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Abstract

Dynamic scene graph generation aims at generating a

scene graph of the given video. Compared to the task

of scene graph generation from images, it is more chal-

lenging because of the dynamic relationships between ob-

jects and the temporal dependencies between frames allow-

ing for a richer semantic interpretation. In this paper, we

propose Spatial-temporal Transformer (STTran), a neural

network that consists of two core modules: (1) a spatial en-

coder that takes an input frame to extract spatial context

and reason about the visual relationships within a frame,

and (2) a temporal decoder which takes the output of the

spatial encoder as input in order to capture the temporal

dependencies between frames and infer the dynamic rela-

tionships. Furthermore, STTran is flexible to take varying

lengths of videos as input without clipping, which is espe-

cially important for long videos. Our method is validated

on the benchmark dataset Action Genome (AG). The ex-

perimental results demonstrate the superior performance

of our method in terms of dynamic scene graphs. More-

over, a set of ablative studies is conducted and the effect

of each proposed module is justified. Code available at:

https://github.com/yrcong/STTran.

1. Introduction

A scene graph is a structural representation that sum-

maries objects of interest as nodes and their relationships

as edges [26, 29]. Recently, scene graphs have been suc-

cessfully applied in different vision tasks, such as image

retrieval [26, 46], object detection, semantic segmenta-

tion, human-object interaction [15], image synthesis [24, 3],

and high-level vision-language tasks like image captioning

[13, 62] or visual question answering (VQA) [25]. It is

treated as a promising approach towards holistic scene un-

derstanding and a bridge connecting the large gap between

vision and natural language domains. Therefore, the task

of scene graph generation has caught increasing attention in

communities.

While the great progress made in scene graph genera-

tion from a single image (static scene graph generation), the
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Figure 1: The difference between scene graph generation

from image and video. In the video, the person is watch-

ing TV and drinking water from the bottle. Dynamic Scene

graph generation can utilize both spatial context and tem-

poral dependencies (3rd row) compared with image-based

scene graph generation (2nd row). Nodes in different colors

denote objects (person,bottle,tv) in the frames.

task of scene graph generation from a video (dynamic scene

graph generation) is new and more challenging. The most

popular approach of static scene graph generation is built

upon an object detector that generates object proposals, and

then infers their relationship types as well as their object

classes. However, objects are not sure to be consistent in

each frame of the video sequence and the relationships be-

tween any two objects may vary because of their motions,

which is characterized by dynamic. In this case, temporal

dependencies play a role, and thus, the static scene graph

generation methods are not directly applicable to dynamic

scene graph generation, which has been fully discussed in

[22] and verified by the experimental results analyzed in

Sec. 4. Fig. 1 showcases the difference between scene graph

generation from image and video.

Action recognition is an alternative to detect the dynamic
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relationships between objects. However, actions and activ-

ities are typically regarded as monolithic events that occur

in videos in action recognition [4, 27, 47, 33]. It has been

studied in Cognitive Science and Neuroscience that people

perceive an ongoing activity by segmenting them into con-

sistent groups and encoding into a hierarchical part structure

[30]. Let’s take the activity ”drinking water” as an example,

as shown in Fig. 1. The person starts this activity by holding

the bottle in front of her, and then holds it up and takes wa-

ter. More complex, the person is looking at the television at

the same time. Decomposition of this activity is useful for

understanding how it happens and what is going on. Associ-

ating with the scene graph, it is possible to predict what will

happen: after the person picks up the bottle in front of her,

we can predict that the person is likely to drink water from

it. Representing temporal events with structured representa-

tions, i.e. dynamic scene graph, could lead to more accurate

and grounded action understanding. However, most of the

existing methods for action recognition are not able to de-

compose the activity in this way.

In this paper, we explore how to generate a dynamic

scene graph from sequences effectively. The main contri-

butions are summarized as: (1) We propose a novel frame-

work, Spatial-Temporal Transformer (STTran), which en-

codes the spatial context within single frames and decodes

visual relationship representations with temporal dependen-

cies across frames. (2) Distinct from the majority of related

works, multi-label classification is applied in relationship

prediction and a new strategy to generate a dynamic scene

graph with confident predictions is introduced. (3) With

several experiments, we verify that temporal dependencies

have a positive effect on relationship prediction and our

model improves performance by understanding it. STTran

achieves state-of-the-art results on Action Genome [22].

2. Related Work

Scene Graph Generation Scene graph has first been pro-

posed in [26] for image retrieval and caught increasing at-

tention in Computer Vision community [42, 61, 35, 9, 38,

51, 55, 62, 64, 37]. It is a graph-based representation de-

scribing interactions between objects in the image. Nodes in

the scene graph indicate the objects while edges denote the

relationships. The applications include image retrieval [46],

image captioning [1, 45], VQA [51, 25] and image genera-

tion [24, 19]. In order to generate high-quality scene graphs

from images, a series of works explore different directions

such as utilizing spatial context [61, 65, 40], graph struc-

ture [60, 58, 34], optimization [8], reinforcement learning

[36, 51], semi-supervised training [7] or a contrastive loss

[66]. These works have achieved excellent results on image

datasets [29, 42, 31]. Although it is universal for multiple

relationships to co-occur between a subject-object pair in

the real world, the majority of previous works defaults to

edge prediction as single-label classification. Despite the

progress made in this field, all these methods are designed

for static images. In order to extend the gain brought by

scene graphs in images to video, Ji et al. [22] collect a large

dataset of dynamic scene graphs by decomposing activities

in videos and improve state of the art results for video action

recognition with dynamic scene graph.

