
Spatial Transformer Networks

Max Jaderberg Karen Simonyan Andrew Zisserman Koray Kavukcuoglu

Google DeepMind, London, UK
{jaderberg,simonyan,zisserman,korayk}@google.com

Abstract

Convolutional Neural Networks define an exceptionally powerful class of models,
but are still limited by the lack of ability to be spatially invariant to the input data
in a computationally and parameter efficient manner. In this work we introduce a
new learnable module, the Spatial Transformer, which explicitly allows the spa-
tial manipulation of data within the network. This differentiable module can be
inserted into existing convolutional architectures, giving neural networks the abil-
ity to actively spatially transform feature maps, conditional on the feature map
itself, without any extra training supervision or modification to the optimisation
process. We show that the use of spatial transformers results in models which
learn invariance to translation, scale, rotation and more generic warping, result-
ing in state-of-the-art performance on several benchmarks, and for a number of
classes of transformations.

1 Introduction

Over recent years, the landscape of computer vision has been drastically altered and pushed forward
through the adoption of a fast, scalable, end-to-end learning framework, the Convolutional Neural
Network (CNN) [18]. Though not a recent invention, we now see a cornucopia of CNN-based
models achieving state-of-the-art results in classification, localisation, semantic segmentation, and
action recognition tasks, amongst others.

A desirable property of a system which is able to reason about images is to disentangle object
pose and part deformation from texture and shape. The introduction of local max-pooling layers in
CNNs has helped to satisfy this property by allowing a network to be somewhat spatially invariant
to the position of features. However, due to the typically small spatial support for max-pooling
(e.g. 2 × 2 pixels) this spatial invariance is only realised over a deep hierarchy of max-pooling and
convolutions, and the intermediate feature maps (convolutional layer activations) in a CNN are not
actually invariant to large transformations of the input data [5, 19]. This limitation of CNNs is due
to having only a limited, pre-defined pooling mechanism for dealing with variations in the spatial
arrangement of data.

In this work we introduce the Spatial Transformer module, that can be included into a standard
neural network architecture to provide spatial transformation capabilities. The action of the spatial
transformer is conditioned on individual data samples, with the appropriate behaviour learnt during
training for the task in question (without extra supervision). Unlike pooling layers, where the re-
ceptive fields are fixed and local, the spatial transformer module is a dynamic mechanism that can
actively spatially transform an image (or a feature map) by producing an appropriate transformation
for each input sample. The transformation is then performed on the entire feature map (non-locally)
and can include scaling, cropping, rotations, as well as non-rigid deformations. This allows networks
which include spatial transformers to not only select regions of an image that are most relevant (at-
tention), but also to transform those regions to a canonical, expected pose to simplify inference in
the subsequent layers. Notably, spatial transformers can be trained with standard back-propagation,
allowing for end-to-end training of the models they are injected in.

1

(a) (c)

7

(d)

5

6

(b) Figure 1: The result of using a spatial transformer as the
first layer of a fully-connected network trained for distorted
MNIST digit classification. (a) The input to the spatial trans-
former network is an image of an MNIST digit that is dis-
torted with random translation, scale, rotation, and clutter. (b)
The localisation network of the spatial transformer predicts a
transformation to apply to the input image. (c) The output
of the spatial transformer, after applying the transformation.
(d) The classification prediction produced by the subsequent
fully-connected network on the output of the spatial trans-
former. The spatial transformer network (a CNN including a
spatial transformer module) is trained end-to-end with only
class labels – no knowledge of the groundtruth transforma-
tions is given to the system.

Spatial transformers can be incorporated into CNNs to benefit multifarious tasks, for example:
(i) image classification: suppose a CNN is trained to perform multi-way classification of images
according to whether they contain a particular digit – where the position and size of the digit may
vary significantly with each sample (and are uncorrelated with the class); a spatial transformer that
crops out and scale-normalizes the appropriate region can simplify the subsequent classification
task, and lead to superior classification performance, see Fig. 1; (ii) co-localisation: given a set of
images containing different instances of the same (but unknown) class, a spatial transformer can be
used to localise them in each image; (iii) spatial attention: a spatial transformer can be used for
tasks requiring an attention mechanism, such as in [11, 29], but is more flexible and can be trained
purely with backpropagation without reinforcement learning. A key benefit of using attention is that
transformed (and so attended), lower resolution inputs can be used in favour of higher resolution
raw inputs, resulting in increased computational efficiency.

