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Abstract

Background: Tuberculosis (TB) is the notifiable infectious disease with the second highest incidence in

the Qinghai province, a province with poor primary health care infrastructure. Understanding the spatial

distribution of TB and related environmental factors is necessary for developing effective strategies to

control and further eliminate TB.

Methods: Our TB incidence data and meteorological data were extracted from the China Information System

of Disease Control and Prevention and statistical yearbooks, respectively. We calculated the global and local

Moran’s I by using spatial autocorrelation analysis to detect the spatial clustering of TB incidence each year.

A spatial panel data model was applied to examine the associations of meteorological factors with TB incidence after

adjustment of spatial individual effects and spatial autocorrelation.

Results: The Local Moran’s I method detected 11 counties with a significantly high-high spatial clustering (average

annual incidence: 294/100 000) and 17 counties with a significantly low-low spatial clustering (average annual

incidence: 68/100 000) of TB annual incidence within the examined five-year period; the global Moran’s I values ranged

from 0.40 to 0.58 (all P-values < 0.05). The TB incidence was positively associated with the temperature, precipitation,

and wind speed (all P-values < 0.05), which were confirmed by the spatial panel data model. Each 10 °C, 2 cm, and

1 m/s increase in temperature, precipitation, and wind speed associated with 9 % and 3 % decrements and a 7 %

increment in the TB incidence, respectively.

Conclusions: High TB incidence areas were mainly concentrated in south-western Qinghai, while low TB

incidence areas clustered in eastern and north-western Qinghai. Areas with low temperature and precipitation

and with strong wind speeds tended to have higher TB incidences.
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Multilingual abstracts
Please see Additional file 1 for translations of the abstract

into the six official working languages of the United

Nations.

Background

Tuberculosis (TB) remains a major public health burden

in many developing countries [1–3]. According to the

World Health Organization TB annual report, in 2013,

the number of new reported TB cases in the world was

estimated at 11.4 million. Among the 22 high TB burden

countries and regions, mainland China ranks second,

with 1.3 million cases, giving an incidence of 98/100 000

[4]. Based on the data from the fifth TB epidemiological

sampling survey in China, the TB number was higher in

the western regions compared with the central and

eastern regions [5]. The occurrence of TB in China has

obvious periodic and seasonal features, more frequently

occurring in the winter and spring, which suggests that

TB might be associated with meteorological factors [6].

Current evidence has suggested that, besides the

traditional factors such as genetic susceptibility [7], sex

[8], education, ethnicity, drinking [9], smoking [10], and

related diseases, several ecological factors, including

geographic, climatic, and socioeconomic factors, also

have critical impacts on the prevalence of TB [11–13].

Understanding the spatial variations in TB prevalence

and its determinants is crucial for improved targeting of

interventions and resources. Many geospatial analytical

methods, such as spatial autocorrelation analysis

(Moran’s I and Getis-Ord G) [14–16] and space-time

scan statistic (SaTScan) methods [17–19] have been used

for understanding TB and other public health problems

[20, 21]. In China, county-level studies have used various

spatial epidemiological methods to identify clustering of

health conditions, including notifiable pandemic influ-

enza A in Hong Kong [22], and TB in Linyi [2], Beijing

[5], and Xinjiang [23]. However, there are currently no

related studies on geospatial distribution of TB in Qinghai

province.

Moreover, while several studies have shown that the

TB incidence might be related with the temperature,

precipitation, and wind speed [24], few studies have con-

sidered the modifier effects from time and spatial factors

in the relationship between meteorological factors and

TB incidence. With further research of spatial econo-

metrics and the rapid development of computer technol-

ogy, spatial autocorrelation and spatial panel data

models are becoming useful tools in the analysis of

spatiotemporal data, and are gradually being applied to

the research of infectious diseases [24–26]. Therefore, in

this study, we aimed to understand the distribution of

TB and to explore the associations between meteorological

factors and TB incidence using spatial autocorrelation

analysis and a spatial panel data model based on surveil-

lance data from the Qinghai Center for Disease Control

and Prevention.

Methods

Qinghai province, which comprises 8 cities, including a

total of 46 counties, is located between longitude 89°35′

and 103°04′ East, and latitude 31°40′ and 39°19′ North

(Fig. 1). As an underdeveloped region in north-western

China, it has a higher annual incidence of TB than

other regions of the country. The average altitude is 3

000-5 000 m, with a typical plateau continental

climate, which includes little rain, low temperatures,

and long sunshine hours.

