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a b s t r a c t

Cities and urban areas play an important role in fostering influenza transmission, often leading to epi-

demics and even pandemics. Although there is growing literature on influenza transmission at national

and international scales, little attention has been paid to a city scale. This article aims to understand the

spatial–temporal transmission of influenza and identify its health risks in the urbanized area of Buffalo,

New York. An individual-based spatially explicit model is established to replicate an urban contact net-

work, and simulate influenza epidemics. The resulting epidemic curves and infection intensity maps are

used to analyze the transmission dynamics, possible contributing factors, and high-risk places and times.

The results indicate that the city-wide transmission of influenza can be described by five stages: local

growth, expansion, fast city-wide growth, slow city-wide growth, and fade-out. The places and times

associated with higher risk are closely related to spatial heterogeneity in the population, and travel

behaviors of individuals. Interestingly, these high-risk places and times are insensitive to where infection

sources are introduced. This research suggests that high-risk places can be pre-identified as control tar-

gets using census and land use data. In addition, a better understanding on the city-wide travel of indi-

viduals is critical for designing proper timelines for influenza control. These suggestions will be valuable

for local health agencies as they prepare to combat new waves of H1N1 influenza.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Every year in the United States, influenza (commonly known as

flu) is responsible for more than 30,000 deaths and about 200,000

hospitalizations (Thompson et al., 2004). The total economic bur-

den of influenza epidemics amounted to $87.1 billion/year (Moli-

nari et al., 2007). In recent years, influenza has obtained

unprecedented attention due to widespread occurrence of novel

influenza viruses, such as the bird flu and H1N1 flu. A major public

health concern is the possibility of a pandemic, which could be as

severe as the 1918 Spanish flu (Webby & Webster, 2003). This

great concern has motivated scientists and health policy makers

to model influenza epidemics and predict transmission dynamics

(Coburn, Wagner, & Blower, 2009).

Influenza is an infectious disease transmitted from individual to

individual through physical contacts. The transmission is often fos-

tered and amplified in cities and urban areas. The dense human

contacts in a city form fast and uncontrolled channels for transmis-

sion (Meade & Earickson, 2005). In addition, cities can serve as

hubs that transmit diseases to small ‘‘satellite” towns, resulting

in regional or even global pandemics (Grenfell, Bjornstad, &

Kappey, 2001). Although the importance of cities is widely recog-

nized, little research has been devoted to modeling and

understanding the city-wide influenza transmission. A possible

challenge is to represent and analyze much detailed information

at such a small scale. In recent literature, there has been seen a

few efforts to model city-scale disease epidemics, such as the Epi-

Sims model by Eubank et al. (2004), and the BioWar model by Car-

ley et al. (2006). These studies have been focused on modeling

issues at the city scale, but little attention has been paid to the spa-

tial–temporal transmission of influenza, possible factors contribut-

ing to transmission, and resultant urban health risks.

For these reasons, the objectives of this article are to under-

stand the spatial–temporal transmission of influenza, and iden-

tify its health risks in the urbanized area of Buffalo, New York.

An individual-based spatially explicit model is established to

represent an urban contact network. Based on such network,

infection sources are introduced with different patterns and cor-

responding influenza epidemics are simulated. The transmission

of influenza over time and space is analyzed, and potential places

and times of high risk are identified. The remainder of this article

is organized into the following sections. The second section intro-

duces the individual-based modeling approach used in this study.

The third section describes the urbanized area of Buffalo and the

simulation model for influenza transmission. The two sections

that follow present and discuss the simulation results, respec-

tively. The last section concludes the article and discusses its

implications.
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2. An individual-based modeling approach for epidemiology

During the past decade, the individual-based approach began

to gain momentum in modeling a variety of infectious diseases,

such as influenza, smallpox, severe acute respiratory syndrome

(SARS), foot and mouth disease (FMD), and others (Eubank

et al., 2004; Huang, Sun, Hsieh, & Lin, 2004; Keeling et al.,

2001; Longini et al., 2005). These individual-based models use a

bottom-up approach, which starts with discrete individuals of a

population, and tries to understand how the population’s proper-

ties emerge from interactions among individuals (Grimm & Rails-

back, 2005). This approach offers three advantages for modeling

disease transmission. First, the heterogeneity of both individuals

and their interactions can be explicitly represented, as can the

subsequent heterogeneity in disease transmission (Keeling,

1999; Koopman & Lynch, 1999). Second, the randomness of dis-

ease infection between a pair of individuals can be captured as

a stochastic process. Third, by aggregating individual infections,

the outcome of disease transmission can be studied at multiple

scales, such as the community, city, national and international

scales. These three advantages bring the epidemic modeling clo-

ser to reality than other traditional models. However, the in-

creased realism demands more assumptions to be made and

more parameters to be estimated, bringing more complexity in

modeling (Judson, 1994; Koopman, 2002).