Transformer for Computer Vision The vanilla Trans-

former architecture was proposed by Vaswani et al. [54]

for neural machine translation. Many transformer variants

are developed and have achieved great performance in lan-

guage modeling tasks, especially the large-scale pre-trained

language models, like GPT [44] and BERT [10]. Then,

Transformers have also been widely and successfully ap-

plied in many vision-language tasks, such as image cap-

tioning [59, 18], VQA [2, 63]. To further bridge the vision

and language domains, different Bert-like large-scale pre-

trained models are also developed, like Caption-Based Im-

age Retrieval and Visual Commonsense Reasoning (VCR)

[43, 32, 50]. Most recently, Transformers are attracting in-

creasing attention in the vision community. DETR is intro-

duced by Carion et al. [5] for object detection and panop-

tic segmentation. Moreover, Transformers are explored to

learn vision features from the given image instead of the

traditional CNN backbones and achieve promising perfor-

mance [12, 52]. The core mechanism of Transformer is its

self-attention building block which is able to make predic-

tions by selectively attending to the input points (each point

can be a word representation of a sentence or a local fea-

ture from an image), so that context is captured between

different input points and the representation of each point is

refined. Nonetheless, the above methods focus on learning

spatial context with a transformer from a single image while

temporal dependencies play a role in video understanding.

Action Transformer is proposed by Girdhar et al. [14] that

utilizes transformer to refine the spatio-temporal represen-

tations, which are learned by I3D model [6] and then pooled

from the RoI given by a RPN network [45], for recognizing

human actions in video clips. In fact, the transformer mod-

ule is still used to learn spatial context. VisTR is introduced

in [57] for video segmentation. The features of each frame

that are extracted by a CNN backbone are fed to a trans-

former encoder to learn the temporal information of a video

sequence.

Spatial-Temporal Networks Spatial-temporal informa-

tion is the key to access video understanding [39, 28, 21]

and has been long and well studied. To date, the most

popular approaches are RNN/LSTM-based [20] or 3D

ConvNets-based [23, 53] structures. The former takes fea-

tures from each frame sequentially and learns the temporal

information [49, 11]. The latter extends the traditional 2D

convolution (height and width dimension) to time dimen-

sion for sequential inputs. Simonyan et al. [48] introduce a



two-stream CNN structure that spatial and temporal infor-

mation is learned on different streams respectively. Resid-

ual connections are inserted between the two information

streams to allow information fusion. Then, the 2D convo-

lution in the two-stream structure is inflated into its coun-

terpart 3D convolution, dubbed I3D model [6]. Non-local

Neural Networks [56] introduce another kind of generic

self-attention mechanism, non-local operation. It computes

relatedness between different locations in the input signal

and refines the inputs by weighted sum of different inputs

based on the relatedness. Their method is easy to be applied

in video input by extending the non-local operation along

the time dimension. However, these works are applied for

activity recognition and are not able to decompose the ac-

tivity into consistent groups. In this work, we do not only

utilize transformer to learn spatial context between objects

within a frame, but also the temporal dependencies between

frames to infer the dynamic relationships varying along the

time axis.

3. Method

A dynamic scene graph Gdyn(Vt, Et) can be modeled

as a static scene graph Gstat(V, E) with an extra index t
representing the relations over time as an extra temporal

axis. Inspired by the transformer characteristics: (1) the ar-

chitecture is permutation-invariant, and (2) the sequence is

compatible with positional encoding, we introduce a novel

model, Spatial-Temporal Transformer (STTran), in order

to utilize the spatial-temporal context along videos (see

Fig. 2).

3.1. Transformer

First, we take a brief review on the transformer struc-

ture. The transformer is proposed by Vaswani et al. [54]

and consists of a stack of multi-head dot-product attention

based transformer refining layers. In each layer, the input

X ∈ R
N×D that has N entries of D dimensions, is trans-

formed into queries (Q = XWQ, WQ ∈ R
D×Dq ), keys

(K = XWK , WK ∈ R
D×Dk ) and values (V = XWV ,

WV ∈ R
D×Dv ) though linear transformations. Note that

Dq , Dk and Dv are the same in the implementation nor-

mally. Each entry is refined with other entries through dot-

product attention defined by:

Attention(Q,K,V ) = Softmax

(

QKT

√
Dk

)

V , (1)

To improve the performance of the attention layer, multi-

head attention is applied which is defined as :

MultiHead(Q,K,V ) = Concat(h1, . . . , hh)WO,

hi = Attention(XWQi
,XWKi

,XWVi
).

(2)

A complete self-attention layer contains the above self-

attention module followed by a normalization layer with

residual connection and a feed-forward layer, which is also

followed by a normalization layer with residual connec-

tion. For simplicity, we denote such a self-attention layer

as Att(.). In this work, we design a Spatio-Temporal Trans-

former based on Att(.) to explore the spatial context, which

works on a single frame, and temporal dependencies that

work on sequence, respectively.