The rest of the paper is organised as follows: Sect. 2 discusses some work related to our own, we
introduce the formulation and implementation of the spatial transformer in Sect. 3, and finally give
the results of experiments in Sect. 4. Additional experiments and implementation details are given
in the supplementary material or can be found in the arXiv version.

2 Related Work

In this section we discuss the prior work related to the paper, covering the central ideas of modelling
transformations with neural networks [12, 13, 27], learning and analysing transformation-invariant
representations [3, 5, 8, 17, 19, 25], as well as attention and detection mechanisms for feature selec-
tion [1, 6, 9, 11, 23].

Early work by Hinton [12] looked at assigning canonical frames of reference to object parts, a theme
which recurred in [13] where 2D affine transformations were modeled to create a generative model
composed of transformed parts. The targets of the generative training scheme are the transformed
input images, with the transformations between input images and targets given as an additional
input to the network. The result is a generative model which can learn to generate transformed
images of objects by composing parts. The notion of a composition of transformed parts is taken
further by Tieleman [27], where learnt parts are explicitly affine-transformed, with the transform
predicted by the network. Such generative capsule models are able to learn discriminative features
for classification from transformation supervision.

The invariance and equivariance of CNN representations to input image transformations are studied
in [19] by estimating the linear relationships between representations of the original and transformed
images. Cohen & Welling [5] analyse this behaviour in relation to symmetry groups, which is also
exploited in the architecture proposed by Gens & Domingos [8], resulting in feature maps that are
more invariant to symmetry groups. Other attempts to design transformation invariant representa-
tions are scattering networks [3], and CNNs that construct filter banks of transformed filters [17, 25].
Stollenga et al. [26] use a policy based on a network’s activations to gate the responses of the net-
work’s filters for a subsequent forward pass of the same image and so can allow attention to specific
features. In this work, we aim to achieve invariant representations by manipulating the data rather
than the feature extractors, something that was done for clustering in [7].

Neural networks with selective attention manipulate the data by taking crops, and so are able to learn
translation invariance. Work such as [1, 23] are trained with reinforcement learning to avoid the

2

U V

Localisation net

Sampler

Spatial Transformer

Grid !

generator

Tθ(G)θ

Figure 2: The architecture of a spatial
transformer module. The input feature map
U is passed to a localisation network which
regresses the transformation parameters θ.
The regular spatial grid G over V is trans-
formed to the sampling grid Tθ(G), which
is applied to U as described in Sect. 3.3,
producing the warped output feature map V .
The combination of the localisation network
and sampling mechanism defines a spatial
transformer.

need for a differentiable attention mechanism, while [11] use a differentiable attention mechansim
by utilising Gaussian kernels in a generative model. The work by Girshick et al. [9] uses a region
proposal algorithm as a form of attention, and [6] show that it is possible to regress salient regions
with a CNN. The framework we present in this paper can be seen as a generalisation of differentiable
attention to any spatial transformation.

3 Spatial Transformers

In this section we describe the formulation of a spatial transformer. This is a differentiable module
which applies a spatial transformation to a feature map during a single forward pass, where the
transformation is conditioned on the particular input, producing a single output feature map. For
multi-channel inputs, the same warping is applied to each channel. For simplicity, in this section we
consider single transforms and single outputs per transformer, however we can generalise to multiple
transformations, as shown in experiments.

The spatial transformer mechanism is split into three parts, shown in Fig. 2. In order of computation,
first a localisation network (Sect. 3.1) takes the input feature map, and through a number of hidden
layers outputs the parameters of the spatial transformation that should be applied to the feature map
– this gives a transformation conditional on the input. Then, the predicted transformation parameters
are used to create a sampling grid, which is a set of points where the input map should be sampled to
produce the transformed output. This is done by the grid generator, described in Sect. 3.2. Finally,
the feature map and the sampling grid are taken as inputs to the sampler, producing the output map
sampled from the input at the grid points (Sect. 3.3).