In many individual-based epidemic models, the concept of net-

work is often included to represent contacts among individuals

(Bian, 2004; Eubank, 2005). Conceptually, the network is com-

posed of nodes and links, where nodes represent individuals and

links represent direct contacts among individuals (Wasserman &

Faust, 1994). Nodes can have attributes, such as a finite number

of links and an infection status. Links also have a set of attributes,

including the closeness and duration of the contact, and the likeli-

hood of infection. The diseases are transmitted through links over

the population (Keeling & Eames, 2005).

In recent years, there has been a rising number of individual-

based spatially explicit models for disease epidemics at the na-

tional and international scales, including the models for the United

States (Germann, Kadau, Longini, & Macken, 2006; Halloran et al.,

2008), for Great Britain (Riley & Ferguson, 2006), and for South Asia

(Ferguson et al., 2005; Longini et al., 2005). In these macro-scale

models, the fundamental geographic unit is a community, which

can be either a census tract or a pre-defined square area. Individu-

als are assigned to different communities to satisfy a set of real

demographic distributions, such as the distributions of age, gender,

and household size. Nationwide workplace data and traveling sta-

tistics are utilized to simulate individual travel behavior within

and between communities, often following a distance-decay law.

These models successfully replicate wave-like and hierarchical dif-

fusion patterns that occur in geographically extensive areas. How-

ever, by covering such larger geographic areas, these models often

simplify or neglect the detailed information within a city, such as

the specific locations of households and workplaces, the urban

transportation network, and the daily activities of individuals.

These models, therefore, may be less useful for planning influenza

control in individual cities.

Currently, quite a few individual-based models have been pro-

posed at the city scale. These models include: the EpiSims model

(Eubank et al., 2004) for smallpox in Portland, Oregon; the BioWar

simulation of an influenza epidemic in Norfolk, Virginia (Lee, Bed-

ford, Roberts, & Carley, 2008); and the activity-based model for

influenza in Eemnes, Netherlands (Yang, Atkinson, & Ettema,

2008). These cities are modeled using specific locations of house-

holds, workplaces, schools, health facilities, etc. Each individual

has a set of demographic, socio-economic, and behavioral charac-

teristics that are estimated from census data and behavioral sur-

veys. By taking a range of daily activities (such as work, study

and shopping), individuals move between several locations, both

exposing themselves to infectious diseases within these locations

and transporting diseases between locations (Eubank et al., 2004).

Compared to the macro-scale models, these city-scale models

include such detailed descriptions that every individual can be

identified at a specific location and time. The information about

who infects whom, and where and when the infection happens

can be traced and recorded. The increased details, however, intro-

duce more complexity to the model, and thus only a few city-scale

models exist so far. Another issue is that few of these city-scale

models have been used to explore the potential patterns, contrib-

uting factors, and health risks of influenza transmission. The rele-

vant literature mainly reports model establishment and tests

control strategies, but influenza transmission itself is under-stud-

ied. This study aims to fill this knowledge gap using an individ-

ual-based city-scale model.

3. Study area and simulation model

3.1. Study area

The urbanized area of Buffalo is located at the western end of

New York State, and on the eastern shore of Lake Erie (Fig. 1a). Geo-

graphically, the study area is relatively separated from other

urbanized areas, because it is surrounded by great lakes and rural

areas. The nearest urbanized area, Rochester, New York, is about

120 km to the east. According to 2002 travel survey by Greater Buf-

falo-Niagara Regional Transportation Council (GBNRTC, 2002),

most people living in this area take their daily activities within

it. For these reasons, the study area can be treated as a closed sys-

tem, where an influenza epidemic may develop with little outside

influence. If an epidemic were to reach this area, the most likely

situation would be that the epidemic had already started else-

where, and the virus would be introduced by infected travelers.

According to the US Census (2000), the study area encloses a

population of 985,001 individuals in 400,870 households (in 967

census block groups and 12,328 census blocks). The age structure

indicates that approximately 37.5% of the population is at a high

risk of influenza infection, including children younger than

18 years (24.1%) and seniors older than 64 years (13.4%) (Hey-

mann, 2004). In addition, the study area contains 36,839 business

locations, according to published business databases from Refer-

enceUSA, Inc (2009). These business locations include: offices, fac-

tories, schools, service places, health care facilities, etc., and they

are classified by the North American Industry Classification System

(NAICS). Relevant to this study, individuals may have contact with

others in these households and business locations, transmitting

influenza virus within and between these locations.

