrupt

change of direction shown on the true path.

Danger for the whole battlespace

In Figures 5 and 6, estimates of the danger field at 3 and 5 hours are shown
for the estimation procedure based on the UPF. In comparison, UPF- and
EKF-based estimates of the danger field are too concentrated. This can be
seen clearly in Table 1, which shows the areas of the regions with positive
danger. As the UKF and EKF estimators are both plug-in estimators
based on (1.6), and the estimates of the tank locations are similar for the
two methods, the similar areas of positive danger are to be expected. The
area of positive danger based on the UPF accounts for uncertainty of the
danger field caused by uncertainty in the locations, and hence the area is
not overoptimistic.
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Figure 4: Error in estimated position for tank 3 for the three estimators, during

the abrupt change of direction shown in Figure 3.

Time UPF UKF EKF

3 hours 158.69 127.43 127.43
5 hours 81.11 67.59 67.62

Table 1: Areas of regions (in km2) with positive danger at 3 and 5 hours into the

simulation.

Danger at the center of the town

Estimates of the danger at the center of town due to tank 5, during the
last 20 minutes of the simulation, is shown in Figure 7. The estimates
based on the UKF and EKF are similar for both methods, which is to
be expected, since the estimated tank locations are similar. These two
estimates are also similar to the estimate based on the UPF, once the tank
has clearly moved within range of the town. However, at times before that,
the UKF and the EKF yield poor estimates, rather different from the town
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Figure 5: Estimated danger field at 3 hours based on the UPF estimator. The

darker the gray color, the higher the danger. The estimated paths for the 5 tanks

are included.

center’s posterior mean danger (1.4). The posterior mean danger, given by
an estimate obtained from the UPF, shows evidence of danger earlier, and
this represents a clear advantage.

The total danger to the center of the town is shown in Figure 8. The
sharp changes in danger occur when a new tank moves within range of the
town. As with the individual tank estimates, the UPF-based estimate of
danger does a better job of accounting for the uncertainties in the tank
locations.

Data-collection frequency

The effects of data-collection frequency can be seen in Figure 9. The danger
estimates based on the UPF due to tank 1 are shown for two sampling fre-
quencies. While the width of the 90% credibility interval around the danger
estimate is fairly constant for the 4-samples-per-minute sampling frequency,
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Figure 6: Estimated danger field at 5 hours based on the UPF estimator. The

darker the gray color, the higher the danger. The estimated paths for the 5 tanks

are included.

this doesn’t hold for the 1-sample-per-minute sampling frequency. Instead,
there is a sawtooth pattern in the width that increases as one gets further
from the last observed data point, until a new radar observation is taken.
Also, as to be expected, the credibility interval for the higher sampling
frequency is tighter, since it is based on more data. While there is greater
precision with the higher sampling frequency, the two UPF-based estimates
of danger during the last 20 minutes are similar.

Direct estimation of danger field

Instead of using (1.6), the plug-in estimate of danger for the UKF or EKF,
one could potentially estimate danger using these filters directly on the
danger field. Unfortunately, this is not feasible for the EKF as it would
involve a complicated calculation of partial derivatives of the danger field.
However, it is feasible for the UKF, since no derivatives are required. While
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Figure 7: Estimated danger at the center of town due to tank 5 for the last 20

minutes.

not as good in accounting for uncertainty as the UPF-based estimate, the
danger-field, UKF-based estimate does account for some of the uncertainty
of the tank position. The latter has one main drawback, namely if there
is interest in the danger for many locations simultaneously, the size of the
matrices involved in the UKF may become too large for efficient calculation.

6 Discussion and conclusions

For the danger field to be a useful tool to a commander, quick and accurate
estimation of the field and its features are needed. This can be performed
by SIS procedures, in particular the UPF. The utility of the UPF has been
demonstrated with a small example of tank movement in a battlespace.
This example was also analyzed using two Kalman-filter approaches, the
UKF and EKF. While these two approaches meet the fast-computation
requirements, due to their approximative nature they can break down with
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Figure 8: Estimated danger at the center of town due to all 5 tanks for the last

20 minutes.

respect to accuracy; see below.

As seen in Section 5, the UKF- and EKF-based estimates can be very
similar to the UPF-based estimates, but on occasions they can miss im-
portant features of the danger field that the UPF-based estimates can de-
tect. In the cases where the three filters give similar results, such as the
estimation of the tanks’ locations, the functionals being investigated are
approximately linear. However, the Kalman filters tend to give poorer an-
swers when the functional of interest is non linear, particularly for the case
of extrema. For example, if we wish to estimate the danger at a location
near the maximum range of a tank, the damage-potential function (1.1) is
highly non linear in this situation because small changes in distance from
the target may lead to large changes in damage.

While the UKF can miss important features, it can be useful when run
simultaneously with the UPF. The UKF can be used to give instantaneous,
though possibly rough, answers. If alerted by the UKF results, the UPF
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Figure 9: Estimated danger (solid lines) with 90% credibility intervals (dashed

lines) due to tank 1 for two sampling frequencies (4 per minute and 1 per minute)

for last 20 minutes.

running in the background could then be used to derive more accurate
results if needed. This approach should have the advantage of lowering the
overall computation burden.

Processing time for the UPF on the state of the tanks, Xt, averages
approximately 3 seconds per time point t, about 20% of the data collection
time. Processing time for the danger-field summaries vary, depending on
the complexity of the summary. As MATLAB is an interpreted language,
recoding the procedures in a compiled language such as C will likely lead
to significant speed increases, which would allow real-time processing of
the danger field by the UPF. Computing time for the two Kalman-filter-
based approaches is not a concern as updates are virtually instantaneous.
However, the time advantage of the Kalman filters is offset by their potential
to miss important non-linear features of the processes of interest.

One potential improvement in computation time for SIS-based methods,
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such as the UPF, is the use of parallel processing. SIS, as described in this
paper, is based on performing N independent imputations at each time
point t, which can be implemented naturally in a parallel fashion. Moreover,
if the tanks are processed independently (as they are in the example in
Section 5), there is a further opportunity for parallel processing.