3.2. Relationship Representation

We employ Faster R-CNN [45] as our backbone. For

the frame It at time step t in a given video with T frames

V = [I1, I2, . . . , IT ], the detector provides visual features

{v1
t , . . . ,v

N(t)
t }∈R2048, bounding boxes {b1t , . . . , b

N(t)
t }

and object category distribution {d1
t , . . . ,d

N(t)} of object

proposals where N(t) indicates the number of object pro-

posals in the frame. Between the N(t) object proposals

there is a set of relationships Rt = {r1t , r2t , . . . , r
K(t)
t }.

The representation vector xk
t of the relation rkt between the

i-th and j-th object proposals contains visual appearances,

spatial information and semantic embeddings, which can be

formulated as:

xk
t =

〈

Wsv
i
t,Wov

j
t ,Wuϕ(u

ij
t ⊕ fbox(b

i
t, b

j
t ))), s

i
t, s

j
t

〉

(3)

where 〈, 〉 is concatenation operation, ϕ is flattening opera-

tion and ⊕ is element-wise addition. Ws, Wo ∈ R
2048×512

and Wu ∈ R
12544×512 represent the linear matrices for di-

mension compression. u
ij
t ∈ R

256×7×7 indicates the fea-

ture map of the union box computed by RoIAlign [16] while

fbox is the function transforming the bounding boxes of sub-

ject and object to an entire feature with the same shape as

u
ij
t . The semantic embedding vectors sit, s

j
t ∈ R

200 are de-

termined by the object categories of subject and object. The

relationship representations exchange spatial and temporal

information in Spatial-Temporal Transformer.

3.3. Spatio­Temporal Transformer

The Spatio-Temporal Transformer maintains the original

encoder-decoder architecture [54]. The difference is, the

encoder and decoder are delegated the more concrete tasks.

Spatial Encoder concentrates on the spatial context

within a frame whose input is a single Xt =

{x1
t ,x

2
t , . . . ,x

K(t)
t }. The queries Q, keys K and values

V share the same input and the output of the n-th encoder

layer is presented as:

X
(n)
t = Attenc.(Q = K = V = X

(n−1)
t ) (4)

The encoder consists of N identical Attenc. layers that are

stacked sequentially. The input of the (n)-th layer is the out-

put of the (n − 1)-th layer. For simplicity, we remove the

superscript n in the following discussion. Unlike the major-

ity of transformer methods, no additional position encoding
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Figure 2: Overview of our method: the object detection backbone proposes object regions in RGB video frames and the rela-

tionship feature vectors are pre-processed (Sec. 3.2). The encoder of the proposed Spatial-Temporal Transformer (Sec. 3.3)

first extracts the spatial context within single frames. The relation representations refined by encoder stacks from different

frames are combined and added to learned frame encodings. The decoder layers capture temporal dependencies and rela-

tionships are predicted with linear classifiers for different relation type (such as attention, spatial, contact). ⊕ indicates

element-wise addition while FFN stands for feed-forward network.

is integrated into the inputs since the relationships within

a frame are intuitively parallel. Having said that, the spa-

tial information hiding in the relation representations (see

Eq. 10) plays a crucial role in the self-attention mechanism.

The final output of the encoder stacks is sent to the Tempo-

ral Decoder.

Frame Encoding is introduced for the temporal decoder.

Without convolution and recurrence, the knowledge of se-

quence order such as positional encoding must be embed-

ded in the input for the transformer. In contrast to the word

position in [54] or the pixel position in [5], we customize

the frame encodings to inject the temporal position in the

relationship representations. The frame encodings Ef are

constructed with learned embedding parameters, since the

amount of the embedding vectors depending on the win-

dow size η in the Temporal Decoder is fixed and relative

short: Ef = [e1, . . . , eη], where e1, . . . , eη ∈ R
1936 are

the learned vectors with the same length as xk
t .

The widely used sinusoidal encoding method is also ana-

lyzed (see Table 5). We adopt the learned encoding method

because of its overall better performance. The window size

η is fixed and therefore the video length does not affect the

length of frame encodings.

Temporal Decoder captures the temporal dependencies

between frames. Not only the amount of calculation re-

quired and the memory consumption increase greatly, but

also useful information is easily overwhelmed by a large

number of irrelevant representations. In this work, we adopt

a sliding window to batch the frames so that the message is

passed between the adjacent frames in order to avoid inter-

ference with distant frames.

Different from [54], the self-attention layer of our tem-

poral decoder is identical to the spatial encoder Attenc.(),
i.e. the masked multi-head self-attention layers are re-

moved. A sliding window of size η runs over the sequence

of spatial contextualized representations [X1, . . . ,XT ] and

the i-th generated input batch is presented as:

Zi = [Xi, . . . ,Xi+η−1], i ∈ {1, . . . , T − η + 1} (5)

where the window size η ≤ T and T is the video length.

The decoder consists of N stacked identical self-attention

layer Attdec() similar as the encoder structure. Considering

the first layer:

Q = K = Zi +Ef ,

V = Zi,

Ẑi = Attdec.(Q,K,V ).