The study area has a clear spatial structure with three zones: a

central business district (CBD), a transition zone, and suburbs

(Knox & Marston, 2004). The delineation is based on the densities

of population, households, businesses, and the layout of road sys-

tem. As shown in Fig. 1b, the CBD covers an area of 42.0 km2,

and consists of downtown areas in the city of Buffalo and the city

of Niagara Falls. Downtown Buffalo is enclosed by Interstate High-

way 190, and State Routes 33 and 198, while Downtown Niagara

Falls is surrounded by State Route 61 and Robert Moses Parkway.

The CBD is characterized by its significantly higher densities of res-

idents, households, and businesses than the other two zones (Ta-

ble 1). The transition zone is adjacent to the CBD, and is enclosed

within Interstate Highways 290, 190 and 90, and State Route 61.

With an area of 144.6 km2, this zone has the second highest densi-
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ties of residents, households, and businesses. The rest of the urban-

ized area is the suburbs, which covers a large area of 10,538.1 km2.

The suburbs are featured by the largest numbers of residents,

households, and businesses, but their densities are the lowest. This

spatial structure is considered later for seeding infection sources

and describing disease transmission patterns.

3.2. Simulating an urban contact network

To simulate influenza transmission, an urban contact network is

modeled first as a basis. A conceptual network model proposed by

Bian (2004) is used to represent individuals, contacts among indi-

viduals, and how these contacts change with times and locations.

The contacts among individuals are assumed to take place during

three time periods in a day and at four types of locations (Fig. 2).

The three time periods include the daytime (e.g., 9 am–6 pm), pas-

time (e.g., 6 pm–12 am), and nighttime (e.g., 12 am–9 am), while

the four types of locations include homes, workplaces, service

places, and neighbor households. Under this spatial–temporal

frame, individuals may have two types of contacts: close contacts

and occasional contacts. Close contacts happen at homes, work-

places, and neighbor households, where an individual has contact

with all the other individuals in the same location. Occasional con-

tacts happen in service places, where an individual only has

contact with a limited number of individuals. These spatial–tem-

porally dependent contacts link individuals into a population-wide

network.

The urban contact network is established based on the simula-

tion of three populations corresponding to the three time periods:

a nighttime population at homes, a daytime population at work-

places, and a pastime population at service places or neighbor

households (Fig. 2). The three populations represent the same set

of individuals at different locations and time periods of a day. To

create the three populations and establish links between popula-

tions, each of the 985,001 individuals is a modeling unit with a

set of attributes (Fig. 3). Individuals are assigned to specific loca-

tions of their homes, workplaces, service places and neighbor

households, and are assumed to travel between these four types

of locations through real road system.

Fig. 1. (a) The spatial location of Buffalo urbanized area (the inset map), the census block groups and business locations. (b) The three-in-one spatial structure of the Buffalo

urbanized area.

Table 1

The zonal distributions of population, households, and business in the study area.

Zones CBD Transition zone Suburbs

Total residential population 115,850 304,030 565,121

Total households 49,951 127,147 223,772

Total business locations 6227 9746 20,866

Density of residential population 2758.33 2102.56 53.62

Density of households 1189.30 879.30 21.30

Density of business locations 148.26 67.40 1.98

�Area unit: km2.

Nighttime 

population 

Daytime 

Population 

Pastime 

Population 

Fig. 2. The conceptual framework of the urban social network for influenza

transmission (revised based on Bian (2004)). Ovals represent homes at the

nighttime, workplaces at the daytime, or service places/neighbor households at

the pastime. Small circles on an oval represent individuals who interact with one

another within a location. The solid-line ovals denote close contacts among

individuals, while the dash-line ovals denote occasional contacts. A straight line

between the three time periods represents the travel of an individual, and links an

identical individual at different locations.
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The 2000 census data (primarily Summary File 3) and land par-

cel data from New York State GIS Clearinghouse (2009) are used for

simulating the nighttime population at homes. Two sets of infor-

mation are extracted from the aggregated census data at a block

group level, one for individuals and the other for homes (or more

generally households), as shown in Fig. 3. Using algorithms devel-

oped by Bian et al. (2008), table cross-referencing and Monte–Carlo

simulation are performed to fit the modeled distributions to real

demographic distributions. The spatial distribution of households,

expressed by (x, y) coordinates, is estimated based on the number

of households within a census block, and the centroids of land par-

cels in that block.

Three sets of information are used to simulate the daytime pop-

ulation at workplaces: the 2000 census data, published business

databases, and attributes associated with previously simulated

individuals and households. While the business databases provide

information about workplaces (including spatial locations), the

census data and the previously created attributes of individuals

and households help assign individuals to these workplaces

(Fig. 3). A worker is randomly assigned to a workplace that satisfies

two criteria (Bian et al., 2008). First, the employer type of the work-

place from the business databases should match the employer type

of the worker from the census data. Second, the shortest distance

between the home and workplace in the real road system should

match the trip distance to work estimated from the census data

(trip duration to work � speed of a trip mode). Unlike ordinary

workers, school-aged individuals in each household are assigned

to a nearest school as their workplace. To differentiate the week-

days and weekends, individuals are not assigned to work at week-

ends except those who work in service-oriented businesses. This

completes the daytime population at workplaces and links the

nighttime population at homes to the daytime population.