The statistical model described in Section 5 is hierarchical. Conse-
quently, another simulation-based approach called Markov Chain Monte
Carlo (MCMC) could be used to examine the danger field. However, with
MCMC samplers, it can be difficult to exploit the sequential nature of the
process and the data. To filter the process at time (t+ 1) by MCMC, the
direct approach requires rerunning the chain given all previous data and
the latest data at time (t + 1). This leads to an increasing computational
burden as more data are collected. With SIS approaches, past states do
not need to be reprocessed, since the necessary adjustment in the posterior
distribution due to the new data is accomplished through the importance
sampling weights and the resampling procedure. Although less efficient
than SIS, there are occasions when an MCMC/SIS hybrid approach is use-
ful. For a certain class of dynamic models, Berzuini et al. (1997) propose
a Metropolis-Hastings importance resampling approach that avoids rerun-
ning the chain when new data are acquired.
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Appendix A

In the description of the UKF that follows, we rely heavily on the exposition
of the method given by van der Merwe et al. (2000). To implement the UKF,
the distributions describing the evolution of the state process p(Xt|Xt−1)
and the measurement model p(Zt|Xt) need to be given in the following
form:
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• State-process evolution

Xt = u(Xt−1, δt) .

• Measurement model
Zt = v(Xt, εt) ,

where δt and εt are independent with means, E[δt] = dt and E[εt] = et,
and variances, var[δt] = Dt and var[εt] = Et.

The essential ingredient of the UKF is the Scaled Unscented Trans-
formation (SUT). The state-process variable Xt−1 is augmented with the
random evolutions of the state process and the measurement model, yield-
ing the augmented random variable At = [XT

t−1 δTt εTt ]T . Following van
der Merwe et al. (2000), the UKF that updates the posterior mean µt

and posterior variance Σt of the state variable Xt, is obtained through the
following sequence of steps:

1. Set t = 1 and define

µ0 = E[X0]

Σ0 = var[X0] .

2. For t > 0,

(a) Calculate the mean vector and variance matrix of the augmented
state variable At:

mt = E[At] = [µTt−1 dTt eTt ]T

Ct = var[At] =




Σt−1 0 0

0 Dt 0

0 0 Et


 .

Let na be the dimension of At. Note that na may vary over
time as it depends on the dimension of εt, which depends on the
number of observations at time t.
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(b) Calculate the (2na + 1) SUT sigma points and weights:

A0,t = mt

Aj,t = mt + (
√

(na + λ)Ct)j ; j = 1, . . . , na

A−j,t = mt − (
√

(na + λ)Ct)j ; j = 1, . . . , na

W
(m)
0 = λ/(na + λ)

W
(c)
0 = {λ/(na + λ)} + (1 − α2 + β)

W
(m)
j = W

(m)
−j = W

(c)
j = W

(c)
−j = 1/(2(na + λ)); j = 1, . . . , na,

where
(√

(na + λ)Ct

)
j

is the jth column of a matrix square

root of the matrix (na + λ)Ct, and λ = α2(na + κ) − na is
a scaling parameter. The parameters α, β, and κ are tuning
parameters of the SUT. To guarantee positive-semidefiniteness
of the covariance matrix, set κ ≥ 0. It is also necessary to have
0 ≤ α ≤ 1 and β ≥ 0.

(c) Time update:

Write Aj,t =
[(

Ax
j,t

)T (
Aδ
j,t

)T (
Aε
j,t

)T ]T
. Then define

X j,t|t−1 = u
(
A
x
j,t,A

δ
j,t

)
; j = −na, . . . , na

µt|t−1 =

na∑

j=−na

W
(m)
j X j,t|t−1

Σt|t−1 =

na∑

j=−na

W
(c)
j

[
X j,t|t−1 − µt|t−1

] [
X j,t|t−1 − µt|t−1

]T

Zj,t|t−1 = v
(
X j,t|t−1,A

ε
j,t

)
; j = −na, . . . , na

νt|t−1 =

na∑

j=−na

W
(m)
j Zj,t|t−1 .

(d) Measurement update:
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Define

CZtZt =

na∑

j=−na

W
(c)
j [Zj,t|t−1 − νt|t−1][Zj,t|t−1 − νt|t−1]

T

CXtZt =

na∑

j=−na

W
(c)
j [X x

j,t|t−1 − µt|t−1][Zj,t|t−1 − νt|t−1]
T

Kt = CXtZtC
−1
ZtZt

µt = µt|t−1 + Kt(Zt − νt|t−1)

Σt = Σt|t−1 − KtCZtZtK
T
t .

The state at time t is estimated using µt, which is the UKF-estimate
of the posterior mean, with its uncertainty given by Σt, which is
the UKF-estimate of the posterior variance. Also, the danger at a
location s at time t is given by the “plug-in” estimate (1.6), obtained
by “plugging in” µt into (1.6).

3. Increment t by 1 time unit and return to step 2.

Appendix B

Implementation of the Unscented particle filter (UPF) when the state pro-
cess {Xt : t = 0, 1, 2, . . .} is described by a first-order Markov process,
has a similar structure to the UKF. However, one major difference is that
the Scaled Unscented Transformation (SUT) is performed on a smaller-
dimensional random vector, since the state variable Xt−1 is assumed fixed
during each implementation of the transformation. Let At = [δTt εTt ]T ,
where δt and εt are as defined in Appendix A. Then the UPF is obtained
through the following sequence of steps (van der Merwe et al. (2001)).

1. Set t = 1 and initialize the filter:

(a) Sample X
(1)
0 , . . . ,X

(N)
0 from p(X0).

(b) Initialize the importance sampling weights w0

(
X

(i)
0

)
= 1

N ; i =

1, . . . , N .

2. For t > 0,
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(a) Calculate the mean vector and variance matrix of At:

mt = E[At] =
[
dTt eTt

]T

Ct = var[At] =

[
Dt 0

0 Et

]
.

Let na be the dimension of At. As in the UKF case, na may
vary over time.

(b) Calculate the (2na + 1) SUT sigma points and weights:

A0,t = mt

Aj,t = mt +
(√

(na + λ)Ct

)
j
; j = 1, . . . , na

A−j,t = mt −
(√

(na + λ)Ct

)
j
; j = 1, . . . , na

W
(m)
0 = λ/(na + λ)

W
(c)
0 = {λ/(na + λ)} + (1 − α2 + β)

W
(m)
j = W

(m)
−j = W

(c)
j = W

(c)
−j = 1/(2(na + λ)); j = 1, . . . , na,

where the tuning parameters are as specified in Appendix A.