Tuberculosis incidence data

In this study, we focused on the cases of pulmonary TB.

Our TB data were based on the China Information System

for Disease Control and Prevention (CISDCP, http://

1.202.129.170/UVSSERVER2.0), which was established in

2005. TB cases were diagnosed using X-ray, pathogen

detection, and pathologic diagnosis according to the

diagnosis criteria recommended by the National Health

and Family Planning Commission of the People’s Republic

of China (Former Ministry of Health) in 2008 [6]. The

relevant information, including age, sex, occupation,

diagnostic category, and diagnostic date, was collected to

analyse the epidemic characteristics of TB in Qinghai

province.

TB is a notifiable infectious disease in China; all cases

must be reported online within 24 h after diagnosis in

the hospital. We collected the county- and city-level data

from January 2009 to December 2013 in Qinghai and

randomly selected 261 of all 771 medical institutions in

Qinghai province and checked all medical records of

these selected institutions to confirm whether there were

missing TB cases or not. During the period from 2009

to 2013, in all 46 counties, a total of 27 665 TB cases

and 51 TB-related deaths were identified; no missing

cases or outbreaks were declared.

Environmental data

Our meteorological data were based on the statistical

data from the Qinghai statistics office, which is reported

yearly by the meteorological bureau of each city. In this

study, we focused on four main meteorological factors,

including the monthly average temperature (MAT, °C),

precipitation (MP, mm), total sunshine hours (MSH,

hours), and wind speed (MAWS, m/s). Considering a

time lag between infectious disease development and

meteorological factors, the meteorological data were

collected from July 2008 to December 2013.
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Statistical methods

Spatial autocorrelation analysis method

Spatial autocorrelation analysis was conducted by using

Open GeoDa software (GeoDa Center for Geospatial

Analysis and Computation, Arizona State University,

AZ, USA) and used to identify the spatial clustering of

the annual TB incidence of all 46 counties [2, 5, 27, 28].

The row standardized first-order contiguity Rook neigh-

bours were used as the criterion for identifying neighbours

in this paper. In this rule, if regions i and j are neighbours

and share a boundary, wij = 1; otherwise, wij = 0. Global

Moran’s I was calculated to test the spatial autocorrelation

of all counties in Qinghai province, ranging from -1 to +1

[5]. Positive/negative spatial autocorrelation occurs when

Moran’s I is close to +1/-1, which indicates that areas with

similar (high-high or low-low)/dissimilar (high-low or

low-high) incidence of TB are clustered together [29].

Monte Carlo randomization (9999 permutations) was

employed to assess the significance of Moran’s I, with the

null hypothesis being that the distribution of TB incidence

in Qinghai province is completely spatially random [27];

in other words, that the counties with high and low

TB incidence are randomly distributed across the study

area [30]. If the test is significant (P ≤ 0.05), this suggests

a clustering/dispersing of the TB incidence [2, 16].

Subsequently, we used local indicators of spatial associ-

ation (LISA; Local Moran’ I) analysis and a Moran scatter

plot to examine the spatial autocorrelation of each

Fig. 1 Location of the study areas, Qinghai Province, China. The map was created using the ArcGIS software (version 10.0, ESRI Inc., Redlands, CA, USA)
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county in Qinghai province and to determine the

locations of the clusters [31]. Moran’s plot shows

high-high and low-low clustering in the upper right

and lower left quadrants, respectively. Statistically

significant high-high, low-low, and outlier local clus-

ters (high-low and low-high) were visualized using a

cluster map with county boundaries [15].