The simulation of pastime population at service places and

neighbor households is based on three sets of information. The first

set is detailed travel survey data from GBNRTC, providing informa-

tion about types and frequencies of services needed. The second is

a subset of workplaces that are identified as service places based

on their NAICS code (8109 out of 36,839 workplaces). The third

is the attributes for individuals and households created for the

nighttime and daytime populations. Using the frequency statistics

in travel survey as constraints, the total number of trips for a

household is first determined. The trips of a household are then

allocated to workers in the household and then other members

of the household. Each trip is assigned, according to frequency sta-

tistics, with a trip mode, a trip duration, one of three types of ser-

Table 2

The types of services, examples and corresponding NAICS in simulation.

Service type Examples NAICS

Shop/eat out Grocery store, drug

store

44: Retail trade

Department store 45: Retail trade

Fast food, restaurant,

bar

722: Food service

Recreation Movies, sports 71: Art, entertainment,

recreation

Music concert

Banking/personal

business

Banking 5221: Bank

Barbershop/fitness 812: Personal business

Pick up/drop off School or childcare 6111: Elementary school

6244: Child care

Social Visit other families N/A

Individual 

ID 

Demographics: 

    Age 

    Gender 

    Relationship to Householder 

    Relationship to Other Householders 

    Working Status (Worker, Student, or Retired, etc.) 

    Type of Employer (Industrial Code) 

Daily Activities: 

     Work at Home or Outside 

     Type of a service trip (Origin-Destination) 

     Type of services 

     Trip Mode (by car, walk, transit, subway, etc. ) 

     Trip duration 

Contacts: (family members, co-workers, consumer, friends) 

Infection Status (Susceptible, Infectious, Recovered) 

Time (Daytime, Pastime, Nighttime) 

Spatial Location (X, Y)       

Home 

ID 

Householder ID 

Household Type 

Household Size 

No. of Children 

Household Income 

No. of Vehicles 

Language 

Spatial Location (X, Y)      

Workplace 

ID 

Name 

Employee Size 

Estimated Sales 

Type of Employer 

(Industrial Code) 

Areas in Square feet 

Spatial Location (X, Y)     

Service-place 

ID 

Name 

Employee Size 

Estimated Sales 

Type of Employer 

(Industrial Code) 

Areas in Square feet 

Spatial Location (X, Y)       

Neighbor-Household 

ID 

Householder ID 

Household Type 

Household Size 

No. of Children 

Household Income 

No. of Vehicles 

Language 

Spatial Location (X, Y)    

Census 2000 

Travel Survey 

Business Data Census 2000 Land Parcels 

Nighttime 
Daytime Pastime Pastime 

Fig. 3. The assignment of individuals to households, workplaces, service places and neighbor households based on the attribute and spatial information of individuals.
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vice trips (workplace-to-service, home-to-service, and service-to-

service), and one of five types of services (Table 2). Given a type

of service trip and a type of service, the model assigns an individual

to a service place or a neighbor household that matches the trip

distance (speed of trip mode � trip duration) (Bian et al., 2008).

In this manner, a set of attributes regarding pastime activities of

individuals can be generated, as shown in Fig. 3. These activity

attributes help create the pastime population and link it to the

other two populations.

The establishment of the three linked populations forms a spa-

tially explicit and temporally dynamic contact network. The con-

tacts among individuals within a location cause the local

transmission of influenza, while the travel of individuals between

the four types of locations leads to spatial dispersion of influenza.

3.3. Simulating influenza transmission

The transmission of influenza is simulated by changing infec-

tion status of every individual over time. An individual can take

one of four infection status at a given time, i.e., susceptible, latent,

infectious, or recovered (Anderson & May, 1992). The progress of

infection status follows a series of discrete events in the natural

history of influenza (Fig. 4). At some point in time, a susceptible

individual comes into the latent status after receiving influenza

virus. The receipt of infection starts a 2-day latent period, during

which influenza develops internally and cannot be transmitted.

At the end of the latent period, the individual becomes infectious

and can transmit influenza to other susceptible individuals. The

length of infectious period varies from 4 to 7 days depending on

the age or health status of the individual (Heymann, 2004). One

day after being infectious, this individual may develop symptoms,

or otherwise remain asymptomatic. Finally, this individual recov-

ers from influenza and develops immunity for the remaining peri-

od of the epidemic.