(c) Time update:

Write Aj,t =
[(

Aδ
j,t

)T (
Aε
j,t

)T ]T
. Then for each i = 1, . . . , N ,

define:

X
(i)
j,t|t−1 = u

(
X

(i)
t−1,A

δ
j,t

)
; j = −na, . . . , na

µ
(i)
t|t−1 =

na∑

j=−na

W
(m)
j X

(i)
j,t|t−1

Σ
(i)
t|t−1 =

na∑

j=−na

W
(c)
j

[
X

(i)
j,t|t−1 − µ

(i)
t|t−1

] [
X

(i)
j,t|t−1 − µ

(i)
t|t−1

]T

Z
(i)
j,t|t−1 = v

(
X

(i)
j,t|t−1,A

ε
j,t

)
; j = −na, . . . , na

ν
(i)
t|t−1 =

na∑

j=−na

W
(m)
j Z

(i)
j,t|t−1 .

(d) Measurement update:
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Define

C
(i)
ZtZt

=

na∑

j=−na

W
(c)
j

[
Z

(i)
j,t|t−1 − ν

(i)
t|t−1

] [
Z

(i)
j,t|t−1 − ν

(i)
t|t−1

]T

C
(i)
XtZt

=

na∑

j=−na

W
(c)
j

[
X

(i)
j,t|t−1 − µ

(i)
t|t−1

] [
Z

(i)
j,t|t−1 − ν

(i)
t|t−1

]T

K
(i)
t = C

(i)
XtZt

(
C

(i)
ZtZt

)−1

µ
(i)
t = µ

(i)
t|t−1 + K

(i)
t

(
Zt − ν

(i)
t|t−1

)

Σ
(i)
t = Σ

(i)
t|t−1 − K

(i)
t C

(i)
ZtZt

(
K

(i)
t

)T
.

(e) Importance sampling:

For i = 1, . . . , N , sample X
(i)
t from q

(
Xt|X(i)

t−1,Zt

)
= N

(
µ

(i)
t ,Σ

(i)
t

)
,

and update the importance-sampling weight (up to a normaliz-
ing constant)

wt

(
X

(i)
1:t

)
= wt−1

(
X

(i)
1:t−1

) p
(
X

(i)
t |X(i)

t−1

)
p
(
Zt|X(i)

t

)

q
(
X

(i)
t |X(i)

t−1,Zt

) .

Normalize the weights.

(f) Resample (if desired) as described in Section 2.2.

The state at time t and its contribution to the danger-field at a loca-
tion s are estimated using the methods described in Section 2.3.

3. Increment t by 1 time unit and return to step 2.
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DISCUSSION

José M. Angulo and Maŕıa D. Ruiz-Medina

Universidad de Granada, Spain

In this interesting review paper the authors present a detailed discussion,
well connected with the current literature, on spatial-temporal nonlinear fil-
tering, with a clear exposition of sequential Monte Carlo approaches (known
as Sequential Importance Samplers (SIS) or particle filters) recently pro-
posed. They illustrate and compare different methods with a simulation
study developed in a Command and Control setting. Specifically, they com-
pare the Unscented Particle filter (UPF) and the Unscented Kalman filter
(UKF) to the Extended Kalman filter (EKF), concluding that UPF-based
estimates outperform Kalman-filter-based estimates in the approximation
of nonlinear features of the functional of interest.

A key aspect in the design of an effective SIS is the definition of the
conditional sampling distribution or importance sampling distribution. In
this respect, the authors comment that SIS can be improved using Kalman-
filter-based methods (EKF and UKF) in the calculation of such a distri-
bution. However, the use of the extended Kalman particle filter leads to
a linearized calculation of the importance sampling distribution. Further-
more, the calculation of the importance sampling distribution by using
UKF involves the second-order moments of the conditional distribution of
the state process at time t given the state at time t − 1. The use of a
Gaussian approximation to the importance sampling distribution can be
interpreted as an implicit linearization of the system, since the functional
of interest is defined as a nonlinear function of a Gaussian process. We
think that the use of maximum-entropy-based methods (see, for example,
Christakos (2000)) to obtain the importance sampling distribution would
improve SIS-based estimates in the description of nonlinear features.

The model considered in the application to Command and Control
(C2) is essentially temporal, since the movement equations, describing the
weapon’s state in terms of the vectorial process Xt = (Y1t, Y2t, Vt, θt), re-
flect the evolution of the components of X, and since, in the definition
of the danger-potential field, the possible spatial-temporal interaction be-
tween different weapon state processes is not taken into account. Thus, the
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application considered basically provides an illustration of how the above-
mentioned nonlinear filtering techniques work in the temporal case. It
would be very interesting to illustrate their performance with a more com-
plex model involving spatial-temporal interaction. For example, in the
context (C2) considered, the incorporation of the spatial-temporal interac-
tion between weapons to the state model for the definition of the damage
potential and the danger field would be of interest. In the definition of
the observation model, an interesting extension would be to consider the
optimum design of the placement of observation devices, possibly moving
over time, jointly with the time sampling frequency.

In our opinion, some interpretations derived from the application, which
are used to establish the conclusion in the paper on the outperformance of
UPF, are not strongly supported by the results obtained. For instance, one
can see that UPF-based estimates of position (see Figure 4) and danger
(see Figures 7 and 8) are sometimes better, sometimes worse than EKF-
based or UKF-based estimates. Furthermore, we cannot agree with the
appreciation on the UPF-based estimates being advantageous for ‘showing
evidence of danger earlier’, since by the same way of thinking one would
be led to say that 1 minute sampling gives better results than 1/4 minute
sampling (see Figure 9), which would be paradoxical. Further clarifications
on these aspects would be appreciated.

Rong Chen

University of Illinois at Chicago,USA
Jun S. Liu

Harvard University, USA

We congratulate the authors for an excellent review of some Sequential
Monte Carlo (SMC) algorithms for nonlinear filtering and a very inter-
esting application using SMC. It has been shown that SMC is a powerful
tool in handling nonlinear and non-Gaussian dynamic systems. This paper
provides another evidence in this regard. Here we would like to make one
general comment and discuss two issues, one general and one specific.