(6)

Regarding the first line in Eq. 6, same encoding is added

to the relation representations in the same frame as queries

and keys. The output from the last decoder layer is adopted

for final prediction. Because of the sliding widow, the rela-

tionships in a frame have various representation in different

batches. In this work, we choose the earliest representation

appearing in the windows.

3.4. Loss Function

We employ multiple linear transformations to in-

fer different kinds of relationships (such as atten-

tion, spatial, contacting) with the refined representa-

tions. In reality, the same type of relationship be-

tween two objects is not unique in semantics, such as

synonymous actions <person-holding-broom> and

<person-touching-broom>. Thereby, we introduce

the multi-label margin loss function for predicate classifica-

tion as follows:

Lp(r,P+,P−) =
∑

p∈P+

∑

q∈P−

max(0, 1−φ(r, p)+φ(r, q))

(7)



For a subject-object pair r, P+ are the annotated predicates

while P− is the set of the predicates not in the annotation.

φ(r, p) indicates the computed confidence score of the p-th

predicate.

During training, the object distribution is computed by

two fully-connected layers with a ReLU activation and a

batch normalization in between. The standard cross entropy

loss Lo is utilized. The total objective is formulated as:

Ltotal = Lp + Lo (8)

3.5. Graph Generation Strategies

There are two typical strategies to generate a scene graph

with the inferred relation distribution in previous works:

(a) With Constraint only allows each subject-object pair

to have at most one predicate while (b) No Constraint al-

lows a subject-object pair to have multiple edges in the out-

put graph with multiple guesses. With Constraint is more

rigorous and indicates the ability of models to predict the

most important relationships, but it is incompetent for the

multi-label task. Although No Constraint can reflect the

ability of multi-label prediction, tolerant multiple guesses

cause wrong information in the generated scene graph.

In order to make the generated scene graph closer to

ground truth, we propose a new strategy named Semi

Constraint allowing that a subject-object pair has multi-

ple predicates such as <person-holding-food> and

<person-eating-food>. The predicate is regarded

as positive iff the corresponding relation confidence is

higher than the threshold.

At test time, the score of each relationship triplet

<subject-predicate-object> is computed as:

srel = ssub · sp · sobj , (9)

where ssub,sp,sobj are the confidence score of subject, pred-

icate and object respectively.

4. Experiments

4.1. Dataset and Evaluation Metrics

Dataset We train and validate our model on the Ac-

tion Genome (AG) dataset [22] which provides frame-

level scene graph labels and is built upon the Charades

dataset [47]. 476, 229 bounding boxes of 35 object

classes (without person) and 1, 715, 568 instances of 25

relationship classes are annotated for 234, 253 frames.

These 25 relationships are subdivided into three differ-

ent types: (1) attention relationships denoting whether

a person is looking at an object, (2) spatial relation-

ships and (3) contact relationships which indicate the dif-

ferent ways the object is contacted. In AG, 135, 484
subject-object pairs are labeled with multiple spatial

relationships (e.g. <door-in front of-person>

and <door-on the side of-person>) or con-

tact relationships (e.g. <person-eating-food> and

<person-holding-food>).

Evaluation Metrics We follow three standard tasks from

image-based scene graph generation [42] for evaluation :

(1) predicate classification (PREDCLS): given ground truth

labels and bounding boxes of objects, predict predicate la-

bels of object pairs. (2) scene graph classification (SG-

CLS): classify the ground truth bounding boxes and predict

relationship labels. (3) Scene graph detection (SGDET):

detect the objects and predict relationship labels of ob-

ject pairs. The object detection is regarded as success-

ful if the predicted box overlaps with the ground-truth box

at least 0.5 IoU. All tasks are evaluated with the widely

used Recall@K metrics (K = [10, 20, 50]) following With

Constraint, Semi Constraint and No Constraint. The

threshold of confidence in the relationship is set to 0.9 in

Semi Constraint for all experiments if no special instruc-

tion.

4.2. Technical Details

In this work, FasterRCNN [45] based on ResNet101 [17]

is adopted as object detection backbone. We first train the

detector on the training set of Action Genome [22] and get

24.6 mAP at 0.5 IoU with COCO metrics. The detector is

applied to all baselines for fair comparison. The parameters

of the object detector including RPN are fixed when train-

ing scene graph generation models. Per-class non-maximal

suppression at 0.4 IoU is applied to reduce region proposals

provided by RPN.

We use an AdamW [41] optimizer with initial learning

rate 1e−5 and batch size 1 to train our model. Moreover,

gradient clipping is applied with a maximal norm of 5. For

all experiments on Action Genome, we set the window size

η = 2 and stride = 1 for our STTran. The spatial en-

coder contains 1 layer while the temporal decoder contains

3 iterative layers. The self-attention module in both en-

coder and decoder has 8 heads with dmodel = 1936 and

dropout = 0.1. The 1936-d input is projected to 2048-d

by the feed-forward network, then projected to 1936-d

again after ReLU activation.

4.3. Quantitative Results and Comparison

Table 1 shows that our model outperforms state-of-the-

art image-based methods in all metrics following With

Constraint, Semi Constraint and No Constraint. For the

fair comparison, all methods share the identical object de-

tector which provides feature maps and region proposals of

the same quality.

The bold numbers denote the best result in any column.