The combination of these three components forms a spatial transformer and will now be described
in more detail in the following sections.

3.1 Localisation Network

The localisation network takes the input feature map U ∈ R
H×W×C with width W , height H and

C channels and outputs θ, the parameters of the transformation Tθ to be applied to the feature map:
θ = floc(U). The size of θ can vary depending on the transformation type that is parameterised,
e.g. for an affine transformation θ is 6-dimensional as in (1).

The localisation network function floc() can take any form, such as a fully-connected network or
a convolutional network, but should include a final regression layer to produce the transformation
parameters θ.

3.2 Parameterised Sampling Grid

To perform a warping of the input feature map, each output pixel is computed by applying a sampling
kernel centered at a particular location in the input feature map (this is described fully in the next
section). By pixel we refer to an element of a generic feature map, not necessarily an image. In
general, the output pixels are defined to lie on a regular grid G = {Gi} of pixels Gi = (xt

i, y
t
i),

forming an output feature map V ∈ R
H′

×W ′
×C , where H ′ and W ′ are the height and width of the

grid, and C is the number of channels, which is the same in the input and output.

For clarity of exposition, assume for the moment that Tθ is a 2D affine transformation Aθ. We will
discuss other transformations below. In this affine case, the pointwise transformation is

(

xs
i

ysi

)

= Tθ(Gi) = Aθ

xt
i

yti
1

 =

[

θ11 θ12 θ13

θ21 θ22 θ23

]

xt
i

yti
1

 (1)

3

(a) (b)

Figure 3: Two examples of applying the parameterised sampling grid to an image U producing the output V .
(a) The sampling grid is the regular grid G = TI(G), where I is the identity transformation parameters. (b)
The sampling grid is the result of warping the regular grid with an affine transformation Tθ(G).

where (xt
i, y

t
i) are the target coordinates of the regular grid in the output feature map, (xs

i , y
s
i) are

the source coordinates in the input feature map that define the sample points, and Aθ is the affine
transformation matrix. We use height and width normalised coordinates, such that −1 ≤ xt

i, y
t
i ≤ 1

when within the spatial bounds of the output, and −1 ≤ xs
i , y

s
i ≤ 1 when within the spatial bounds

of the input (and similarly for the y coordinates). The source/target transformation and sampling is
equivalent to the standard texture mapping and coordinates used in graphics.

The transform defined in (1) allows cropping, translation, rotation, scale, and skew to be applied
to the input feature map, and requires only 6 parameters (the 6 elements of Aθ) to be produced by
the localisation network. It allows cropping because if the transformation is a contraction (i.e. the
determinant of the left 2× 2 sub-matrix has magnitude less than unity) then the mapped regular grid
will lie in a parallelogram of area less than the range of xs

i , y
s
i . The effect of this transformation on

the grid compared to the identity transform is shown in Fig. 3.

The class of transformations Tθ may be more constrained, such as that used for attention

Aθ =

[

s 0 tx
0 s ty

]

(2)

allowing cropping, translation, and isotropic scaling by varying s, tx, and ty . The transformation
Tθ can also be more general, such as a plane projective transformation with 8 parameters, piece-
wise affine, or a thin plate spline. Indeed, the transformation can have any parameterised form,
provided that it is differentiable with respect to the parameters – this crucially allows gradients to be
backpropagated through from the sample points Tθ(Gi) to the localisation network output θ. If the
transformation is parameterised in a structured, low-dimensional way, this reduces the complexity
of the task assigned to the localisation network. For instance, a generic class of structured and dif-
ferentiable transformations, which is a superset of attention, affine, projective, and thin plate spline
transformations, is Tθ = MθB, where B is a target grid representation (e.g. in (1), B is the regu-
lar grid G in homogeneous coordinates), and Mθ is a matrix parameterised by θ. In this case it is
possible to not only learn how to predict θ for a sample, but also to learn B for the task at hand.

