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ABSTRACT 

Within risk analysis and more broadly, the decision behind the choice of which modelling technique 

to use to study the spread of disease, epidemics, fires, technology, rumors, or more generally spatial 

dynamics, is not well documented. 

While individual models are well defined and the modeling techniques are well understood by 

practitioners, there is little deliberate choice made as to the type of model to be used, with modelers 

using techniques that are well accepted in the field, sometimes with little thought as to whether 

alternative modelling techniques could or should be used. 

In this paper, we divide modelling techniques for spatial transmission into four main categories: 

population-level models, where a macro-level estimate of the infected population is required; cellular 

models, where the transmission takes place between connected domains, but is restricted to a fixed 

topology of neighboring cells; network models, where host-to-host transmission routes are modelled, 

either as planar spatial graphs or where short cuts can take place as in social networks; and finally 

agent-based models which model the local transmission between agents, either as host-to-host 

geographical contacts, or by modelling the movement of the disease vector, with dynamic movement 

of hosts and vectors possible, on a Euclidian space or a more complex space deformed by the 

existence of information about the topology of the landscape using GIS techniques. 

We summarize these techniques by introducing a taxonomy classifying these modeling approaches.  

Finally, we present a framework for choosing the most appropriate spatial modelling method, 

highlighting the links between seemingly disparate methodologies, bearing in mind that the choice of 

technique rests with the subject expert. 
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1. INTRODUCTION 

Spatial transmission is widely studied, particularly in the field of epidemiology (Riley 2007, Pfeiffer 

et al. 2008), but also in fields as diverse as connectivity on wireless networks (Andrews et al. 2010), 

the spread of fire (Rothermel 1972), marketing (Bradlow et al. 2005), and the diffusion of technology 

(Berger 2001).  Risk analysis models which model the transmission of threats around a system include 

analytical models for epidemiological studies (Eisenberg et al. 1996, Moreno and Alvar 2002, 

Zagmutt et al. 2016), cellular automata models for nuclear terrorism (Atkinson et al. 2008), soil 

contamination (Cox 1999) and species invasion (Sikder et al. 2006), domain based studies of 

exposure to ozone (Fann et al. 2012), network models for communication (Dettmann and Georgiou 

2016), power networks (Zio and Sansavini 2011), and in the social amplification of risk (Kasperson et 

al. 1988). 

However, little work has been done on how to decide on the appropriate modeling technique to use 

for a specific problem (Brennan et al. 2006) let alone the decision as to which modelling technique to 

use for risks associated with spatially-transmitted phenomena: the model choice is often not 

deliberate, but can be a subliminal process brought about by the modeler’s familiarity with a 

particular modelling technique.  Alternative modelling techniques that could give additional or 

alternative insights may not be considered, leading to a model that may not be the most appropriate 

choice for the problem domain being studied. 

Inspired by the Riley et al. (2015) call to arms setting out challenges for spatial epidemic models, we 

set out in this paper a taxonomy for modelling spatial transmission into four broad categories: 

population-level models, cellular models, network models, and finally agent-based models. 

Section 2 of this paper introduces Population Models which model the population, or proportions of 

the population that are infected or not, these being among the oldest techniques used in 

epidemiological modelling (Morabia 2004).  They are however inherently non-spatial as the 

population as a whole is modelled, the dynamics coming from the interaction between, for example, 

susceptible and infected sub-populations.  It is possible to make these models spatial by breaking 
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down the populations into spatial domains, and introducing dynamics of the transfer between these 

spatial domains on top of the transitions between susceptible and infected states.  Section 3 introduces 

Cellular Models that can be used to produce a representation of a space.  Simple squares or hexagons, 

or in more sophisticated analyses, irregular shaped domains are used, where transmission occurs 

across domain boundaries.  We then progress in section 4 to Network Models which identify the 

relationships between nodes forming a network.  These relationships may represent transmission 

pathways as edges in a network model.  Network models are represented as network graphs, and these 

graphs can be planar, in which case they can represent a Euclidian space such as the links between 

towns in a road network, or they may be non-planar, in which case ‘short cuts’ may be possible such 

as in a social network.  And in section 5, Agent Models are an alternative methodology where both the 

movement of vectors and the movement of hosts can be incorporated into the model.  We further 

introduce GIS (Geographic Information System) techniques that can be incorporated into a spatial 

model that can deform a regular space into a rich, non-uniform topology. 

Throughout the paper, we emphasize the links between these techniques, and show that the 

representation in one technique may be replicated using an alternative modelling perspective.  We set 

out in section 6 a taxonomy of modelling techniques, categorizing the differences between these 

techniques.  Finally, in section 7, we set out a framework for assisting the decision as to which 

modelling technique should be used for risk analysis of spatially transmitted phenomena, emphasizing 

the links between seemingly disparate methods. 