Among these influenza-related events, the receipt of infection

through one contact is simulated base on a probability of infection

p = Econtact � Iage. Here, Econtact is the effectiveness of a contact for

infection, which is related to closeness and duration of the contact

(Yang & Atkinson, 2008). This study simply standardizes the effec-

tiveness of close contacts Eclose_contact to one, while the effectiveness

of occasional contacts Eoccasional_contact is a relative number less than

one. Iage is termed as age-specific infection rate, and expressed by a

real number between [0,1]. It can be interpreted as a conditional

probability of infection given Econtact = 1 and a specific age group

of the receiver. For given Iage and Econtact, the probability p can be

estimated and the Monte–Carlo method is used to determine

whether an infection event will happen or not.

For a more realistic simulation, a background immunity is cre-

ated by immunizing 62.7% of seniors (older than 64 years), 15.6%

of adults (between 18 and 64 years), and 17.9% of children (youn-

ger than 18 years), according to reported national immunization

coverage (Euler et al., 2005; Molinari et al., 2007). This will result

in overall 24% of the population being immunized. In addition,

the simulation assumes that 50% of infectious individuals will de-

velop symptoms, following the assumption by Ferguson et al.

(2005). Only these symptomatic individuals can be identified as

influenza cases. A proportion of these symptomatic individuals

may also withdraw to home. Specifically, all symptomatic children

are assumed to withdraw to home, because they are often cared by

parents at homes. Thirty-three percent of symptomatic adults will

withdraw to home based on reported percentage in a health

behavior survey (Metzger, Hajat, Crawford, & Mostashari, 2004).

All symptomatic seniors will withdraw to home according to re-

lated empirical studies (Stoller, Forster, & Portugal, 1993).

The influenza epidemic is simulated for 120 days, roughly a typ-

ical influenza season (from November to February). To initialize the

epidemic, five infectious individuals, as infection sources, are

seeded into the study area on the first day of the simulation. For

a comprehensive analysis, four seeding scenarios are devised based

on the aforementioned three-in-one urban structure. Specifically,

the five infection sources are randomly distributed: (1) in the en-

tire study area, (2) only in the CBD (e.g., at bus terminals), (3) only

in the transition zone (e.g., at local medical centers), and (4) only in

the suburbs (e.g., at airports). The influenza epidemic is simulated

over 50 realizations under each scenario, resulting in a total of 200

(50 � 4) realizations.

3.4. Description of spatial–temporal transmission dynamics

For each of the four seeding scenarios, the temporal sequence of

transmission is described by an epidemic curve that depicts the

number of daily new cases during the course of the epidemic (Gor-

dis, 2000). The peak time and the number of new cases at the peak

time are two major characteristics of the curve. To reduce the ran-

domness, the epidemic curve and two associated characteristics

are estimated by averaging 50 model realizations. To display the

spatial spread of influenza, infection intensity maps are created

by the following three steps. First, every infection event occurring

in a given time interval is plotted as a point at the location of infec-

tion, such as the home, workplace, service place, or neighbor

household. Second, the study area is divided into a cell grid for sub-

sequent estimation. The reason for rasterization is because plotting

tens of thousands of points produces unclear spatial patterns,

while rasterization helps provide a clear and reasonable represen-

tation. Third, a kernel density function is used to estimate the mag-

nitude of new infections occurring within every cell during a time

interval, i.e., the infection intensity at a cell location. A high-inten-

sity value indicates that the corresponding cell location is undergo-

ing a rapid growth in the number of infections.

The spatial spread of influenza, then, can be displayed by creat-

ing a series of infection intensity maps for every 20 days of the to-

tal 120-day simulation. The cell size is set to 50 m � 50 m because

it approximates the average extent of a land parcel (the estimated

extent is 47 m � 47 m). In this sense, one or more cells can cover

the spatial extent of a location and produce sufficient detail for

subsequent analysis. The intensity value at every cell location is

estimated by a kernel density function, and is averaged over 50

model realizations. The bandwidth of the kernel is set to 1500 m

to produce an optimal balance between clear patterns and biases

introduced by the function.

4. Simulation results and analysis

4.1. Model calibration and validation

The simulation model is calibrated and partially validated by

established literature. For the urban contact network, the simu-

lated populations in the nighttime, daytime, and pastime are fitted

to the observed distributions of household size, workplace size,

and household trips, respectively (Fig. 5a–c). In addition, it has

been reported that the average number of daily contacts of an indi-

vidual is 16.8 in a survey of 92 adults (Edmunds, 1997), or near the

Latent 

2 days

  Emission of 

influenza virus

Receipt of       

infection

Incubation 

3 days

Infectious 

4-7 days

Onset of

Symptoms 

RecoveredSusceptible

End of 

emissions

Immunity

Infection 

Status

Infection 

Events

Days 

Fig. 4. The infection events, periods and status in the natural history of influenza.
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midpoint of range 10–19 in surveys of Chinese society (Fu, 2005).