3.3 Differentiable Image Sampling

To perform a spatial transformation of the input feature map, a sampler must take the set of sampling
points Tθ(G), along with the input feature map U and produce the sampled output feature map V .

Each (xs
i , y

s
i) coordinate in Tθ(G) defines the spatial location in the input where a sampling kernel

is applied to get the value at a particular pixel in the output V . This can be written as

V c
i =

H
∑

n

W
∑

m

U c
nmk(xs

i −m; Φx)k(y
s
i − n; Φy) ∀i ∈ [1 . . . H ′W ′] ∀c ∈ [1 . . . C] (3)

where Φx and Φy are the parameters of a generic sampling kernel k() which defines the image
interpolation (e.g. bilinear), U c

nm is the value at location (n,m) in channel c of the input, and V c
i

is the output value for pixel i at location (xt
i, y

t
i) in channel c. Note that the sampling is done

identically for each channel of the input, so every channel is transformed in an identical way (this
preserves spatial consistency between channels).

4

In theory, any sampling kernel can be used, as long as (sub-)gradients can be defined with respect to
xs
i and ysi . For example, using the integer sampling kernel reduces (3) to

V c
i =

H
∑

n

W
∑

m

U c
nmδ(⌊xs

i + 0.5⌋ −m)δ(⌊ysi + 0.5⌋ − n) (4)

where ⌊x + 0.5⌋ rounds x to the nearest integer and δ() is the Kronecker delta function. This
sampling kernel equates to just copying the value at the nearest pixel to (xs

i , y
s
i) to the output location

(xt
i, y

t
i). Alternatively, a bilinear sampling kernel can be used, giving

V c
i =

H
∑

n

W
∑

m

U c
nm max(0, 1− |xs

i −m|)max(0, 1− |ysi − n|) (5)

To allow backpropagation of the loss through this sampling mechanism we can define the gradients
with respect to U and G. For bilinear sampling (5) the partial derivatives are

∂V c
i

∂U c
nm

=

H
∑

n

W
∑

m

max(0, 1− |xs
i −m|)max(0, 1− |ysi − n|) (6)

∂V c
i

∂xs
i

=

H
∑

n

W
∑

m

U c
nm max(0, 1− |ysi − n|)

0 if |m− xs
i | ≥ 1

1 if m ≥ xs
i

−1 if m < xs
i

(7)

and similarly to (7) for
∂V c

i

∂ys

i

.

This gives us a (sub-)differentiable sampling mechanism, allowing loss gradients to flow back not
only to the input feature map (6), but also to the sampling grid coordinates (7), and therefore back

to the transformation parameters θ and localisation network since
∂xs

i

∂θ
and

∂xs

i

∂θ
can be easily derived

from (1) for example. Due to discontinuities in the sampling fuctions, sub-gradients must be used.
This sampling mechanism can be implemented very efficiently on GPU, by ignoring the sum over
all input locations and instead just looking at the kernel support region for each output pixel.

3.4 Spatial Transformer Networks

The combination of the localisation network, grid generator, and sampler form a spatial transformer
(Fig. 2). This is a self-contained module which can be dropped into a CNN architecture at any point,
and in any number, giving rise to spatial transformer networks. This module is computationally very
fast and does not impair the training speed, causing very little time overhead when used naively, and
even potential speedups in attentive models due to subsequent downsampling that can be applied to
the output of the transformer.

Placing spatial transformers within a CNN allows the network to learn how to actively transform
the feature maps to help minimise the overall cost function of the network during training. The
knowledge of how to transform each training sample is compressed and cached in the weights of
the localisation network (and also the weights of the layers previous to a spatial transformer) during
training. For some tasks, it may also be useful to feed the output of the localisation network, θ,
forward to the rest of the network, as it explicitly encodes the transformation, and hence the pose, of
a region or object.