Spatial panel analysis method

In our study, we used data of TB incidence and

meteorological factors, which were collected from

different cities monthly, to explore the associations of

meteorological factors with TB incidence. The data were

collected at different times (monthly) and in different

areas (cities), and were hence considered repeated obser-

vations data, referred to as panel data (also known as

pooled time series and cross-section data). The spatial

heterogeneity and spatial dependence in different cities

need to be considered in the analysis [5, 32]. A spatial

panel data model is able to address data with spatial

dependence and also enables researchers to consider

spatial heterogeneity, which typically refers to data

containing continuous observations of a number of

spatial units [24–26]. Compared to traditional methods

based on cross-sectional or time series models, spatial

panel data models are more informative and contain

more variation and less collinearity among the variables

[26, 33]. The use of panel data results in a greater

availability of degrees of freedom, and hence increases

the efficiency of the estimation [26, 34]. Therefore, we

used a spatial panel data model to examine the associ-

ation between the TB incidence and meteorological

factors after adjustment for the spatial confounders. As

the distribution of the TB incidence rate is highly

skewed, log transformation of the TB incidence was used

in the analyses, according to the following formula: log

incidence = lg (TB incidence). The unit root test and

co-integration test were conducted to confirm the

stationary of the data [35]. The spatial panel data model

analyses were conducted by using Matlab R2009a

(Mathworks Inc., Natick, MA, USA), and the significant

level was 0.05.

Results

Annually, the incidences of TB in Qinghai province were

93, 87, 93, 112, and 106 per 100 000 people from 2009

to 2013, accounting for 12.24, 13.96, 17.13, 19.00, and

16.84 % of all reported infectious diseases, respectively

(Table 1). The high incidence areas were mainly concen-

trated in the cities of Yushu and Guoluo, while the top

three counties of TB annual incidence were Maduo

(656/100 000), Jiuzhi (461/100 000), and Zaduo (393/100

000) in the southwest of Qinghai. The low incidence

areas were mainly concentrated in the cities of Haixi

and Xining, with the bottom three counties being

Mangya (15/100 000), Delingha (39/100 000), and

Dachaidan (42/100 000) in the northwest of Qinghai

(Fig. 2). The TB incidence rate showed significant

periodicity and seasonality, reaching a seasonal peak

around April and then decreasing to a trough in Decem-

ber (Fig. 3). The significant meteorological characteris-

tics in Qinghai province included the strong sunlight

and relative low temperature throughout the year

(Table 2).

Spatial autocorrelation analysis of TB incidence

The global Moran’s I values of each year at the county level

were high, ranging from 0.40 to 0.58 (all P-values < 0.05),

which indicated that the counties with high TB incidence

tended to be adjacent to the districts with high TB

incidence, and that the counties with low TB incidence

tended to be adjacent to the districts with low TB

incidence (Fig. 4). LISA analysis revealed 11 counties with

a significantly high-high spatial clustering and 17 counties

with a significantly low-low spatial clustering of

TB annual incidence in the five-year period. The

high-high clustering areas were mainly concentrated

around the cities of Yushu and Guoluo, such as Cheng-

duo, Maduo, Qumalai, and Dari counties, with an average

annual incidence of 294/100 000. The low-low clustering

areas were concentrated in Xining city and surrounding

areas, as well as in several counties of Haixi city, such as

Mangya, Lenghu, and Dachaidan, with an average

incidence of 68/100 000 (Fig. 5).

Spatial panel analysis of meteorological factors

TB is a chronic infectious disease with a certain

amount of time lag between the influencing factors

and the disease. We used the meteorological factors

with a 0- to 6-month lag from the incidence of TB to

fit the simple linear model and classical panel data

models. The associations between TB incidence and

meteorological factors with a 3-month lag were found

to have the best goodness of fit. Subsequently, we

examined the individual effects of spatial cities by

using the Hausman-test and F-test; as a result, a sig-

nificant fixed effect of each city was found (P < 0.001).

The Durbin-Watson statistic and Moran’s I (P < 0.001)

indicated a spatial autocorrelation in error term. The

Lagrange multiplier (LM) test showed that the spatial

lag effect was more significant than the spatial error

effect (Table 3). Therefore, we finally used the spatial

lag fixed effects panel data model to examine the

associations between TB incidence and meteorological

factors.

The result showed that the background incidence of

each city was different; the highest and lowest background

incidences were found in Guoluo city (12.88/100 000) and
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Table 1 Characteristics of tuberculosis cases in Qinghai Province, China, 2009-2013

Variables 2009 2010 2011 2012 2013

Report cases
(incidence rate,
1/100 000)

Death cases
(mortality rate,
1/100 000)

Report cases
(incidence rate,
1/100 000)

Death cases
(mortality rate,
1/100 000)

Report cases
(incidence rate,
1/100 000)

Death cases
(mortality rate,
1/100 000)

Report cases
(incidence rate,
1/100 000)

Death cases
(mortality rate,
1/100 000)

Report cases
(incidence rate,
1/100 000)

Death cases
(mortality rate,
1/100 000)