Based on these two social studies, the maximum contacts of an

individual at a service place is calibrated to two, and at this value,

the simulated number of daily contacts of an individual is on aver-

age 16.9 (Fig. 5d).

To calibrate the age-specific infection rates Iage, three indices are

estimated and compared to established literature, including a basic

reproductive number (R0), an overall attack rate, and proportions

of infection by location. First, R0 is the number of individuals in a

susceptible population that are directly infected by the introduc-

tion of a single infectious individual (Diekmann, Heesterbeek, &

Metz, 1990). Recent studies on observed data have reported that

the R0 of influenza ranges from 0.9 to 2.1 with a mean of 1.3 (Cho-

well, Miller, & Viboud, 2007; Ferguson et al., 2005; Mills, Robins, &

Lipsitch, 2004). In this study, R0 is estimated by tracing the number

of infections directly caused by the infection sources. Second, the

overall attack rate is the proportion of total population that is in-

fected during an epidemic. The observed overall attack rate for

influenza epidemics ranges from 10% to 20% of the population

(CDC., 2008; Cox & Subbarao, 2000). Third, the proportion of infec-

tions at households (including homes and neighbor households),

workplaces, and service places are estimated to be in the ranges

of 47–51%, 37–42%, 11–12%, respectively (Longini & Halloran,

2005; Yang et al., 2008). To match the three indices to established

literature (Table 3), the infection rates Iage for children, adults, and

seniors are calibrated to 0.1, 0.08, and 0.09, respectively. In

addition, the effectiveness of occasional contacts for infection

Eocassional_contact is calibrated to 0.2.

To validate the model, weekly reports of laboratory confirmed

specimens in the 2004–2005 influenza season are collected from

New York State Department of Health (NYSDOH, 2005). As shown

in Fig. 6, the time course of the epidemic is well predicted by the

model, although the magnitude of simulated cases is much larger

than the laboratory data. The first possible reason is that a large

number of infected individuals (more than 80%) may choose self-

care and are reluctant to seek health care (McIsaac, Levine, & Goel,

1998; Stoller et al., 1993). These infected individuals cannot be

identified and reported. Second, for those who seek health care,

only a small portion of their specimens are submitted for labora-

tory testing. Therefore, the number of influenza cases is always

highly under-reported, and a complete data is rather difficult to

collect. The laboratory data, so far, may be the best available touch-

stone for model validation. In this sense, our model performs well
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Fig. 5. The observed and fitted distribution of: (a) household size, (b) workplace size, and (c) household trips. (d) The probability distribution of daily contact numbers of all

individuals. The average number of contacts of an individual is estimated to be 16.9.

Table 3

The calibration of model outputs under four seeding scenarios to the literature.

From

literature

Random CBD Transition

zone

Suburbs

R0 1.3 (0.9–2.1) 1.38 1.39 1.30 1.52

Overall attack rate 10–20% 17.4% 16.4% 16.7% 17.7%

% of infection at

households

47–51% 49.1% 49.3% 48.2% 49.1%

% of infection at

workplaces

37–42% 39.1% 38.9% 39.1% 39.1%

% of infection at

service places

11–12% 11.8% 11.8% 12.7% 11.8%
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in predicting the trend, and at least allows the estimate of a worse

case result.

The calibration and validation indicate that the established

model is a close representation of influenza transmission. Based

on this model, the information about every infection event can

be traced, such as who infects whom, and where and when the

infection occurs. This information provides detailed clues for ana-

lyzing the spatial–temporal transmission of influenza.
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reported.
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while the dash curves represent the 95% confidence intervals.

210 L. Mao, L. Bian / Computers, Environment and Urban Systems 34 (2010) 204–215



4.2. Time sequence of influenza transmission

The epidemic curves in Fig. 7 indicate similar temporal

dynamics of influenza transmission under the four seeding sce-

narios. No matter where the infection sources are initially dis-

tributed, the influenza epidemic develops similarly with respect

to the peak time, peak number of new cases, and total number

of cases. The epidemic curves start with a very slow increase

as time proceeds to Day 40 with a cumulative number of influ-

enza cases around 2800 (2.84‰ of the population). An abrupt

rise begins approximately after Day 40, and subsequently the

number of daily new cases peaks at around Day 70. The average

peak number is 5450 new cases, about 5.54‰ of the population.

After the peak, the number of daily new cases drops quickly un-

til the end of the epidemic. It is worth mentioning that the num-

ber of daily new cases is cyclical over time, increasing during

weekdays and decreasing during weekends. This results in a

bumpy curve rather than a smooth one.

Fig. 8. (a)–(d) display the spatial spread of influenza during Days 1–40 under the random, CBD, transition zone, and suburbs seeding scenarios, respectively. The gray-scale

color represents the infection intensity (number of new infections per sq km2) at a cell location, with the highest in black and the lowest in white.