2. POPULATION MODELS 

2.1. SI/SIS/SIR Models 

Compartmental models such as SI, SIS, and SIR (Susceptible, Infected, Recovered) models are by far 

the most well studied transmission models, dating back to the work of Kermack and McKendrick 

(1927).  The intuition behind these models is that the population is divided into two or more 

compartments.  In the simplest form, the SI model, the compartments are one of two states, as a 
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function of time, t: S(t) (Susceptible) or I(t) (Infected).  A simple extension in the SIR model, is to 

include a third compartment, R(t) (Recovered/Removed). 

In their simplest form, the total population is considered fixed, with the proportion in each state 

varying over time, hence S, I, and R being a function of time, t. 

 

Figure 1: SIR Model Compartments 

These models, which are a mainstay of the epidemiological risk community, use differential equations 

that link deterministically the populations in each state through linked differential equations (Hethcote 

2000): 

= − ;            (0) = ≥ 0; 
= − − ;     (0) = ≥ 0; 
= ;                    (0) = ≥ 0 

where S(t), I(t), R(t) are the numbers in the Susceptible, Infected, and Recovered states, such that S(t) 

+ I(t) + R(t) = N; with β & γ being constants. 

The difference between application of the SIR model and the SIS model is that the SIR model is used 

for infectious diseases which confer immunity such as whooping cough or measles, whereas the SIS 

model is used for repeat infections such as influenza, gonorrhea or chlamydia. 

Another extension is for the recovered state to be temporary, where after a delay, the recovered sub-

population becomes susceptible again, producing S → I → R → S transitions. 
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In order to incorporate a spatial dimension into these models, subpopulations can be created where 

hosts move between patches at a certain rate, so the S, I, R populations are further divided Sn, In, Rn 

where n is the index of the spatial region. 

In the simplest form of a SI model, the familiar s-shaped dynamics are exhibited as shown in Figure 2, 

the logistic growth equation: 

= (1 − )         ;         ( ) = 1 − +   

 

Figure 2: Logistic Growth Curve 

We will see in subsequent models that these logistic growth dynamics can be replicated by alternative 

modelling techniques. 

2.2.  (M)S(E)IR Models 

To make the SIS/SIR model more appropriate for specific diseases, Thompson (2016) sets out a 

comprehensive review of SIR (Susceptible, Infected, Recovered / Removed) models for measles and 

rubella, with model extensions for other states including E (Exposed but not infected), and M 

(Maternally Immune) following on from work by Anderson and May (1979, 1992). 
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Hepatitis B is a virally transmitted disease where a latent time period exists where an infected 

individual is exposed but not infectious, denoted by E(t) leading to the S → E → I → R model.  In the 

case of measles, babies are not susceptible to measles virus, and are therefore compartmentalized into 

a M(t) compartment denoting maternal immunity (immunity derived from antibodies transferred from 

the mother to the baby), and the model becomes M → S → I → R.   

Further extensions are possible, where additional compartments can be added, for example in the case 

of tuberculosis, the result of an infection can be that the patient is either recovered or becomes a 

carrier C(t); the vaccinated population can be added as another compartment V(t). 

2.3. Relationship Between SIR and (M)S(E)IR Models 

It should be noted that the SIR model is a special case of the MSEIR model with the M and E states 

omitted, and that the SIS model can be easily derived from the SIR model by instead of using a 

recovered sub-population, these individuals are immediately transferred to the susceptible sub-

population. 

Spatial transmission is implicit in SIR models and extensions: these are population level models, and 

are concerned only with the proportion of the population in each (S, I, R etc.) state, rather than the 

micro-level interactions that make this transmission possible.  

3. CELLULAR MODELS 

3.1. Spatial Grids & Percolation Models 

Grid-based spatial epidemic models have been well studied: Mollison and Kuulasmaa (1985) develop 

a grid-based SIR model where transmission is made through geographical proximity on the grid.  

With (2004) studied the effect of ecological landscapes based on percolation with the aim of 

characterizing landscapes and using these to predict critical thresholds while defining landscape 

connectivity (With and King 1997).  Such ‘neutral landscape models’ are ecological models, where 

terrain, soil type, water, and other disturbances, can be mapped into a landscape which accounts for 

the topology of the landscape. Sikder et al. (2006) consider percolation models, but only in the 
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context of a discrete, grid-based percolation system.  Atkinson et al. (2008) apply a two-dimensional 

lattice to consider whether a nuclear-bomb carrying terrorist could travel through a city undetected 

(modelled by the lattice): a key limitation of their model is the regularity of the modelled system. 