Infectious disease 42 006 (757.82) 50 (0.90) 34 865 (625.60) 29 (0.52) 30 541 (542.79) 22 (0.39) 33 514 (589.86) 42 (0.74) 35 954 (627.28) 38 (0.66)

Pulmonary tuberculosis 5 141 (92.75) 21 (0.38) 4 868 (87.35) 6 (0.11) 5 232 (92.99) 10 (0.18) 6 369 (112.10) 7 (0.12) 6 055 (105.64) 7 (0.12)

Age (years) 0- 12 (15.57) 0 (0.00) 11 (14.15) 1 (1.29) 16 (21.07) 0 (0.00) 14 (19.57) 0 (0.00) 12 (16.99) 0 (0.00)

1- 1 (1.32) 0 (0.00) 5 (6.58) 0 (0.00) 5 (6.73) 0 (0.00) 14 (19.07) 0 (0.00) 5 (6.94) 0 (0.00)

2- 2 (2.62) 0 (0.00) 0 (0.00) 0 (0.00) 2 (2.70) 0 (0.00) 9 (12.37) 0 (0.00) 7 (9.87) 0 (0.00)

3- 1 (1.30) 0 (0.00) 1 (1.32) 0 (0.00) 5 (6.72) 0 (0.00) 10 (13.76) 0 (0.00) 7 (9.93) 0 (0.00)

4- 3 (3.83) 0 (0.00) 3 (3.90) 0 (0.00) 3 (3.99) 0 (0.00) 7 (9.53) 0 (0.00) 7 (9.85) 0 (0.00)

5- 3 (3.76) 0 (0.00) 7 (8.95) 0 (0.00) 7 (9.14) 0 (0.00) 7 (9.48) 0 (0.00) 3 (4.20) 0 (0.00)

6- 8 (9.89) 0 (0.00) 4 (5.04) 0 (0.00) 10 (12.88) 0 (0.00) 5 (6.68) 0 (0.00) 6 (8.28) 0 (0.00)

7- 3 (3.66) 0 (0.00) 8 (9.95) 0 (0.00) 9 (11.44) 0 (0.00) 6 (7.69) 0 (0.00) 8 (10.22) 0 (0.00)

8- 4 (5.10) 0 (0.00) 5 (6.11) 0 (0.00) 11 (13.75) 0 (0.00) 15 (16.25) 0 (0.00) 8 (7.34) 0 (0.00)

9- 6 (9.49) 0 (0.00) 7 (8.90) 0 (0.00) 6 (7.69) 0 (0.00) 16 (19.60) 0 (0.00) 11 (12.73) 0 (0.00)

10- 72 (16.16) 0 (0.00) 82 (19.68) 0 (0.00) 107 (25.96) 0 (0.00) 147 (36.70) 0 (0.00) 116 (30.73) 0 (0.00)

15- 320 (62.73) 2 (0.39) 346 (69.38) 0 (0.00) 396 (79.19) 0 (0.00) 570 (118.71) 0 (0.00) 497 (106.16) 0 (0.00)

20- 444 (97.99) 0 (0.00) 492 (104.25) 0 (0.00) 506 (107.63) 2 (0.43) 662 (131.56) 0 (0.00) 577 (111.56) 0 (0.00)

25- 432 (97.20) 1 (0.23) 438 (101.70) 0 (0.00) 490 (112.60) 0 (0.00) 511 (124.20) 1 (0.24) 467 (118.75) 0 (0.00)

30- 495 (99.50) 1 (0.20) 452 (94.60) 0 (0.00) 464 (95.63) 0 (0.00) 493 (105.84) 0 (0.00) 486 (110.15) 0 (0.00)

35- 514 (91.63) 2 (0.36) 475 (84.59) 0 (0.00) 472 (81.85) 0 (0.00) 536 (95.05) 0 (0.00) 526 (94.52) 0 (0.00)

40- 465 (89.57) 0 (0.00) 451 (86.40) 0 (0.00) 471 (87.35) 0 (0.00) 533 (94.34) 0 (0.00) 501 (87.92) 1 (0.18)

45- 365 (120.16) 3 (0.99) 338 (92.96) 0 (0.00) 391 (102.58) 0 (0.00) 475 (94.71) 1 (0.20) 497 (83.64) 2 (0.34)

50- 308 (111.30) 2 (0.72) 236 (90.25) 1 (0.38) 205 (75.55) 1 (0.37) 323 (136.33) 0 (0.00) 329 (141.60) 0 (0.00)