L. Mao, L. Bian / Computers, Environment and Urban Systems 34 (2010) 204–215 211



4.3. Spatial spread of influenza

The spatial spread of influenza is of interest. In Figs. 8 and 9, the

infection intensity at each cell location is categorized into five lev-

els: extremely low (0–10 infections/sq km2), low (10–50), moder-

ate (50–100), high (100–500), and extremely high (500–1000).

For the first 40 days, the four seeding scenarios produce different

spatial patterns of infection. As shown in Fig. 8, the infections tend

to be limited to areas around the seeding locations, producing

moderate infection intensity. In addition, there are a few low-

intensity areas distant from the seeding locations, most likely to

occur within the downtown Buffalo, the downtown Niagara Falls,

the University of Buffalo, and the Niagara University. After Day

40, as the number of new infections increases exponentially, the

spatial spread of influenza tends to be similar for all four seeding

scenarios. For this reason, Fig. 9 only displays the spatial spread

of influenza under the random seeding scenario, while the other

three scenarios are reported in the supplementary document. Be-

Fig. 9. (a)–(d) DISPLAY the spatial spread of influenza between Days 41–60, Days 61–80, Days 81–100, and Days 101–120, respectively. The gray-scale color represents the

infection intensity at a cell location (number of new infections per sq km2), with the highest in black and the lowest in white.

212 L. Mao, L. Bian / Computers, Environment and Urban Systems 34 (2010) 204–215



tween Days 41 and 60 (Fig. 9a), the infections span long distances

and the epidemic rapidly transforms from being predominantly lo-

cal to city-wide. High infection intensity begins to occur in the CBD

and transition zone, while low infection intensity covers the entire

suburbs.

From Days 61 to 80 (Fig. 9b), the entire study area is undergoing

a fast and heterogeneous growth in infections. Five areas with ex-

tremely high-intensity values are identified, including the down-

town Buffalo, the south campus of University of Buffalo, the

town center of Kenmore, the industrial area in southern Buffalo,

and the downtown Niagara Falls (ordered by the spatial extent

from the largest to the smallest). The remaining areas, covering

most parts of the transition zone and suburbs, are dominated by

high infection intensity. From Days 81 to 100 (Fig. 9c), the spatial

extent of high infection intensity gradually recedes to the transi-

tion zone, leaving the suburbs with moderate or low infection

intensity. In the final 20 days (Days 101–120), only a small area

in the CBD retains high-intensity infection (Fig. 9d). For the

remaining areas, the intensity decreases rapidly from the transition

zone to the suburbs.

5. Discussion

The epidemic curves in Fig. 7 imply that the first month of a flu

season (before Day 40) would be crucial for influenza control and

prevention. This is because the number of influenza cases increases

slowly before Day 40, and the response time is relatively sufficient.

The epidemic can potentially be avoided by applying voluntary

control strategies, such as mass vaccination programs, and cam-

paigns that promote preventive behaviors. If the early control can-

not be achieved, the number of cases would increase dramatically.

Under this circumstance, mandatory control strategies, such as

case isolation, contact tracing, and household quarantine, should

be implemented to mitigate the impacts of the epidemic. The

weekly variation in the epidemic curves also suggests a possible

control strategy that extends the weekend period by 1 or 2 days.

Because most workplaces and schools are closed simultaneously

during the weekends, fewer close contacts may occur than those

in weekdays, resulting in fewer infections. The effectiveness of this

weekend extension strategy is worthy of investigation.

The infection intensity maps (Figs. 8 and 9) indicate that the

spatial spread of influenza can be described by five subsequent

stages: local growth, expansion, fast city-wide growth, slow city-

wide growth, and fade-out. The ‘‘growth”, here, means the number

of infections increases. As described in the Results section, the

early influenza infections are focused around the infection sources

(local growth). Next, the new infections rapidly spread over the en-

tire study area (expansion), probably because of the frequent travel

of individuals between the CBD, transition zone, and suburbs. Sub-

sequently, most locations in the study area experience a rapid and

heterogeneous growth in infections (fast city-wide growth). As

time proceeds, the growth of infections remains widespread but

starts to slow down (slow city-wide growth). Finally, the growth

of infections at every location fades out, possibly due to the herd

immunity provided by recovered individuals.

This five-stage spreading process implies the existence of high-

risk times and places in the study area. High-risk times occur when

the total number of infections rises significantly, or when the spa-

tial extent of affected areas expands rapidly. Days 41–60 and Days

61–80 are two high-risk time periods corresponding to the stages

of expansion and fast city-wide growth, respectively. On the other

hand, high-risk places can be identified as areas with extremely

high intensity of infection. The downtown areas of both cities are

at high risk because they have the highest densities of residents

and businesses. Similarly, the town center of Kenmore is also sug-

gested to be a high-risk place because of its intensive land use for

residences, commerce and industry. The university campuses are

large groups of individuals with dense within-group contacts,

and they thus are at high risk. Likewise, the industrial park in

southern Buffalo is another high-risk place, because it is a cluster

of large-scale chemical factories with a large number of workers.