3.2. Cellular Grid Models: The Forest Fire Model 

A simple model of the flow of ‘infection’ over a wide spatial scale can be introduced by the Forest 

Fire model (Bak et al. 1990; Chen et al. 1990; Drossel and Schwabl 1992).  Several iterations of this 

model have been developed: we introduce the simplest model of propagation. 

 

Figure 3: Forest Fire Model showing Progression of a Fire Front and Burnt Trees 

The Forest Fire model is situated on a two-dimensional grid (which is used to represent geographical 

space).  Transitions of states between E (Empty), T (Tree), and F (Fire) in these cells takes place with 

the following probabilities. 

E → T (Tree Growth) - Trees grow with probability pΔt 
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T → F (Local Spread) - Fire spreads locally from a tree that is on fire to their tree neighbors 

with probability hΔt ( hΔt = 1 for the simple model) 

T → F (Lightning Strikes) - Fire spontaneously ignites in a tree with probability fΔt 

F → E ( Tree Removal) - A burning tree leaves an empty cell with probability lΔt ( lΔt = 1 for 

the simple model) 

where Δt is a small time interval through which the simulation steps forward in discrete time steps. 

Note that the T(Tree) and F(Fire) states are analogous to modelling individuals in the Susceptible and 

Infected states in an analytical SIS model as described in §2.1.  The motivation for the Forest Fire 

Model was to demonstrate self-organized criticality, where the size of the cluster of trees that is burnt 

obeys a power law (see also Bak et al. (1987) for a full explanation in an earlier sandpile model: in the 

Forest Fire Model, self-organized criticality is exhibited when both p → 0 and f / p → 0). 

3.2.1. Relationship between Cellular Grid Models and the SIR Model 

Bancal and Pastor-Satorras (2010) show that when p = f = 0, we recover the SIR model; when f = 0 

and p → ∞, we recover the SIS model, while f = 0 means we recover the SIRS model.  Note that this 

is a micro-level simulation of SIR-type models: there is a direct analog between S susceptible (T in 

the Forest Fire model); I (F in the Forest Fire model); and R (E = Removed / Empty in the Forest Fire 

model).  

3.3. From Cellular Grids to Networks 

It could be argued that the Forest Fire model is too simple in that it limits any agent to having a 

maximum of four (using von Neumann) or eight (using Moore) neighbors (Batty et al. 1997) (or six 

neighbors in hexagonal cellular grids where the von Neumann and Moore neighborhoods are 

equivalent).  Physical or social systems are however more complicated: individuals may have many 

more neighbors than this. 
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To avoid the limit on neighbors, a network-based approach can be used.  Before introducing networks 

in more depth in §4.2, we show here that the Forest Fire model can instead be thought of as a network 

model.  To transform the grid representation into a network representation, we construct an adjacency 

matrix for the grid (which shows which nodes are linked to which other nodes by means of edges) and 

construct a network representation as shown in Figure 4(c). 

Note that Figure 4 (a)-(c) are merely different ways of representing the same underlying neighbors: 

Figure 4(a)-(b) represent these neighbors by means of a cellular representation, and Figure 4(c) 

represents neighbors by means of a network representation.  The same numbered cells/nodes are 

connected in Figure 4(b) and Figure 4(c).  Where in a cellular model, (von Neumann or Moore) 

neighbors are considered connected, the network model explicitly connects neighboring cells by 

means of (red) edges between (purple) nodes in Figure 4(c).  
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(a) 

 

(b) 

 

(c) 

Figure 4: Forest Fire Grid (a) cells populated with density ρ = 0.5; (b) cells numbered; (c) network representation 

  

Network representations can be used to model transmission mechanisms, and we show later in §4.3.1 

that the Forest Fire model is a special case of a Random Geometric Graph network model. 

3.4. Voronoi Cells: From Cellular Grids to Domains 

The reduction of spatial information to an adjacency matrix of network connections may appear to be 

losing spatial information, but we can transform the network to a geographic representation by use of 



- 11 - 

 

a Voronoi diagram, where domains of each node are generated (i.e. the area V(pi) for each node pi for 

which that is the closest node in distance d), according to the following formula: 

( ) = | ( , ) , , , = 1 …  

This method has been applied to sampling of contaminated soil (Cox 1999) and in exposure to ozone 

and other pollutants by Fann et al. (2012).  The transmission network connections are made from 

identifying neighboring cells.  Figure 5 (after Wilensky 2006) shows a Voronoi diagram for a random 

distribution of nodes.  A precursor of this method was used as long ago as 1854 to identify the source 

of the London cholera outbreak by plotting the location of water pumps as nodes and identifying the 

catchment area of each pump as a Voronoi cell (Snow 1855) as show in Figure 5(b).  The method of 

using Voronoi structures for Forest Fire modelling has been used by Shi and Pang (2000) and with 

extensions in to spatial interactions of shops, residential areas, and cities.  This allows an extension of 

a 2D cellular automata lattice to a more complex geometry.  