55- 317 (134.66) 2 (0.85) 314 (129.21) 0 (0.00) 335 (134.05) 1 (0.40) 396 (164.15) 0 (0.00) 378 (151.86) 1 (0.40)

60- 356 (202.39) 0 (0.00) 345 (189.88) 1 (0.55) 376 (201.76) 1 (0.54) 438 (242.60) 1 (0.55) 473 (259.34) 2 (1.10)

65- 379 (257.16) 1 (0.68) 316 (207.94) 1 (0.66) 336 (226.41) 0 (0.00) 448 (306.43) 0 (0.00) 432 (293.55) 0 (0.00)

70- 341 (306.56) 5 (4.50) 292 (259.21) 1 (0.89) 320 (290.80) 4 (3.64) 399 (355.38) 1 (0.89) 350 (304.40) 0 (0.00)

75- 201 (326.43) 2 (3.25) 170 (254.85) 1 (1.50) 195 (299.84) 1 (1.54) 218 (314.61) 2 (2.89) 239 (319.44) 1 (1.34)

80- 75 (292.16) 0 (0.00) 53 (204.76) 0 (0.00) 79 (312.09) 0 (0.00) 86 (314.02) 0 (0.00) 85 (298.13) 0 (0.00)

85- 14 (251.57) 0 (0.00) 17 (291.75) 0 (0.00) 15 (262.97) 0 (0.00) 31 (254.86) 1 (8.50) 28 (232.00) 0 (0.00)

Sex Men 3 179 (111.66) 7 (0.25) 2 952 (103.18) 2 (0.07) 3 123 (107.18) 7 (0.24) 3 787 (131.70) 7 (0.24) 3 547 (120.26) 3 (0.10)

Women 1 962 (72.77) 14 (0.52) 1 916 (70.65) 4 (0.15) 2 109 (77.74) 3 (0.11) 2 582 (92.01) 0 (0.00) 2 508 (90.14) 4 (0.14)

R
a
o
et

a
l.
In
fectio

u
s
D
isea

ses
o
f
P
o
verty

 (2
0

1
6

) 5
:4

5
 

P
a
g
e
5
o
f
1
3



Table 1 Characteristics of tuberculosis cases in Qinghai Province, China, 2009-2013 (Continued)

Occupation Farmers and
herdsmen

3 441 (-) 13 (-) 3 329 (-) 5 (-) 3 558 (-) 7 (-) 4 328 (-) 6 (-) 4 249 (-) 4 (-)

Student 354 (-) 1 (-) 383 (-) 0 (-) 475 (-) 0 (-) 685 (-) 0 (-) 592 (-) 0 (-)

Worker 333 (-) 1 (-) 317 (-) 0 (-) 302 (-) 0 (-) 264 (-) 0 (-) 228 (-) 0 (-)

Attendant 79 (-) 0 (-) 60 (-) 0 (-) 66 (-) 0 (-) 59 (-) 0 (-) 36 (-) 0 (-)

Teacher 60 (-) 1 (-) 34 (-) 0 (-) 36 (-) 0 (-) 39 (-) 0 (-) 30 (-) 0 (-)

Medical
personnel

19 (-) 0 (-) 16 (-) 0 (-) 29 (-) 0 (-) 29 (-) 0 (-) 23 (-) 0 (-)

Unemployed
and retirees

855 (-) 5 (-) 729 (-) 1 (-) 766 (-) 3 (-) 965 (-) 1 (-) 897 (-) 3 (-)

Diagnostic
category

Sputum
smear
positive

2 710 (-) 12 (-) 2 633 (-) 5 (-) 2 670 (-) 5 (-) 2 665 (-) 6 (-) 2 326 (-) 5 (-)

Bacterium
negative

1 431 (-) 6 (-) 1 328 (-) 1 (-) 1 582 (-) 4 (-) 2 164 (-) 0 (-) 2 374 (-) 2 (-)

No detection
in sputum

974 (-) 3 (-) 900 (-) 0 (-) 958 (-) 1 (-) 1 528 (-) 1 (-) 1 333 (-) 0 (-)