Once influenza is identified in the study area, these high-risk places

should be monitored under close surveillance and be targeted by

control efforts with priority.

In summary, the spatial–temporal transmission of influenza

and the resulting health risks can be attributed to two major

and one minor factor. One of the two major factors is the spatial

heterogeneity in the city, in terms of the population distribution

and land use patterns (households and businesses). This factor

directly influences the spatial layout of disease transmission.

Areas with dense population or intensive land use patterns al-

ways end up with a high intensity of infection, while sparsely

populated areas have relatively low intensity. The other major

factor is the travel of individuals in the city, which has a pro-

found effect on the temporal sequence of transmission. Without

frequent travel of individuals between the CBD, transition zone,

and suburbs, the infection can only expand locally around the

infection sources. The city-wide travel of individuals quickly

transports influenza viruses to everywhere else, leading to the

rapid expansion of affected areas.

The one minor factor is the initial distribution of the infection

sources. Regardless of where the infection sources are seeded,

both the spatial layout and the temporal sequence of influenza

transmission are similar, except for the early stage. It is intuitive

that the spatial layout of transmission is similar under different

seeding scenarios, because it is primarily determined by the

inherent population distribution and land use patterns. Surpris-

ingly, the temporal sequence of transmission also remains simi-

lar, and is insensitive to where infection sources are seeded. A

possible reason is that individuals commute frequently between

the three zones of the city, and can easily reach everywhere in

the study area. Once the infection sources infect a sufficient

number of surrounding individuals, the influenza viruses can be

transported to places of high risks, from where similar spatial–

temporal patterns of infection start to occur. This finding implies

that wherever the initial infections are found, the control plan

does not need a major change, and the control efforts may be

only applied at fixed times and places. Further investigations of

this finding are warranted.

There are three limitations of this study due to the complex dis-

ease system in a city. First, the behaviors of susceptible individuals

do not change during the epidemic. In reality, these individuals

may be influenced by their contacts, and spontaneously take pre-

ventive behaviors to protect themselves. Second, the simulation

of population involves the disaggregation of census data, and as-

sumes independence between a few of demographic variables. This

independence assumption helps reduce the modeling complexity,

but may also introduce biases in simulation. Existing individual

data, such as Public Use Microdata Sample (PUMS), could be used

to improve the simulation. Finally, this study assumes that immu-

nity is obtained through early vaccination before the epidemic or

through infection during the epidemic. It is also possible that indi-

viduals can gain immunity from previous epidemics, and therefore

the immunity rate may be under-estimated. Although compensa-

tion for these limitations may improve the results, it also greatly

increases the complexity of the model. It has been argued that

the goal of modeling is not to predict exactly what may happen

during an epidemic, but rather to observe how the epidemic may

proceed and encourage appropriate questions. In this sense, the

model results provide valuable knowledge regarding city-wide

influenza transmission.
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6. Conclusions and implications

This study contributes to the knowledge regarding influenza

transmission at the city-wide scale, a topic that is under-studied

in the current literature. An individual-based spatially explicit

model has been developed to simulate influenza transmission

through an urban contact network. The simulation results indi-

cate a complex pattern of influenza transmission in a five-stage

process. The complexity is attributable to three factors: the spa-

tial heterogeneity in the population, the frequent city-wide tra-

vel of individuals, and the distribution of infection sources. The

first factor primarily contributes to the spatial layout of disease

transmission, while the second has a profound effect on the tem-

poral sequence of transmission. The third factor, the infection–

source distribution, only affects spatial–temporal transmission

at the early stage, but its effect is largely weakened later by

the city-wide travel of individuals. Therefore, the high risks of

infection occur not only at the same locations, but also at almost

the same times, regardless of where the infection sources are

introduced. A number of studies may have reported the spatial

similarity in high-risk places, but the temporal similarity has

not been revealed before this study.

These results suggest a feasibility of identifying high-risk areas

in advance based on analysis of census and land use data. These

high-risk places should be set up as control targets during an epi-

demic wherever the initial infections are found. In addition, the re-

sults also imply that the incorporation of city-wide individual

travel data into health surveillance is critical for designing proper

timelines for allocating control efforts. These suggestions are par-

ticularly significant under the current circumstances in which vac-

cines and manpower are insufficient to combat the new wave of

H1N1 influenza.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in

the online version, at doi:10.1016/j.compenvurbsys.2010.03.004.
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