SIS versus MCMC: It is commonly believed that SMC and its varia-
tions are just cheap (and inferior) alternatives to the more computationally
demanding MCMC procedures. This is true to a certain extent, especially
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for a class of the state-space models. However, the extreme flexibility of
SMC methods sometimes make them the primary choices for certain prob-
lems, with efficiencies far exceeding that of the standard MCMC procedure.
Two dramatic examples in this direction are the counting and inference of
zero-one tables with fixed margins (Liu (2001, §3.4.2 and §4.3)) and the
simulation of long-chain polymers (Zhang and Liu (2002)). These exam-
ples demonstrate that innovative SIS designs can outperform most MCMC
schemes in certain difficult problems where the involved variables (or part
of which) are highly correlated (or interlocked). It has also been shown that
using MCMC steps in SMC and, conversely, using SMC in MCMC can be
beneficial (Liu (2001)).

The use of the current observation Zt: The authors advocate the
use of information in the current observation Zt to construct the sampling
distribution, first proposed by Liu and Chen (1998). In UPF, significant
amount of computational resources are devoted to achieve this, using the
scaled unscented transformation. It should be noted that the efficiency of
SMC is not solely measured by the variance of the weights. The amount
of computation is also an important issue. A good measure should be
the accuracy of the final estimate given the same amount of computational
time. For example, if UPF uses 10 times of computation as a simple particle
filter (SPF) that uses only the state equation, then one should compare the
accuracy of the final estimate between a UPF using m samples and a SPF
using 10m samples. The key here is actually how much information the
current observation Zt brings in. Let us examine two extreme situations:
(1) If the observation noise is very large, then there is virtually no benefit
to include Zt in the sampling. In this case, a SPF with 10 times more
samples would probably work better. (2) If the observation noise is very
small, or the state equation is not adequate (e.g. one sample per 3 minutes
for the battle field example), then Zt becomes very important. In fact,
in this case one can do the complete opposite of the SPF – using only
the observation equation for sampling and the state equation for updating

the weight. One way of doing this is to generate Z
(j)
t = Zt + e

(j)
t and

construct X
(j)
t by inverting the observation equation using Z

(j)
t , if it is not

too difficult. Procedures such as UPF may show significant benefit when
the information from both the observation equation and the state equation
are comparable.
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The Movement Model: The movement model used in the example
does not have a maneuvering component. A very simple multilevel model
(e.g. Bar-Shalom and Fortmann (1988, p. 125–127), Chen and Liu (2000))
can be very useful in cases like this. Figure 3 in the paper shows that
the current system has some difficulties tracking the target after a maneu-
vering at the pathway. It may be partially due to the fact that the filter
“trusts” the movement model more than the observation model (due to
the relatively large observation measurement error), even at the time the
movement model is not true. With a multilevel model which assumes sev-
eral levels of uncertainty in the movement model, the filter may be able
to detect persistent one-sided deviations between the estimated states and
the observations, hence engage a maneuvering mode to increase the uncer-
tainty in the movement model. Then the filter will weight more on the
observations and allows to track the maneuvering better.

Montserrat Fuentes

North Carolina State University, USA

Irwin, Cressie and Johannesson (ICJ) have provided an interesting review of
several generalizations of the Kalman-filter algorithm for nonlinear prob-
lems. ICJ compare the performance of two recent methods of filtering,
Unscented Particle filter (UPF) and Unscented Kalman filter (UKF) to
the traditional Extended Kalman filter (EKF) in a Command and Control
(C2) setting. This article is Bayesian in the sense that the main focus is on
currently updated posterior distributions.

I certainly agree that the Bayesian perspective on the Kalman filter is
the most natural way of viewing this sequential estimation procedure that
predicts the dynamically changing configuration of objects in a C2 setting.
My specific comments are of two types: First, regarding the movement
model in the C2 setting presented by the authors, and secondly regard-
ing the estimation of relevant parameters. I present here an alternative
model of the the movement and suggest a different danger potential. In
the illustration to the C2 setting that ICJ present, the state parameters
are fixed and treated as known. I suggest here a procedure to estimate
parameters and take into account the uncertainty about these parameters
in the subsequent prediction.
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There are both deterministic and stochastic approaches to describe the
trajectory of moving objects. Motion in Newtonian dynamics is generally
described by a potential function, P (y, t) (see Nelson (1967)). Here y is
location and t is time. The equation of motion takes the form

dy(t) = v(t)dt

dv(t) = −βv(t)dt− β∇P (y(t), t)dt
(1)

with y(t) the object’s location at time t, v(t) is the object’s velocity, ∇P
the external force field acting on the object, β is the coefficient of friction,
and ∇ is the gradient operator. The function P can be interpreted as
controlling the object’s direction and velocity. For example

P (y) = 1/|y − a|2

corresponds to a point of repulsion at a.

ICJ incorporate a stochastic component in the movement model equa-
tion for their analysis by simply adding some white noise to the speed and
direction. I suggest instead a stochastic version of the equation of motion
(1). A probabilistic concept for dynamic situations is a stochastic differen-
tial equation (SDE), e.g. Nelson (1967), Bhattacharya and Waymire (1990).
Such equations lead to Markov processes and take the form

dy(t) = µ(y(t), t)dt+ Σ(y, t)dB(t), (2)

where B is a bivariate Brownian motion, µ is the drift parameter and Σ
is the variance matrix or diffusion parameter. Many properties are known
concerning solutions of SDEs, and this model has been successfully used
to estimate trajectories of different objects (for instance by Brillinger et al.
(2000)). I recommend movement model (2) for the analysis of C2. Thus, we
can model the movement of the objects when they circle around a city, the
repulsion between objects (so the tanks do not crush), the terrain effects or
many other sources of external forces that might be acting on the object.