With the help of temporal dependencies our model im-

proves state-of-the-art (GPS-Net [40]) 1.9% on PredCLS-



Method

With Constraint No Constraint

PredCLS SGCLS SGDET PredCLS SGCLS SGDET

R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50

VRD[42] 51.7 54.7 54.7 32.4 33.3 33.3 19.2 24.5 26.0 59.6 78.5 99.2 39.2 49.8 52.6 19.1 28.8 40.5

Motif Freq[65] 62.4 65.1 65.1 40.8 41.9 41.9 23.7 31.4 33.3 73.4 92.4 99.6 50.4 60.6 64.2 22.8 34.3 46.4

MSDN[35] 65.5 68.5 68.5 43.9 45.1 45.1 24.1 32.4 34.5 74.9 92.7 99.0 51.2 61.8 65.0 23.1 34.7 46.5

VCTREE[51] 66.0 69.3 69.3 44.1 45.3 45.3 24.4 32.6 34.7 75.5 92.9 99.3 52.4 62.0 65.1 23.9 35.3 46.8

RelDN[66] 66.3 69.5 69.5 44.3 45.4 45.4 24.5 32.8 34.9 75.7 93.0 99.0 52.9 62.4 65.1 24.1 35.4 46.8

GPS-Net[40] 66.8 69.9 69.9 45.3 46.5 46.5 24.7 33.1 35.1 76.0 93.6 99.5 53.6 63.3 66.0 24.4 35.7 47.3

STTran 68.6 71.8 71.8 46.4 47.5 47.5 25.2 34.1 37.0 77.9 94.2 99.1 54.0 63.7 66.4 24.6 36.2 48.8

Table 1: Comparison with state-of-the-art image-based scene graph generation methods on Action Genome [22].The same

object detector is used in all baselines for fair comparison. STTran has the best performance in all metrics. Note that the

evaluation results of baselines are different from [22] since we adopted a more reasonable relationship output method, more

details are provided in the supplementary material.

Method

Semi Constraint

PredCLS SGCLS SGDET

R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50

VRD[42] 55.5 64.9 65.2 36.2 39.7 40.1 19.0 27.1 32.4

Motif Freq[65] 65.7 74.1 74.5 45.5 49.3 49.5 22.9 33.7 39.0

MSDN[35] 69.6 78.9 79.9 48.3 54.1 54.5 23.2 34.2 41.5

VCTREE[51] 70.1 78.2 79.6 49.0 53.7 54.0 23.7 34.8 40.4

RelDN[66] 70.7 78.8 80.3 49.4 53.9 54.1 24.1 35.0 40.7

GPS-Net[40] 71.3 81.2 82.0 50.2 55.0 55.2 24.5 35.3 41.9

STTran 73.2 83.1 84.0 51.2 56.5 56.8 24.6 35.9 44.0

Table 2: Evaluation results of Semi Constraint which in-

dicates the relationship between object pair is regarded as

positive if the confidence score is higher than the threshold.

R@20, 1.0% on SGCLS-R@20 and 1.0% on SGDET-

R@20 for the strategy With Constraint, which shows that

STTran performs better than image-based baselines in pre-

dicting the most important relationships between an object

pair. Our model also has excellent performance (see Table

2): 1.9% on PredCLS-R@20, 1.5% on SGCLS-R@20 and

0.6% improvement on SGDET-R@20 for Semi Constraint

that allows multiple relationships between a subject-object

pair. For No Constraint, STTran outperforms other meth-

ods in all settings except PredCLS-R@50. Due to the small

number of object pairs and the large number (50) of chances

to guess, the results in this column are unstable and uncon-

vincing. Motif Freq [65] which is very dependent on statis-

tics achieves the highest score. However, the results become

reliable with the less prediction number K = [10, 20].

Note that there is no difference between PredCLS-R@20
and PredCLS-R@50 for With Constraint because of a lim-

ited number of object pairs and edge restriction. This also

happens on SGCLS. Compared with PredCLS or SGCLS,

the gap of SGDET between STTran and other methods is

narrowed since the increased false object proposals cause

interference, especially for Semi Constraint and No Con-

straint using small K. Furthermore, the reproduced results

of some methods are different from [22] since a more rea-

sonable relationship output method is adopted and the ob-

ject detectors are different.

In Semi Constraint, the threshold of confidence in the

relationship is set to a fixed number (0.9) in the exper-

iments. In order to study the impact of such threshold

in Semi Constraint on Recall@K, the R@20-Threshold

curves of [35, 66, 40] and STTran are shown in Fig. 3.

STTran consistently outperforms all three models at all

threshold levels from 0.7 to 0.95. The high threshold sup-

presses the R@20 values except in SGDET since there are

more pair proposals.
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Figure 3: R@20-Threshold Curves in three standard tasks

(PredCLS/SGCLS/SGDET) for Semi Constraint.

4.4. Temporal Dependency Analysis

Compared to the previous image-based scene graph gen-

eration, a dynamic scene graph has additional temporal de-

pendencies that can be utilized. We discuss whether tempo-



ral dependencies can improve the relationship inference and

validate that our proposed method utilize temporal depen-

dencies. In this subsection, we measure PredCLS-R@20
(With Constraint) as the performance indicator that shows

the ability of single relationship classification strictly.