Only
germiculture
positive

26 (-) 0 (-) 7 (-) 0 (-) 22 (-) 0 (-) 12 (-) 0 (-) 22 (-) 0 (-)
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Fig. 2 Annual incidence of tuberculosis in Qinghai Province, China, 2009-2013. The areas of high annual incidence of TB were mainly concentrated in

south-western Qinghai, with the top three counties being Maduo, Jiuzhi, and Zaduo

Fig. 3 Monthly incidence rates of TB in Qinghai Province, China, from January 2009 to December 2013. The TB incidence rate showed significant

periodicity and seasonality, reaching a seasonal peak around April and decreasing to a trough in December. TB, tuberculosis
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Haixi city (2.75/100 000), respectively (Table 4). The

spatial autocorrelation coefficient was 0.30, meaning

that a spatial spillover phenomenon existed; the TB

incidence of the study city increased 1 time when the

TB incidence of adjacent cities increased 9 times and

other influencing factors were kept constant. The re-

gression coefficients of MAT, MP, and MAWS were

all statistically significant (all P-values < 0.05), with

each 10 °C, 2 cm, and 1 m/s increase in temperature,

precipitation, and wind speed being associated with

9 % and 3 % decrements and a 7 % increment in the

TB incidence, respectively (Table 5).

Discussion
In our study, we used the data of TB from the CISDCP

to analyse the characteristics of the TB incidence in

Table 2 Descriptive statistics for meteorological variables in Qinghai Province, China, from July 2008 to December 2013

District, city Meteorological variables Mean Standard deviation Minimum Maximum

Total MAT (°C) 5.0 8.9 -13.4 20.4

MP (mm) 35.3 39.4 0.0 195.1

MSH (hours) 218.9 31.8 99.6 307.9

MAWS (m/s) 1.5 0.5 0.1 3.5

Xining MAT (°C) 6.1 9.1 -11.2 18.8

MP (mm) 35.4 36.8 0.0 147.7

MSH (hours) 217.7 29.5 151.9 289.6

MAWS (m/s) 1.0 0.2 0.7 1.8

Haidong MAT (°C) 7.8 9.1 -9.9 20.4

MP (mm) 28.6 30.4 0.0 128.9

MSH (hours) 222.2 27.9 156.6 282.2

MAWS (m/s) 2.0 0.4 1.0 2.6

Hainan MAT (°C) 5.6 8.8 -9.8 18.8

MP (mm) 28.0 31.3 0.0 101.4

MSH (hours) 238.3 28.1 176.6 303.8

MAWS (m/s) 1.6 0.5 0.7 3.5

Haibei MAT (°C) 2.1 9.1 -13.4 14.9

MP (mm) 41.0 42.7 0.0 195.1

MSH (hours) 206.2 24.4 133.1 262.3

MAWS (m/s) 1.5 0.4 0.6 2.5

Haixi MAT (°C) 5.0 9.7 -11.8 19.5

MP (mm) 21.0 30.0 0.0 124.2

MSH (hours) 243.3 28.1 192.1 307.9

MAWS (m/s) 1.6 0.5 0.9 2.6

Huangnan MAT (°C) 7.1 8.3 -8.7 19.2

MP (mm) 36.1 37.7 0.0 144.2

MSH (hours) 209.7 30.0 121.3 278.6

MAWS (m/s) 1.1 0.3 0.1 1.6

Guoluo MAT (°C) 0.9 7.8 -12.8 12.4

MP (mm) 47.3 50.7 0.0 169.5

MSH (hours) 210.8 34.6 99.6 285.5

MAWS (m/s) 1.8 0.4 1.2 2.7

Yushu MAT (°C) 5.1 7.8 -7.7 19.2

MP (mm) 44.9 44.8 0.0 159.8

MSH (hours) 202.9 26.3 132.9 274.1

MAWS (m/s) 1.3 0.4 0.8 2.5

MAT monthly average temperature, MP monthly precipitation, MSH monthly total sunshine hours, MAWS monthly average wind speed
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Qinghai province. The incidence of TB in Qinghai

province showed clear periodic and seasonal features in

the colder winter and spring months, similar to the

patterns of epidemic regularity reported in Beijing [5]

and Shandong [2], China, and in India [36, 37] and

Mongolia [38]. In our study, it was shown that the TB

incidence was higher in elders than in young people,

with farmers and herdsmen at particularly high risks

(Table 1), which supported the notion of TB pathogen-

esis regularity [39]. Moreover, the TB incidence in re-

gions with relatively poor economic conditions and

high altitudes has been shown to be high, potentially

owning to differences in the ethnicity, medical and

health conditions, and economic and educational

levels of the residents. Additionally, the local environ-

ment and climatic conditions may also influence the

incidence of TB [37, 40–43]. Thus, in Qinghai, the

farmers and herdsmen living in the regions with cold

climate and high altitudes should be made aware of

the high risk of TB occurrence.