It is also possible to use spatial transformers to downsample or oversample a feature map, as one can
define the output dimensions H ′ and W ′ to be different to the input dimensions H and W . However,
with sampling kernels with a fixed, small spatial support (such as the bilinear kernel), downsampling
with a spatial transformer can cause aliasing effects.

Finally, it is possible to have multiple spatial transformers in a CNN. Placing multiple spatial trans-
formers at increasing depths of a network allow transformations of increasingly abstract representa-
tions, and also gives the localisation networks potentially more informative representations to base
the predicted transformation parameters on. One can also use multiple spatial transformers in paral-
lel – this can be useful if there are multiple objects or parts of interest in a feature map that should be
focussed on individually. A limitation of this architecture in a purely feed-forward network is that
the number of parallel spatial transformers limits the number of objects that the network can model.

5

MNIST Distortion
Model R RTS P E

FCN 2.1 5.2 3.1 3.2
CNN 1.2 0.8 1.5 1.4

ST-FCN
Aff 1.2 0.8 1.5 2.7
Proj 1.3 0.9 1.4 2.6
TPS 1.1 0.8 1.4 2.4

ST-CNN
Aff 0.7 0.5 0.8 1.2
Proj 0.8 0.6 0.8 1.3
TPS 0.7 0.5 0.8 1.1

(a) (c)(b)

R

R

RRTS

E

E

(c)(b)

58°

(a)

-65°

93°

Table 1: Left: The percentage errors for different models on different distorted MNIST datasets. The different
distorted MNIST datasets we test are TC: translated and cluttered, R: rotated, RTS: rotated, translated, and
scaled, P: projective distortion, E: elastic distortion. All the models used for each experiment have the same
number of parameters, and same base structure for all experiments. Right: Some example test images where
a spatial transformer network correctly classifies the digit but a CNN fails. (a) The inputs to the networks. (b)
The transformations predicted by the spatial transformers, visualised by the grid Tθ(G). (c) The outputs of the
spatial transformers. E and RTS examples use thin plate spline spatial transformers (ST-CNN TPS), while R
examples use affine spatial transformers (ST-CNN Aff) with the angles of the affine transformations given. For
videos showing animations of these experiments and more see https://goo.gl/qdEhUu.

4 Experiments

In this section we explore the use of spatial transformer networks on a number of supervised learn-
ing tasks. In Sect. 4.1 we begin with experiments on distorted versions of the MNIST handwriting
dataset, showing the ability of spatial transformers to improve classification performance through
actively transforming the input images. In Sect. 4.2 we test spatial transformer networks on a chal-
lenging real-world dataset, Street View House Numbers [21], for number recognition, showing state-
of-the-art results using multiple spatial transformers embedded in the convolutional stack of a CNN.
Finally, in Sect. 4.3, we investigate the use of multiple parallel spatial transformers for fine-grained
classification, showing state-of-the-art performance on CUB-200-2011 birds dataset [28] by auto-
matically discovering object parts and learning to attend to them. Further experiments with MNIST
addition and co-localisation can be found in the supplementary material.

4.1 Distorted MNIST

In this section we use the MNIST handwriting dataset as a testbed for exploring the range of trans-
formations to which a network can learn invariance to by using a spatial transformer.

We begin with experiments where we train different neural network models to classify MNIST data
that has been distorted in various ways: rotation (R); rotation, scale and translation (RTS); projec-
tive transformation (P); elastic warping (E) – note that elastic warping is destructive and cannot
be inverted in some cases. The full details of the distortions used to generate this data are given
in the supplementary material. We train baseline fully-connected (FCN) and convolutional (CNN)
neural networks, as well as networks with spatial transformers acting on the input before the clas-
sification network (ST-FCN and ST-CNN). The spatial transformer networks all use bilinear sam-
pling, but variants use different transformation functions: an affine transformation (Aff), projective
transformation (Proj), and a 16-point thin plate spline transformation (TPS) with a regular grid of
control points. The CNN models include two max-pooling layers. All networks have approximately
the same number of parameters, are trained with identical optimisation schemes (backpropagation,
SGD, scheduled learning rate decrease, with a multinomial cross entropy loss), and all with three
weight layers in the classification network.