Is temporal dependence easy to use? Spatial context

plays a relevant role in scene graph generation as validated

by several image-based methods [65, 40]. To explore the ef-

fectiveness of temporal dependencies, we graft the widely-

used recurrent network, LSTM onto the baselines in Table

3 as follows. Before forwarding the feature vectors into the

final classifiers, the entire vectors representing relationships

in the video are organized as a sequence and processed by

LSTM.

Table 3 shows all baselines can gain more or less from

the temporal dependencies. For Motif Freq [65], PredCLS-

R@20 increases from 65.1% to 65.2% slightly probably due

to the relatively simple feature representation. Meanwhile,

the score of GPS-Net [40] is improved from 69.9% to 70.4%

significantly. The experiment shows that temporal depen-

dencies are helpful for scene graph generation. However,

the previous methods were designed for static images. This

is why we propose Spatial-Temporal Transformer (STTran)

to make better use of temporal dependencies.

Method
PredCLS-R@20

original +LSTM

Motif Freq[65] 65.1 65.2

MSDN[35] 68.5 68.8

RelDN[66] 69.5 69.7

GPS-Net[40] 69.9 70.4

Table 3: We integrate LSTMs to process the relationship

features before forwarding them into the classifier into some

representative baselines. All baselines are improved with

temporal dependencies but worse than our STTran.
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(b) complete STTran

Figure 4: Two relationship instances respectively generated

by the spatial encoder and STTran. (a) Spatial encoder pre-

dicts the wrong relationship only with the spatial context in

the second frame while (b) STTran can infer more accurate

results with the help of temporal dependencies.

Can STTran really understand temporal dependencies?

In order to verify that STTran really improves performance

through temporal dependencies in the video, instead of us-

ing clearer feature representation or powerful multi-head at-

tention module, we trained our model with the processed

training set and show the results in Table 4.

We randomly sample 1/3 videos in the training set and

shuffle/reverse them. Meanwhile, the test set remains un-

changed. As shown in Table 4, PredCLS-R@20 (With

Constraint) drops significantly from 71.8% to 71.0%,

when one-third of the training videos are reversed, which

is equivalent to adding noise in the temporal information.

Moreover, shuffled videos indicate the temporal informa-

tion is completely broken and the noise is further amplified.

The experimental result (first row) is in line with expecta-

tions: PredCLS-R@20 drops to 70.6%. The experiments

demonstrate where the improvement comes from and vali-

date that the temporal dependencies are learned in STTran.

Normal Video Processed Video Processing PredCLS-R@20

2/3 1/3 shuffle 70.6

2/3 1/3 reverse 71.0

1 - - 71.8

Table 4: We shuffle/reverse one-third of the videos in the

training set to explore the sensitivity of the model to frame

sequence. By disorganizing the temporal information via

shuffling or reversing the video sequence, the performance

of the model degrades accordingly as expected.

4.5. Ablation Study

In our Spatial-Temporal Transformer, two modules are

proposed, a Spatial Encoder and Temporal Decoder. Fur-

thermore, we integrate the temporal position into the re-

lationship representations with the frame encoding in the

Temporal Decoder. In order to clarify how these modules

contribute to the performance, we ablate different compo-

nents and present the results in Table 5. We adopt PredCLS-

R@20 and SGDET-R@20 as the metrics with With Con-

straint and Semi Constraint. PredCLS shows the ability of

relationship prediction intuitively while SGDET indicates

the performance of scene graph generation.

When only the spatial encoder is enabled, the model

works the same as the image-based method and also

has a similar performance as RelDN [66]. The isolated

temporal decoder (second row) boosts the performance

significantly with the additional information from other

frames. PredCLS-R@20 is improved slightly when the

encoder and decoder both work whereas the improvement

of SGDET-R@20 is limited by the object detection back-

bone. The learned frame encoding helps STTran fully un-

derstand the temporal dependencies and has a strong, pos-

itive effect both on PredCLS-R@20 and SGDET-R@20
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Figure 5: Qualitative results for dynamic scene graph generation. The scene graphs from STTran are generated with the

top-10 confident relationship predictions with different Strategies. The green box is the undetected ground truth. The melon

and gray colors indicate true positive and false positive respectively. Correct relationships are colored with light blue for

clarity and ing is omitted for brevity. It shows poor object detection results reduce the performance and the result of Semi

Constraint is closer to the ground truth.

while the fixed sinusoidal encoding performs unsatisfac-

torily. Two instances respectively predicted by the spa-

tial encoder only and the complete STTran are shown in

Fig. 4. Without temporal dependencies, the spatial en-

coder mistakenly predicts <person-eating-food>
as <person-touching-food> in the second frame

whereas STTran infers the relationship correctly. This ex-

plicitly proves that STTran can utilize temporal context to

improve scene graph generation.

Spatial Temporal Frame PredCLS-R@20 SGDET-R@20

Encoder Decoder Encoding With Semi With Semi

X - - 69.6 78.7 32.9 35.1

- X - 71.0 82.2 33.7 35.5

X X - 71.3 82.7 33.8 35.6

X X sinusoidal 71.3 82.8 33.9 35.7

X X learned 71.8 83.1 34.1 35.9

Table 5: Ablation Study on our STTran. X indicates the cor-

responding module is enabled while − indicates disabled.