It seems a little bit arbitrary how ICJ define the function representing
the potential damage. Also they do not provide much insight regarding
the interpretation and estimation of the potential damage parameters. In
my opinion the selection of the damage potential deserves more attention,
because this function is one of the most important and critical factors to
model the damage of mobile weapons in a C2 setting. In the simulation
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presented by ICJ, the parameters are fixed. In a real application, the
parameters need to be estimated, and most likely they will be different for
different objects. Thus, I suggest to reduce the number of parameters to
three and use as damage potential

αer/R
p

,

where α is the maximum damage potential, R the explosive radius, and
p the parameter that controls how smooth (differentiable) this function is.
The function proposed by ICJ can lead to problems when using likelihood
based methods for estimating the unknown parameters, especially for some
values of the power parameters. If the computational advantage (and the
easier interpretation) of having the damage potential identically 0 beyond
some distance is needed in a particular application, we could use then a
truncated version of the function proposed here. I personally prefer to
avoid functions that are identically 0 beyond some value, because they are
always problematic when using a likelihood method for estimation.

ICJ treat the parameters of interest, i.e. the parameters in the move-
ment model and the damage potential, as known. In a real C2 setting we
need to estimate these parameters and quantify the uncertainty about the
estimation. A plug-in algorithm would not capture the uncertainty in the
trajectory prediction of the estimation of the parameters. Also, when the
number of parameters is large, it is common to have problems with lack of
identifiability. If we use proper priors for all parameters, then the solution
(the prediction) will most likely be completely determined by the priors. If
we put uniform priors to all parameters, we might get improper posteriors,
especially once we add some more structure in the equation for the move-
ment, and we allow for some parameters to explain the spatial dependency.
So, there is not an easy answer.

A Bayesian attempt to solve the problem of unknown parameters in the
movement model is the use of discount factors (West and Harrison (1997)).
Suppose that we define the state evolution by

Xt = GtXt−1 + ut,

where ut ∼ N(0,Wt). If δ ∈ (0, 1] is the known discount factor and Ct−1 is
the variance of Xt−1 given all the information of the sample at time t− 1,
then it is easy to show that Wt = GtCt−1G

′
t(1 − δ)/δ, thus solving the

problem of specification of the unknown value of Wt. This approach would
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be particularly easy to implement for prediction of trajectories because the
state model is almost linear. Discount factors can be also used with non-
linear models (West et al. (1985)). A procedure to estimate the unknown
parameters in the state equation and the observation model, is to integrate
expressions with respect to Xt and to obtain predictive likelihood depend-
ing only on the unknown hyperparameters (Harvey (1989)). This likelihood
could be maximized to estimate the hyperparameters. The estimation of
unknown quantities and the uncertainty in the prediction about the esti-
mated parameters should be carefully addressed in hierarchical Bayesian
models. This is particularly important in C2 settings, where is critical to
understand the degree of confidence in the prediction of trajectories for
mobile weapons, because of costly economic and social consequences.

John Kent and Kanti Mardia

University of Leeds, UK

One aspect of this paper involves time series models for angular data.
The topic has not received much serious attention in the literature, espe-
cially for tracking problems, mainly due to a lack of analytically tractable
models. For simplicity we limit attention here to AR(1)-type models, or
equivalently, Markov chain models on the circle, though many of the ideas
generalize easily to higher-order processes on higher-dimensional spheres.

After removing a mean effect from equation (4.1) in the paper, the
model for the angular component takes the linear AR(1) form,

θt+1 = ρθt + εt+1, εt+1 ∼ N(0, σ2
ε ), (1)

with θt ∈ (−π, π). This model is fine for concentrated data, but is less
satisfactory for dispersed data due to the lack of continuity of the drift
term at θt = π (= −π mod 2π). Thus it is worth exploring models which
better accommodate the periodic nature of θt.

A natural starting point is to note that any conditional bivariate angu-
lar density f(θt+1|θt) can be used to generate a Markov chain. For a current
review of various possibilities see, e.g. Mardia and Jupp (2000) and Jam-
malamadaka and SenGupta (2001). Some more recent contributions are
given by Downs and Mardia (2002) and Singh et al. (2002).

Let x = (cos θ, sin θ)T be a unit vector on R
2. The von Mises distribu-

tion for x, written M(µ) in terms of a two-dimensional parameter vector
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µ = κ(cosα, sinα)T , has “mean direction” α and “concentration parame-
ter” κ. One of the simplest bivariate conditional models takes the form

xt+1|xt ∼M(a xt + b e1) (2)

(Breckling, 1989, p. 175), where a and b > 0 are scalars and eT1 = (1, 0).
Under large concentration (with a + b � 0), this model reduces to the
linear AR(1) model above, with first order auto-correlation ρ = a/(a + b)
and innovation variance σ2

ε = 1/(a + b). It turns out that the equilibrium
distribution of this process has density

I0(‖ ax+ b e1 ‖) exp(b eT1 x), (3)

where I0(·) is the modified Bessel function of the first kind of order 0. Note
that in this approach the conditional distributions are tractable, but the
marginal bivariate distribution is awkward.

An alternative AR(1)-type process on the circle in continuous time
(Kent (1978)) can be generated by the SDE

dθt+1 = −λ sin θt dt+ dwt,

where wt is a real-valued Brownian motion. This process is analogous to
the Ornstein-Uhlenbeck process on the line. In this case the equilibrium
distribution is tractable, M(2λe1), but the conditional distributions are
intractable. Intractability of at least one or other of the marginals or con-
ditionals in directional models seems to be a universal “law”.

Reverting to the model in equation (1), the next step is to treat the
{xt} process as an unobserved signal which is combined with an observation
process

yt|xt ∼M(κxt), κ > 0. (4)

Then Kalman filter ideas can be investigated to recover the signal from
the observations. Unfortunately, although the conditionals (2) and (3) are
tractable, the conditional distribution of xt|(y1, . . . yt) is not. This lack
of tractability has hampered the development of these models. Recent
advances in particle filters and related ideas should give a boost to the
area. Indeed, a key example of this new approach is Pitt and Shephard
(1999) who implemented a particle filter approach for a tracking problem
involving a wrapped Cauchy observational process.
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Jorge Mateu

Universitat Jaume I de Castellón, Spain.
Francisco Montes

Universitat de Valencia, Spain.

We enjoyed reading this stimulating paper, which is both interesting
and useful. It is a pleasure for us to congratulate the authors for an able and
comprehensive survey of an area of statistics which is only now assuming
the importance which its many applications demand. Particularly welcome
in this account is the variety of model proposals, based on different postu-
lates about underlying mechanisms. It is surely crucial that models should
be chosen not only for their mathematical convenience, but because they
reflect the scientist’s insight into the nature of the phenomena observed.