The results of these experiments are shown in Table 1 (left). Looking at any particular type of dis-
tortion of the data, it is clear that a spatial transformer enabled network outperforms its counterpart
base network. For the case of rotation, translation, and scale distortion (RTS), the ST-CNN achieves
0.5% and 0.6% depending on the class of transform used for Tθ, whereas a CNN, with two max-
pooling layers to provide spatial invariance, achieves 0.8% error. This is in fact the same error that
the ST-FCN achieves, which is without a single convolution or max-pooling layer in its network,
showing that using a spatial transformer is an alternative way to achieve spatial invariance. ST-CNN
models consistently perform better than ST-FCN models due to max-pooling layers in ST-CNN pro-
viding even more spatial invariance, and convolutional layers better modelling local structure. We
also test our models in a noisy environment, on 60 × 60 images with translated MNIST digits and

6

https://goo.gl/qdEhUu

Size
Model 64px 128px

Maxout CNN [10] 4.0 -
CNN (ours) 4.0 5.6

DRAM* [1] 3.9 4.5

ST-CNN
Single 3.7 3.9
Multi 3.6 3.9

ST conv ST conv ST conv ST …
2!
6!
0

(a)

(b)

×

Table 2: Left: The sequence error (%) for SVHN multi-digit recognition on crops of 64×64 pixels (64px), and
inflated crops of 128 × 128 (128px) which include more background. *The best reported result from [1] uses
model averaging and Monte Carlo averaging, whereas the results from other models are from a single forward
pass of a single model. Right: (a) The schematic of the ST-CNN Multi model. The transformations of each
spatial transformer (ST) are applied to the convolutional feature map produced by the previous layer. (b) The
result of the composition of the affine transformations predicted by the four spatial transformers in ST-CNN
Multi, visualised on the input image.

background clutter (see Fig. 1 third row for an example): an FCN gets 13.2% error, a CNN gets
3.5% error, while an ST-FCN gets 2.0% error and an ST-CNN gets 1.7% error.

Looking at the results between different classes of transformation, the thin plate spline transfor-
mation (TPS) is the most powerful, being able to reduce error on elastically deformed digits by
reshaping the input into a prototype instance of the digit, reducing the complexity of the task for the
classification network, and does not over fit on simpler data e.g. R. Interestingly, the transformation
of inputs for all ST models leads to a “standard” upright posed digit – this is the mean pose found
in the training data. In Table 1 (right), we show the transformations performed for some test cases
where a CNN is unable to correctly classify the digit, but a spatial transformer network can.

4.2 Street View House Numbers

We now test our spatial transformer networks on a challenging real-world dataset, Street View House
Numbers (SVHN) [21]. This dataset contains around 200k real world images of house numbers, with
the task to recognise the sequence of numbers in each image. There are between 1 and 5 digits in
each image, with a large variability in scale and spatial arrangement.

We follow the experimental setup as in [1, 10], where the data is preprocessed by taking 64 × 64
crops around each digit sequence. We also use an additional more loosely 128×128 cropped dataset
as in [1]. We train a baseline character sequence CNN model with 11 hidden layers leading to five
independent softmax classifiers, each one predicting the digit at a particular position in the sequence.
This is the character sequence model used in [16], where each classifier includes a null-character
output to model variable length sequences. This model matches the results obtained in [10].

We extend this baseline CNN to include a spatial transformer immediately following the input (ST-
CNN Single), where the localisation network is a four-layer CNN. We also define another extension
where before each of the first four convolutional layers of the baseline CNN, we insert a spatial
transformer (ST-CNN Multi). In this case, the localisation networks are all two-layer fully con-
nected networks with 32 units per layer. In the ST-CNN Multi model, the spatial transformer before
the first convolutional layer acts on the input image as with the previous experiments, however the
subsequent spatial transformers deeper in the network act on the convolutional feature maps, pre-
dicting a transformation from them and transforming these feature maps (this is visualised in Table 2
(right) (a)). This allows deeper spatial transformers to predict a transformation based on richer fea-
tures rather than the raw image. All networks are trained from scratch with SGD and dropout [14],
with randomly initialised weights, except for the regression layers of spatial transformers which are
initialised to predict the identity transform. Affine transformations and bilinear sampling kernels are
used for all spatial transformer networks in these experiments.