The incidence and spatial autocorrelation differ, but are

associated in some regards. A higher incidence reflects

higher epidemic strength. Spatial autocorrelation describes

the relationship of incidence between one region and the

surrounding areas and is based on incidence and overall

consideration of regional geographical, human, and

environmental factors. In our study, we chose Moran’s I to

analyse the spatial autocorrelation. It showed a positive

correlation within regions, and the correlation displayed

an increasing tendency year by year, indicating that the

distribution of TB in Qinghai is not random, with obvious

spatial clusters. These results are consistent with previ-

ously published studies [2, 11, 37, 40].

Spatial clustering analysis has suggested that classical

multiple linear regression analysis is not suitable for

exploration of TB risk factors at the ecological level.

Thus, this method should be combined with a spatial

statistical model to explore the risk factors [25]. A panel

data model can be directly used to assess the differences

between regions, control for individual heterogeneity,

Fig. 4 Moran scatter plot for the annual incidence of tuberculosis in Qinghai Province, China, 2009-2013. The horizontal axis shows the standardized

incidence of the counties, and the vertical axis indicates the spatial lag factors; the linear slope is the Moran’s I

Rao et al. Infectious Diseases of Poverty  (2016) 5:45 Page 9 of 13



Fig. 5 LISA significance map and cluster map for annual tuberculosis incidence in Qinghai Province, China, 2009-2013. The high risk areas were

mainly concentrated in the cities of Yushu and Guoluo, while the low incidence districts were mainly distributed in the cities of Xining and Haixi.

LISA, local indicators of spatial association
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and present more reasonable results. However, this

model does not consider the spatial autocorrelation in

the study area. Accordingly, a spatial panel data model

combining spatial metrology with the panel data model

was used in our study. This model takes the individual

effects and spatial autocorrelation into consideration,

which could result in better use of the spatiotemporal

information from infectious diseases surveillance data

[24, 26]. In a spatial panel data model, the introduction

of a spatial individual effect can correct deviations

caused by unobserved variables, and the use of a spatial

weight matrix can illustrate the spatial correlation and

reflect the interaction between regions [34]. Moreover,

the modelling estimation is more effective and could

help us research unknown variables in depth.

Some studies have reported that the average incuba-

tion period of TB ranges from four to eight weeks, with

a two-month interval from the symptom appearance to

medical diagnosis [6]. Accordingly, we created a fitting

model with a 3-month lag [44–46]. The results showed

that the combined data using the traditional method

would overstate the influence of the meteorological

factors, because the effect is different in different re-

gions. Conversely, the spatial panel data model reduced

error occurrence and increased the goodness of fit. The

spatial autocorrelation coefficient was 0.30, which indi-

cated that the introduction of the spatial lag dependent

variable could reasonably explain the spatial autocorrel-

ation. Further, the regression coefficients of MAT and

MP were negative, while that of MAWS was positive,

suggesting that with increasing MAT and MP, the inci-

dence of TB decreases exponentially. Conversely, with

increasing MAWS, the incidence increases exponentially.

These result are in accordance with the findings of

previous studies, such as those by Li et al. [6] and Naranbat

et al. [38].

In cold condition, especially in the winter, most people

stay indoors for a long time, hence, once someone

releases bacteria into the environment, elderly and

Table 3 Results of the classical panel data models for the log of TB incidence with meteorological factors of a 3-month lag

Factors Simple linear regression Fixed effects model Random effects model

Coefficient t-value P-value Coefficient t-value P-value Coefficient t-value P-value