This paper presents a review of spatial-temporal nonlinear filtering com-
bining both sound theory and constructive practice.

Developing appropriate stochastic models and statistical methods for
space-time processes is one of the great open challenges in statistics. In
the last decade, a rapidly expanding literature has been experienced. In
particular, when the state equations of the space-time process are nonlinear
and the aim is focused on dynamically filtering noisy observations, the
available research references are not so extensive, and in this sense this
paper is a welcomed addition to this area of the scientific research based on
spatial-temporal modelling. As illustrated below we find this a promising
direction of research.

It is our belief that modelling this and similar datasets combining sta-
tistical and physical models can only bring good scientific reports. Indeed,
the authors state that the scientist’s physical/chemical/biological knowl-
edge is to be considered in the process model. We would expect that such
models would produce better predictions than models using either just a
physical approach or just a statistical approach. Furthermore, the differ-
ences between the observations and a physical model prediction may have a
simpler structure than the observations themselves, for example, by being
more nearly stationary and isotropic in space. To carry out such a com-
bined modelling approach would undoubtedly take the active collaboration
of statisticians and atmospheric scientists and we can only see good things
coming out of such an endeavor.
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A first appreciation of this paper reminds us of several problems within
the computational intelligence (CI) research area. And here are some lines
to remind the reader of these kind of problems.

The 1990s were witnessing the beginnings of a new quantitative revo-
lution based upon computational intelligence technologies very relevant to
spatial analysis. The raison d’être of CI-based spatial analysis is to exploit
the tolerance for imprecision and uncertainty in large-scale spatial anal-
ysis problems in an analysis process which is increasingly driven by the
availability of huge quantities of spatial data, and to achieve tractability,
robustness, computational adaptivity, real-time analysis and low cost.

There are two principal areas of CI that are particularly relevant to spa-
tial analysis: evolutionary computation which includes genetic algorithms
and artificial life; and neural networks which are also known as neurocom-
puting. Biologically inspired evolutionary computation (i.e. genetic algo-
rithms, genetic programming, non-Darwinian evolutionary algorithms etc.)
provide the basis for developing new solutions to complex spatial optimiza-
tion problems as well as building blocks for new kinds of spatial analysis
techniques and models; for example, the artificial life based pattern hunting
creatures or the automated modelling system developed by Openshaw and
associates (Openshaw (1994)).

Much of the recent interest in neural network modelling in spatial anal-
ysis stems from the growing realization of the limitations of conventional
tools and models as vehicles for exploring patterns and relationships in GIS
(geographical information systems) and RS (remote sensing) environments
and from the consequent hope that these limitations may be overcome by
judicious use of neural net approaches. The attractiveness of these ap-
proaches extends far beyond the high computation rates provided by mas-
sive parallelism and essentially stems from the following features: (a) the
greater representational flexibility and freedom from linear model design
constraints; (b) the built-in capability to incorporate rather than ignore
the special nature of spatial data; (c) the greater degree of robustness or
fault tolerance to deal with noisy data, missing and fuzzy information; (d)
the ability to deal efficiently with very large data sets and thus to pro-
vide the prospect to obtain better results by being able to process finer
resolution data or real-time analysis.

Neural networks which may be viewed as non-linear extensions of con-
ventional spatial statistical models are applicable to two major domains:
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first, as universal function approximators to areas such as spatial regres-
sion, spatial interaction, spatial choice and space-time series analysis; and
second, as pattern recognizers and classifiers to intelligently allow the user
to sift through the data, reduce dimensionality, and find patterns of inter-
est in data-rich environments. In this sense, and the analysis presented in
this paper actually brings light on this, neural pattern classifiers have an
important role to play in high dimensional problems of pattern recognition
and classification in remote sensing environments.

Another aspect it is worth noting here, is that the methodological pro-
posals presented (and reviewed) in this paper can be clearly adapted to
solve many other problems coming in a variety of scientific fields. The au-
thors specify a body of applications within the area of armed forces. But
the field of possible real applications goes further than that. For example,
biological or ecological problems related to migratory movements of several
species would benefit from this kind of methodology. Controlling, chasing
and estimation of movement paths through large regions is an important
problem in this field. Also, hydrogeological problems could be considered.
With the necessary adaptation of the proposed methodology, in terms of
movement and transport equations, we could use spatial-temporal nonlin-
ear filtering methods to propose statistical modelling of chemical (or other
substances) flows within certain classes of aquifers.

Our methodological concern relates to the empirical Bayesian versus a
fully Bayesian approaches. It is shown in the paper that UPF does a better
job of accounting for the uncertainties in the tank locations and danger field
compared to the performance shown by UKF and EKF estimators. The
latter estimators are both plug-in estimators and do not take into account
these kind of uncertainties. Thus, our query is the following. Using a
fully Bayesian methodology, could the uncertainty be taken into account
in a more methodological fashion through proposing priors to the model
parameters, and under this case, could UKF and EKF be more efficient at
detecting these kind of uncertainties?

Finally, though in a different context, in Gregori et al. (2002) we have
developed a class of spatial point processes, called generalized area-interaction
point processes, which are particularly devoted to solve problems in certain
communication applications, for example detection of cell-phones in con-
tinuous movement and its relation to the corresponding fixed location of
the reception antennas. These processes can be generalized to incorpore



292 M. L. Stein

spatio-temporal information, and in this sense could be related to the aim
of the Irwin, Cressie and Johannesson paper.

Michael L. Stein

University of Chicago, USA.

Irwin, Cressie and Johannesson provide a nice review of various recent in-
novations in nonlinear filtering and demonstrate how methods based on as
the scaled unscented transformation (SUT) can be successfully applied to
a problem of assessing the danger of highly mobile weapons. The basic
idea behind the SUT, whether as part of the UKF or the UPF, is to use
a deterministic sample from the joint conditional distribution of the state,
the process error and the measurement error given a current estimate of
the state of the system to determine an updated mean and covariance ma-
trix for the state of the system and for the possibly nonlinear functions
of the state that are of practical concern. In comparison to the extended
Kalman filter, one is replacing derivatives by finite differences, with the
potential advantage of better capturing the nonlinear behavior of the sys-
tem. In comparison to simple random sampling, deterministic sampling
should generally provide much more precise estimates of conditional means
and covariance matrices for the quantities of interest. However, as with
any systematic sample, there is always the potential for serious bias. Fur-
thermore, there is considerable ground between a simple random sample
and a purely deterministic sample. I would like to explore the possibil-
ity of adding some randomness to the SUT as a way of getting the good
properties of both deterministic and random sampling.