The results of this experiment are shown in Table 2 (left) – the spatial transformer models obtain
state-of-the-art results, reaching 3.6% error on 64×64 images compared to previous state-of-the-art
of 3.9% error. Interestingly on 128 × 128 images, while other methods degrade in performance,
an ST-CNN achieves 3.9% error while the previous state of the art at 4.5% error is with a recurrent
attention model that uses an ensemble of models with Monte Carlo averaging – in contrast the ST-
CNN models require only a single forward pass of a single model. This accuracy is achieved due to
the fact that the spatial transformers crop and rescale the parts of the feature maps that correspond
to the digit, focussing resolution and network capacity only on these areas (see Table 2 (right) (b)

7

Model

Cimpoi ’15 [4] 66.7
Zhang ’14 [30] 74.9
Branson ’14 [2] 75.7
Lin ’15 [20] 80.9
Simon ’15 [24] 81.0
CNN (ours) 224px 82.3

2×ST-CNN 224px 83.1
2×ST-CNN 448px 83.9
4×ST-CNN 448px 84.1

Table 3: Left: The accuracy (%) on CUB-200-2011 bird classification dataset. Spatial transformer networks
with two spatial transformers (2×ST-CNN) and four spatial transformers (4×ST-CNN) in parallel outperform
other models. 448px resolution images can be used with the ST-CNN without an increase in computational
cost due to downsampling to 224px after the transformers. Right: The transformation predicted by the spatial
transformers of 2×ST-CNN (top row) and 4×ST-CNN (bottom row) on the input image. Notably for the 2×ST-
CNN, one of the transformers (shown in red) learns to detect heads, while the other (shown in green) detects
the body, and similarly for the 4×ST-CNN.

for some examples). In terms of computation speed, the ST-CNN Multi model is only 6% slower
(forward and backward pass) than the CNN.

4.3 Fine-Grained Classification

In this section, we use a spatial transformer network with multiple transformers in parallel to perform
fine-grained bird classification. We evaluate our models on the CUB-200-2011 birds dataset [28],
containing 6k training images and 5.8k test images, covering 200 species of birds. The birds appear
at a range of scales and orientations, are not tightly cropped, and require detailed texture and shape
analysis to distinguish. In our experiments, we only use image class labels for training.

We consider a strong baseline CNN model – an Inception architecture with batch normalisation [15]
pre-trained on ImageNet [22] and fine-tuned on CUB – which by itself achieves state-of-the-art ac-
curacy of 82.3% (previous best result is 81.0% [24]). We then train a spatial transformer network,
ST-CNN, which contains 2 or 4 parallel spatial transformers, parameterised for attention and acting
on the input image. Discriminative image parts, captured by the transformers, are passed to the part
description sub-nets (each of which is also initialised by Inception). The resulting part representa-
tions are concatenated and classified with a single softmax layer. The whole architecture is trained
on image class labels end-to-end with backpropagation (details in supplementary material).

The results are shown in Table 3 (left). The 4×ST-CNN achieves an accuracy of 84.1%, outperform-
ing the baseline by 1.8%. In the visualisations of the transforms predicted by 2×ST-CNN (Table 3
(right)) one can see interesting behaviour has been learnt: one spatial transformer (red) has learnt
to become a head detector, while the other (green) fixates on the central part of the body of a bird.
The resulting output from the spatial transformers for the classification network is a somewhat pose-
normalised representation of a bird. While previous work such as [2] explicitly define parts of the
bird, training separate detectors for these parts with supplied keypoint training data, the ST-CNN is
able to discover and learn part detectors in a data-driven manner without any additional supervision.
In addition, spatial transformers allows for the use of 448px resolution input images without any
impact on performance, as the output of the transformed 448px images are sampled at 224px before
being processed.