Constant 1.0097 10.42 <0.0001 1.0367 12.27 <0.0001

MAT (°C) -0.0195 -10.03 <0.0001 -0.0059 -4.96 <0.0001 -0.0060 -5.12 <0.0001

MP (mm) 0.0024 5.07 <0.0001 -0.0008 -2.77 0.0060 -0.0007 -2.63 0.0090

MSH (hours) -0.0011 -2.56 0.0110 -0.0003 -1.10 0.2720 -0.0003 -1.14 0.2570

MAWS (m/s) 0.1441 5.94 <0.0001 0.0320 1.93 0.0550 0.0339 2.05 0.0410

Log likelihood 1.92 328.57

AIC 0.01 -1.32

SC 0.06 -1.21

F-statistic 193.90 <0.0001

H-statistic 10.41 0.0340

LM lag 14.14 <0.0001 39.40 <0.0001

Robust LM lag 161.22 <0.0001 21.00 <0.0001

LM error 34.13 <0.0001 35.93 <0.0001

Robust LM error 181.21 <0.0001 17.54 <0.0001

Moran’s I 0.20 6.07 <0.0001 0.20 6.20 <0.0001

TB tuberculosis, MAT monthly average temperature, MP monthly precipitation, MSH monthly total sunshine hours, MAWS monthly average wind speed, AIC Akaike

information criterion, SC Schwarz Criterion, H-statistic Hausman-statistic, LM Lagrange multiplier

Table 4 Results for spatial individual effects of each city by

using the spatial panel data model

Cities Intercept
term (μi)

Background
incidence
(1/100 000)

Cities Intercept
term (μi)

Background
incidence
(1/100 000)

Haixi 0.44 2.75 Hainan 0.70 5.01

Xining 0.51 3.24 Haibei 0.79 6.17

Haidong 0.57 3.72 Yushu 1.09 12.30

Huangnan 0.64 4.37 Guoluo 1.11 12.88

Table 5 Results of the spatial panel data model for the log of

TB incidence with meteorological factors of a 3-month lag

Factors Coefficient 95 % CIs of coefficients P-value

MAT (°C) -0.0040 -0.0063, -0.0017 <0.0001

MP (mm) -0.0006 -0.0011, -0.0001 0.0250

MSH (hours) -0.0002 -0.0007, 0.0002 0.2680

MAWS (m/s) 0.0309 0.0001, 0.0618 0.0490

ρ 0.2997 0.2003, 0.3992 <0.0001

TB tuberculosis, CI confidence interval, MAT monthly average temperature,

MP monthly precipitation, MSH monthly total sunshine hours, MAWS monthly

average wind speed, ρ spatial autocorrelation coefficient
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immunocompromised populations are at particularly

high risk of infection because of the poor ventilation.

Moreover, some studies have shown a relationship

between vitamin D levels and TB incidence [38]. Fewer

outdoor activities and less exposure time to sunlight

result in decreased synthesis of vitamin D in the human

body. In turn, this may increase the risk of TB infection

[6, 47]. In the traditional view, TB infection is mainly

caused by bacteria in the sputum. When the sputum

gets dry, bacteria are expelled into the air and enter

other people’s respiratory systems. With increasing rain-

falls, the air humidity increases and the transmission of

aerosols decreases. Hence, the risk of bacteria entering

the respiratory system is decreased, as is the incidence

of TB.

In summary, we found that the spread of TB in

Qinghai province is not random, but rather present

obvious spatial clustering. The use of spatial statistic

methods may offer necessary feedback in terms of the

prevalence nature and epidemic characteristics of TB

in various regions, and may consequently result in

public health officials providing TB control and devel-

oping novel prevention strategies. In this study, we

quantified the relationship between TB and meteoro-

logical factors using a spatial panel data model on the

basis of panel data for the first time. A spatial panel

data model is appropriate if longitudinal data of

multiple units are available and if spatial autocorrel-

ation exists. This model has a better model fitting

and provides more precise effect size estimation.

Additionally, as meteorological factors obviously affect

the TB incidence in Qinghai province, future strat-

egies of TB control and prevention should consider

climate variations.

However, there are some limitations in the present

study that are worth mentioning. First, as it is difficult to

collect meteorological data of each county, our analysis

was initiated at the city level. Second, the temperature,

precipitation, sunshine hours, and wind speed are not

the only meteorological factors affecting TB distribution.

Therefore, additional county-level factors, such as

atmospheric pressure, average vapour pressure, and

average relative humidity, will be taken into consider-

ation in our future study.

Conclusions

Our study found that high-high clustering areas of TB

incidence were mainly concentrated in the southwest,

while low-low clustering areas were found mainly in

eastern and north-western Qinghai. The TB incidence

was positively associated with the temperature, precipi-

tation, and wind speed after adjusting for spatial hetero-

geneity and spatial correlation in Qinghai province.
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