Neither Irwin, Cressie and Johannesson nor the few other references I
have consulted make any mention of how to choose the matrix square root

C
1/2
t in step 2(b) of the UKF and UPF algorithms. Two obvious choices

are the square root obtained from the Cholesky decomposition and the
symmetric positive definite square root. If the system is linear and the
quantities of interest are linear in the state, then the SUT is constructed
so that it does not matter which square root is used. To see how the
choice of square root can matter for a badly nonlinear system, suppose
Ct is diagonal, in which case, both the Cholesky decomposition and the
symmetric positive definite square root give the elementwise square root of
Ct. Now suppose u(Xt−1, δδδt) = Xt−1+δ4t1v, where δtj is the jth component
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of δδδt and v is some fixed vector. Then E(Xt | Xt−1) = Xt−1 + 3σ4
δ1v,

whereas µµµt|t−1 = Xt−1 + (na + λ)σ4
δ1v, which is increasingly in error as

na increases. A general principle of statistical design is that if there is a
choice to be made between differing designs for which one does not have
any substantive basis for preferring one to another, the choice should be
made randomly as a way of guarding against unanticipated sources of bias.

This principle suggests randomly rotating C
1/2
t : replacing C

1/2
t by C

1/2
t H,

where H is an orthogonal matrix that rotates vectors by an angle chosen
from the uniform distribution on the unit sphere. For large na, using a
random rotation will approximately remove the bias in the estimate of
E(Xt | Xt−1) for this example.

There could in principle be some further bias reduction by multiplying
Ct by a random scalar with distribution χ2

na
/na, where χ2

n is a chi-squared
distribution with n degrees of freedom. This choice gives the correct vari-
ability to each component of AAAj,t for j 6= 0. If one does this random
rescaling, it is possible (I have not checked this) that one may need to

modify the W
(m)
j s and W

(c)
j s in 2(b) to ensure the procedure works cor-

rectly when the process is linear. By combining the random rotation with
the random scaling, each AAAj,t for j 6= 0 now follows a multivariate normal
distribution. However, the sample is far different from a simple random
sample from this multivariate normal. For example, if Ct is proportional
to the identity matrix, for j 6= 0, the AAAj,ts will all be on a sphere with
center mt and the vectors AAAj,t − mt will be orthogonal. This highly but
not completely systematic sampling scheme should have similar precision
as the purely deterministic SUT, but with better bias characteristics.

When using these random rotations and rescalings in practice, one does
need to decide whether the same rotations and rescalings can ever be reused.
For the UKF, I would suggest picking a new rotation and rescaling at
each time step. For the UPF, the conservative choice would be to have
independently chosen rotations and rescalings for each time step and each
particle. However, if choosing a separate rotation for each particle added
substantially to the computational burden, one could consider using the
same rotation for every particle within a given time step.

Whether adding these random elements to the scheme will actually help
in any particular circumstance depends on the nature of the nonlinearities.
In many cases, there will be little or no gain for the extra effort of computing
the random rotations and rescalings, but it may not be easy to know a priori
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when, so that if the added computations do not slow down the algorithm
much, it would be prudent to include these random elements.

Rejoinder by M. E. Irwin, N. Cressie, and G. Johannesson

We would like to thank each of the discussants for their insightful com-
ments on the paper. All agree that modern particle filtering is a technology
that can address important nonlinear spatial-temporal problems.

There were a number of common themes in their comments. The three
themes involved the choice of movement model, selection of the proposal
distribution and approximations, and the estimation of model parameters.

Movement models

The most common theme brought up by the discussants was the choice of
movement model. The movement model, as described in equations (5.1)
and (5.2), was chosen to display the properties of the procedures described
in the paper, and not proposed as a truly realistic description of tank move-
ment. This model was chosen to be similar in structure to many of the linear
movement models used for target tracking as discussed by Ramachandra
(2000). However, to take the example past the exploratory stage, careful
consultation with military experts would be needed to determine appropri-
ate movement models associated with various kinds of vehicles.

Chen and Liu’s suggestion of multi-level movement models seems par-
ticularly appealing given the hierarchical modelling approach taken in our
paper. While the simple movement model we use can easily be expanded
by allowing different types of movement (e.g. go straight, turn, accelerate,
decelerate), their suggestion has a potentially greater benefit. The multi-
level approach would allow environmental effects such as weather, battle
conditions (e.g. attack versus retreat), and tank-fitness information to be
included in the state equations for modelling the tanks’ movements. Some
terrain effects could also be handled in this way.

Additional terrain effects could potentially be handled by the suggestion
of Fuentes to base movement on a potential function P (s, t). While the
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continuous-time stochastic-differential-equation approach she suggests may
not be feasible due to a need for the filter to provide quick updates, discrete-
time approximations should be. In fact, the model described by equations
(5.1) and (5.2) is a special case of continuous-time movement approximated
using a sequence of equally spaced time steps.

In general, the UPF approach we recommend will be feasible when the
movement model can be described by a function of the form,

Xt = ut(X1:t−1, δt),

where δt is a random variable whose moments could depend on t and X1:t−1.
Notice that usually ut depends on X1:t−1 through Xt−1, which yields state
equations of Markovian form. The movement models for simulating the
data (Section 4.1) and filtering the data (equations (5.1) and (5.2)) both fit
into this structure. The excellent suggestions given by the discussants can
be put into this framework. For example, one could replace the direction
component given in (5.1) with Kent and Mardia’s suggestion of modelling
it by the von Mises distribution and its extensions.