We also compare the effectiveness of sinusoidal and learned

positional encoding.

4.6. Qualitative Results

Fig. 5 shows the qualitative results for the dynamic scene

graph generation. The five columns from left to right are

RGB frame, scene graph generated by ground truth, scene

graph generated with the top-10 confident relationship pre-

dictions with the Strategies With Constraint, Semi Con-

straint and No Constraint. The melon color indicates truth

positive whereas gray indicates false positive. The green

box is the ground truth not detected by the detector. In

the first row, two false positives with high object detec-

tion confidence (medicine and notebook ) result in wrong

predictions among the top-10 relationships. All the top-

10 confident relationships following three strategies are of

high quality in the second row when the object detection is

successful. <person-drinking from-bottle> in

the third column is lost because With Constraint only al-

lows at most one relationship between each subject-object

pair for each type of relationship while <person-not
contacting-bottle> replaces the attention relation-

ship between person and bottle in the top-10 confident list

when using No Constraint. The two frames in Fig. 5 are

not adjacent since the detected persons overlap with the

ground truth IoU < 0.5 in the frames between them.

5. Conclusion

In this paper, we propose Spatial-Temporal Transformer

(STTran) for dynamic scene graph generation whose en-

coder extracts spatial context within a frame and decoder

captures the temporal dependencies between frames. Dis-

tinct from single-label losses in previous works, we utilize a

multi-label margin loss and introduce a new strategy to gen-

erate scene graphs. Several experiments demonstrate that

temporal context has a positive effect on relationship pre-

diction. We obtain state-of-the-art results for the dynamic

scene graph generation task on the Action Genome dataset.
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6. Appendix

In this supplementary material, we provide additional im-

plementation details for our method in Sec. 6.1 of this ap-

pendix. In Sec. 6.2, we present detailed analysis of the Ac-

tion Genome dataset [22]. In Sec. 6.3, we show additional

qualitative results. Failure cases of our method are shown

in Sec. 6.4.

6.1. Implementation Details

In this section, we present some implementation details

that were omitted in the main paper for brevity.

Box Function fbox It transforms the bounding boxes of

the subject and object to the 256 · 7 · 7 feature map. Follow-

ing [65], the bounding boxes of the subject and object are

firstly converted to a binary spatial mask of size 2 · 27 · 27
which indicates the location of the subject and object in

the frame. By forwarding the spatial mask into a convo-

lutional network (see Fig. 6), the location representation is

computed which can be added to the 256 · 7 · 7 feature map

of the union box.
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Figure 6: Illustration of the box function fbox

Queries and Keys in the Temporal Decoder For the

i-th batch in the decoder layers, the queries Q and keys

K are computed by adding the learned frame encoding

Ef = [e1, . . . , eη] to Zi = [Xi, . . . ,Xi+η−1]. Note that

Ef and Zi have the same length. Xi = {x1
i , . . . ,x

K(i)
i }

denotes all the relationship representations in the i-th frame.

Here we use braces to emphasize that there is no order be-

tween relationships in the same frame and Xi is still a ma-

trix (tensor) in our PyTorch code. Therefore, the first ele-

ments of Q and K can be formulated as:

q1 = k1 = e1 +Xi = [x1
i + e1, . . . ,x

K(i)
i + e1] (10)

which means the same encoding is added to the relation rep-

resentations in the same frame.

Object Classification FasterRCNN [45] based on

ResNet101 outputs a 2048-d feature vector and a class

distribution for each object proposal box. With multiplying

the class distribution by the linear matrix We ∈ R
36×200, a

200-d semantic embedding is computed. Meanwhile, the

4-d box coordinate is forwarded into a feed-forward net-

work (see Fig. 7) to achieve a 128-d position embedding.

We concatenate the feature vector, semantic embedding and

position embedding, then project the concatenated vector

to a 37-d distribution (including the class background)

with two linear layers and a ReLU function in between.

Data Pre-processing When performing down-sampling

in the backbone, the visual information of ultra-small ob-

jects is damaged. In the experiments for SGCLS/SGDET,

we only keep bounding boxes with short edges larger than

16 pixels as [35] did.
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Figure 7: The box coordinate is forwarded into the feed-

forward network to compute the position embedding.
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Figure 8: An example of the data annotation in Action

Genome dataset.

6.2. Benchmark from Action Genome

In the Action Genome (AG) dataset [22], each human-

object pair is annotated with three types of relation-

ships, namely attention, spatial, and contact relation-

ships where attention and contact relationships are formu-

lated in the order of <person-predicate-object>,

and spatial relationships are in the order of <object-
predicate-person>. Note that the spatial, and con-

tact relationships can be annotated with multiple labels in

Action Genome dataset. An annotation example is shown

in Fig. 8.