5 Conclusion

In this paper we introduced a new self-contained module for neural networks – the spatial trans-
former. This module can be dropped into a network and perform explicit spatial transformations
of features, opening up new ways for neural networks to model data, and is learnt in an end-to-
end fashion, without making any changes to the loss function. While CNNs provide an incredibly
strong baseline, we see gains in accuracy using spatial transformers across multiple tasks, result-
ing in state-of-the-art performance. Furthermore, the regressed transformation parameters from the
spatial transformer are available as an output and could be used for subsequent tasks. While we
only explore feed-forward networks in this work, early experiments show spatial transformers to be
powerful in recurrent models, and useful for tasks requiring the disentangling of object reference
frames.

8

References

[1] J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recognition with visual attention. ICLR, 2015.

[2] S. Branson, G. Van Horn, S. Belongie, and P. Perona. Bird species categorization using pose normalized
deep convolutional nets. BMVC., 2014.

[3] J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE PAMI, 35(8):1872–1886, 2013.

[4] M. Cimpoi, S. Maji, and A. Vedaldi. Deep filter banks for texture recognition and segmentation. In CVPR,
2015.

[5] T. S. Cohen and M. Welling. Transformation properties of learned visual representations. ICLR, 2015.

[6] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable object detection using deep neural networks.
In CVPR, 2014.

[7] B. J. Frey and N. Jojic. Fast, large-scale transformation-invariant clustering. In NIPS, 2001.

[8] R. Gens and P. M. Domingos. Deep symmetry networks. In NIPS, 2014.

[9] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In CVPR, 2014.

[10] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet. Multi-digit number recognition from street
view imagery using deep convolutional neural networks. arXiv:1312.6082, 2013.

[11] K. Gregor, I. Danihelka, A. Graves, and D. Wierstra. Draw: A recurrent neural network for image
generation. ICML, 2015.

[12] G. E. Hinton. A parallel computation that assigns canonical object-based frames of reference. In IJCAI,
1981.

[13] G. E. Hinton, A. Krizhevsky, and S. D. Wang. Transforming auto-encoders. In ICANN. 2011.

[14] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Improving neural net-
works by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580, 2012.

[15] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. ICML, 2015.

[16] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman. Synthetic data and artificial neural networks
for natural scene text recognition. NIPS DLW, 2014.

[17] A. Kanazawa, A. Sharma, and D. Jacobs. Locally scale-invariant convolutional neural networks. In NIPS,
2014.

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

[19] K. Lenc and A. Vedaldi. Understanding image representations by measuring their equivariance and equiv-
alence. CVPR, 2015.

[20] T. Lin, A. RoyChowdhury, and S. Maji. Bilinear CNN models for fine-grained visual recognition.
arXiv:1504.07889, 2015.

[21] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images with
unsupervised feature learning. In NIPS DLW, 2011.

[22] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, et al. Imagenet large scale visual recognition challenge. arXiv:1409.0575, 2014.

[23] P. Sermanet, A. Frome, and E. Real. Attention for fine-grained categorization. arXiv:1412.7054, 2014.

[24] M. Simon and E. Rodner. Neural activation constellations: Unsupervised part model discovery with
convolutional networks. arXiv:1504.08289, 2015.

[25] K. Sohn and H. Lee. Learning invariant representations with local transformations. arXiv:1206.6418,
2012.

[26] M. F. Stollenga, J. Masci, F. Gomez, and J. Schmidhuber. Deep networks with internal selective attention
through feedback connections. In NIPS, 2014.

[27] T. Tieleman. Optimizing Neural Networks that Generate Images. PhD thesis, University of Toronto, 2014.

[28] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011 dataset.
2011.

[29] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, and Y. Bengio. Show, attend
and tell: Neural image caption generation with visual attention. ICML, 2015.

[30] X. Zhang, J. Zou, X. Ming, K. He, and J. Sun. Efficient and accurate approximations of nonlinear
convolutional networks. arXiv:1411.4229, 2014.

9