Angulo and Ruiz-Medina comment that the model used in the example
treats each of the tanks as independent. We agree with them that adding
spatial-temporal interactions between the different elements is important
in modelling a less-benign battlespace. In the example, the tanks are trav-
elling in convoy, but separated so they will not interact. However, if the
local movement of the tanks within a convoy required a tight formation,
and the global movement of various convoys was determined by a sequence
of spatial-temporal waypoints (Wendt et al. (2002)), the interaction of the
various objects should not be ignored. Another example where such in-
teractions may be extremely important is the case of minefield detection,
where it may be desirable to maximize the area examined while minimiz-
ing the overlap of coverage of the various detectors as they pass through
the region of interest. This is an example of Angulo and Ruiz-Medina’s
proposal for mobile monitoring devices. The incorporation of interactions
would also be necessary to apply filtering in the applications suggested by
Mateu and Montes.

One approach to deal with spatial-temporal interactions between ob-
jects would be to modify the process model, given by the equation above,
to be a function of the states of all objects in the domain of interest. For
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example, with two objects in the space, the equation could be modified to

(X
(1)
t ,X

(2)
t ) = ut(X

(1)
1:t−1,X

(2)
1:t−1, δ

(1)
t , δ

(2)
t ),

where the superscripts correspond to the two objects of interest. Also, in

this formulation, it will often be necessary for the random variables δ
(1)
t

and δ
(2)
t to be dependent.

Proposal distribution and approximations

A second theme in the discussants’ comments deals with choice of the se-
quential components of the proposal distribution q(Xt|X1:t−1,Z1:t) in equa-
tion (2.4) of the SIS. Chen and Liu make the important point that the inter-
action between the computational burden of the sampler and its sampling
variance should be the driving force in choosing the proposal distribution.
This is particularly important in the danger-field example, as rapid, ac-
curate updates of the danger field are required. For this example, Stein’s
interesting suggestion of selecting a random rotation of the matrix square
root probably wouldn’t be computationally feasible, a potential drawback
that was noted by Stein in his discussion. Stein’s suggestion is more impor-
tant for the UKF than for the UPF. The biases inherent in approximation
could accumulate in the Kalman filter, and the random rotations should
average out the biases as Stein suggests. This bias accumulation should not
be a problem in the UPF since the sampling procedure and adjustment by
the importance sampling weights should deal with the bias accumulation.
Furthermore, the tuning parameters of the Scaled Unscented Transforma-
tion or SUT (α, β, and κ) can be adjusted to account for potential skewness
and kurtosis, and this should also ameliorate bias.

The bottom line in selecting a proposal distribution is to find something
“close” to the optimal choice of q∗(Xt|X1:t−1,Z1:t) = p(Xt|X1:t−1,Z1:t),
under a reasonable computational burden. For many problems, such as
the one examined in the paper, using the SUT achieves this goal, since
much of the computing can be done with rapid matrix calculations. While
a Gaussian proposal was suggested for computational convenience, it can
break down. One potential problem is that the tails of the Gaussian pro-
posal may be too light relative to the posterior distribution, a common
worry in importance sampling. A potential solution to this problem would
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be to choose from a class of distributions with heavier tails, such as a t-
distribution with low or moderate degrees of freedom. This approach, of
deviating from a Gaussian proposal distribution, can be generalized. The
underlying idea of the UPF is to use the SUT to approximate, numer-
ically, parameters of transformed random variables. In our paper we use
the SUT to approximate the mean and variance, but other parameters such
as higher-order moments or coefficients of variation could be approximated
as well. For example, with a gamma proposal distribution, the scale and
shape parameters would need to be approximated. This idea may be an
approach to implement, in a computationally efficient manner, Angulo and
Ruiz-Medina’s suggestion of using maximum entropy to choose the pro-
posal. (The notion of maximum entropy is important in some areas of
physics and astronomy; see Jaynes (1957) and Grandy and Schick (1991).
It can be justified in a decision-theoretic setting as a maximin criterion; see
Bernardo (1979).)

Parameter estimation - Bayes versus empirical Bayes

The last major theme in the discussions deals with the estimation of model
parameters. The approach taken in the paper was Empirical Bayes (EB),
where the data were used to estimate the unknown parameters, and these
estimates were plugged into the filtering equations. While this approach
will lead to under-estimating the uncertainties of the filter, much of the
variability is already captured in the hierarchical model, and in the example
it will have little effect. Also, in response to Mateu and Montes’ question,
we could consider the fully Bayesian approach as giving a more complicated
(and non-linear) state-space model, and hence we expect the fully Bayesian
UPF to maintain or perhaps increase its advantage over the other two
filters.

When possible, a fully Bayesian solution for dealing with the unknown
model parameters would be preferable. Fuentes’ suggestion to use discount
factors (West and Harrison (1997)) is one approach. Another approach
can be used in the situation where conjugate priors are available. Kong
et al. (1994) base their sequential sampler on the predictive distribution of
the state variables. A nice property of their approach is that it is easy to
reweight their sampler under different choices for the prior, which allows
for sensitivity analysis of the prior distribution. Modifications to their
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approach should be possible when the prior is non-conjugate.

In response to Angulo and Ruiz-Medina’s last comment, the anticipa-
tory nature of the UPF for the danger field is a function of two factors,
the form of the estimator and the amount of data. The UPF gives an
estimate of the posterior mean of the danger field, which comes from mini-
mizing the Bayes risk for squared-error loss. The anticipatory effect comes
from averaging the danger field over the possible tank locations. Since the
Kalman-filter estimates for danger are based on plugging in a single esti-
mate of location, they cannot be anticipatory for danger since they ignore
the uncertainty in the tank locations. Because of the averaging in the UPF,
a lower sampling frequency must lead to earlier anticipation of danger, since
there is more uncertainty in the true tank locations. Note that early antici-
pation of danger can have costs that may argue for increasing the sampling
frequency; however, choosing an estimator that ignores the uncertainty of
the tank positions may have more severe costs. Notice that a fully Bayesian
solution with the UPF will tend to increase the anticipation time slightly,
as the tank locations will also need to be averaged over the prior distribu-
tions for the model parameters. In conclusion, there are occasions when the
UPF-based estimates are comparable with the UKF-based and EKF-based
estimates, but we have shown that the UPF can have distinct advantages
when the true movement process changes drastically (Figures 3 and 4), and
when the questions we ask are highly non-linear (Figures 7 and 8).
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