A benchmark following With Constraint is provided

by [22]. However, their evaluation code and object de-



tector have not been released. We also evaluate sev-

eral advanced image-based models. Although the ranking

of the model performances is consistent with [22] (VRD

[42]<Motif Freq [65]<MSDN [35]<RelDN [66]), the

values of Recall@K are different. PredCLS-R@K (K =
[10, 20, 50]) computed by us are generally much higher,

e.g., PredCLS-R@20 from us = 69.5 whereas PredCLS-

R@20 from [22] = 49.4 for RelDN [66]. The reason for

the difference was found after discussing with the authors

of [22]. Each person-object pair is allowed to have either

an attention or contact relationship in [22]. Instead of, we

allow each person-object to have:

• <person-attention relationship-object>

• <object-spatial relationship-person>

• <person-contact relationship-object>

for With Constraint so that attention and contact rela-

tionships can be detected simultaneously. Each human-

object pair is allowed to have more than one spatial
or contact relationship when the confidence score is

higher than the threshold (0.9) following Semi Constraint.

For No Constraint, the most confident top-K relation-

ships are chosen no matter what kind of relationship.

SGCLS/SGDET-R@K (K = [10, 20, 50]) from [22] are

slightly higher than ours. We argue that their object de-

tector has a better performance which is crucial for SG-

CLS/SGDET. Note that person boxes in the ground truth

are annotated by the detector from [22] in the present ver-

sion of the Action Genome dataset.

Furthermore, there are two kinds of Recall@K met-

rics in [22]: image-wise and video-wise. The video-wise

Recall@K is not adopted in our work because the only

difference is whether the per-frame measurements in each

video are first averaged.

6.3. Additional Results

We also report the average precision of predicates

APpred to evaluate the performance for single relationships.

The APpred evaluates the average precision of the predi-

cates where the subject and object boxes are given. The 10

most frequently occurring relationships in Action Genome

dataset (2 attention, 4 spatial and 4 contact relationships)

are evaluated with our model and GPS-Net [40], which per-

forms best in the image-based scene graph generation meth-

ods. The results are shown in the Table 6. Compared with

GPS-Net, our model has a great advantage in predicting

attention relationships with temporal dependencies and

also performs better for spatial relationships. However,

GPS-Net outperforms STTran on the prediction of holding
and not contacting for contact relationships.

Different performance of 3 generation strategies are

demonstrated in Fig. 9. For With Constraint, wearing is
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Figure 9: Qualitative instances in the PredCLS setting fol-

lowing different strategies. Light blue relationships are true

positives predicted by STTran at the R@10 setting while

gray are false positives. The graph from Semi Constraint

is identical to the ground truth, whereas there are several

false positives in the graph from No Constraint without re-

striction.

abandoned since only one contact relationship is allowed

between each object pair. Although No Constraint al-

lows multi-label prediction, the result contains a lot of noise

when there are few pairs in the frame, especially bounding

boxes are given in PredCLS and SGCLS.

Additional qualitative results for dynamic scene graph

generation from the video are shown in Fig. 10. The dy-

namic scene graphs are generated with the top-10 confident

predictions with different Strategies in the SGDET task.

The green boxes denote the undetected truths. The melon

and gray colors indicate true positive and false positive re-

spectively. Correct relationships are colored with light blue

whereas relationships not in the ground truth are colored

with gray. In the video the person sitting on the bed holds

the medicine and bottle. Then she takes the medicine and

drinks water from the bottle.

6.4. Failure Cases

In order to clarify the limitation of the model, we ana-

lyze the results and summarize the following most common

failure cases:
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Figure 10: Qualitative results for dynamic scene graph generation. The scene graphs are generated with the top-10 confident

predictions with different Strategies in the SGDET task. The green boxes denote the undetected ground truth. The melon and

gray colors indicate true positive and false positive respectively. Correct relationships are colored with light blue whereas

relationships not in the ground truth are colored with gray. In the video the person sitting on the bed holds the medicine and

bottle. Then she takes the medicine and drinks water from the bottle.
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is incorrect. (3) Although the prediction from STTran is wrong, it is difficult for humans to identify whether the person is

looking at the broom or not. (4) carrying which occurs less frequently in Action Genome is predicted as holding with a

similar meaning and a higher frequency.



Method
APpred

not looking at looking at in front of on the side of beneath hebind holding not contacting touching sitting on mean

GPS-Net[40] 64.94 49.81 90.14 38.08 88.98 77.45 88.38 81.30 37.26 88.36 70.47

STTran 79.73 67.07 90.14 40.52 88.93 81.01 85.29 81.29 37.50 90.67 74.22

Table 6: The average precision of predicates APpred for the top-10 frequent relationships including 2 attention, 4 spatial
and 4 contact relationships. We compare our model with GPS-Net [40] which performs best on the Action Genome dataset

among the image-based baselines. With temporal dependencies, STTran has a great advantage in predicting attention
relationships and also performs better for spatial relationships. For contact relationships, GPS-Net outperforms STTran on

the prediction of holding and not contacting. The last column is the mean of APpred for these 10 relationships.

1. The object is not detected (IoU< 0.5), particularly

small objects such as phone and medicine.

2. The predictions do not match the ground truth relation-

ships which are annotated by mistake.

3. The relationship is ambiguous and difficult to be iden-

tified even by humans.

4. The model predicts the wrong majority relationship in-

stead of the correct minority relationship.

The failure cases are shown in Fig. 11. We conjecture that

Failure 1 can be improved by a better object detector. Fail-

ure 2 and Failure 3 are caused by the human-labeled anno-

tations. Failure 4 is caused by the imbalanced relationship

distribution both in the dataset and in the real world.
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