(a) (b) 

Figure 5: Voronoi cells (a) generated from a random geometric distribution of nodes; (b) Snow’s Cholera mapping 
with location of pump node highlighted and the Voronoi cell of that pump in grey outline 
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3.5. Delaunay Triangulation: From Domains Back to Networks 

To transform a cellular model into a network model, the Delaunay triangulation can be calculated 

(Delaunay 1934).  This produces a network (shown as red lines in Figure 6).  Just as the Voronoi 

diagram defines the boundaries between nodes into domains, so that every point in the domain 

polygon is closest to the node residing in that polygon, the Delaunay triangulation connects these 

nodes so that nodes are linked when there is a boundary between the Voronoi cells of the nodes. 

 

Figure 6: Delaunay Triangulation, generated in R using the deldir package 

 
4. NETWORK MODELS 

Zio and Sansavini (2011) use network approaches to discuss criticality in network systems.  This 

interesting study uses a geographical network as an example, that of the Italian power grid, but spatial 

characteristics are lost when transforming a geographic map into a non-geographic network (that is to 

say the criticality is based purely on the network characteristics, and all spatial information is lost).  

However, Gastner and Newman’s (2006) work shows that the topology of the underlying spatial 

structure can be ‘reverse engineered’ from network data, and a more general review of spatial 
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networks can be found in Barthélemy (2011).  Many empirical and theoretical studies have been 

performed on the spread of disease over networks such as the airline network (Colizza et al., 2006).  

We wish to extend this approach from ecological models to a general model for percolation of risk 

across a general system.   

4.1. From Cellular Grids to Networks: A More General Model of Spatial Risk 

The (grid based) Forest Fire model of §3.2 has a limitation that an agent within the system can have a 

upper bound on the number of neighbors: for example, four in a von Neumann neighborhood.  When 

viewed as a network as in Figure 4(c) this means that the degree (number of connections) of each 

node is maximum of four.  We would like to be able to make a more general model of connections 

between agents.  For this we can turn to more general network theory. 

Spatial Graphs 

Networks are collections of nodes, and edges that connect nodes.  Much empirical work has been 

done on the properties of networks, tracing back to Euler’s (1736) solution to the Severn Bridges 

problem – whether it was possible to design a path through the Prussian city of Königsberg (currently 

the Russian city of Kaliningrad) so that each of its seven bridges would be crossed exactly once.  By 

abstracting away space and converting a spatial problem (that of a city map) into a network problem 

of only nodes and edges, the problem becomes more tractable. 

Figure 7(a) shows a Merian (1652) map of Königsberg with rivers highlighted in blue and the seven 

bridges in red.  There are four spatial regions which are highlighted in yellow in Figure 7(b) – the 

north, south, and east of the city, and the central island.  In order to solve the Seven Bridges problem, 

the spatial information is abstracted away until we have a graph in Figure 7(c) which can then be 

analyzed using network techniques. 

4.1.1. Transformation of a Spatial Problem to a Network Model 

In the process of transforming a spatial problem in to a network problem, it is important to note that 

this remains a planar graph – i.e. one where no edges cross: the spatial relations between the points 
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are preserved.  This planarity is important when considering spatial problems through network 

approaches.  A graph of a rail or road network will generally be planar, in that when two roads or rails 

cross, there will (generally) be an intersection.  However, a graph of airline transportation network 

will not – airline routes will cross without an intersection being formed.  This does not however 

preclude treatment of non-planar networks – see Gastner and Newman (2006). 

(a) (b) (c) 

Figure 7: Euler's Transformation of a Spatial Problem into a Network Problem 

4.2. Network Models 

Many non-planar network generation mechanisms have been proposed, but these may have limited 

application in spatial risk analysis (assuming we are on a Euclidean space where a map can be 

generated).  Random, Small World, and Scale Free graphs are shown in Figure 8 and described below.  

In all network models, the connection between nodes may be directed, in which case transmission can 

take place only in the direction indicated by the arrow, or undirected, in which case transmission may 

take place in either direction. 
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Random Graph 
(Directed) 

 

Small World 
(Undirected) 

Scale Free 
(Undirected) 

(a) (b) (c) 

Figure 8 : Archetypal Network Graphs 

  

Random Graphs 

The Random Graph model was introduced in 1959 by Erdős and Rényi (1959) and independently by 

Gilbert (1959).  An Erdős-Rényi random graph is formed simply by connecting each node with each 

other node with probability p.  This however generates non-planar graphs with limited application for 

spatial analysis (although the Erdős and Rényi random graph generation mechanism has been adapted 

to a spatial graph by rejecting links that destroy planarity (Barthélemy 2011:39), and as we shall see, 

the Gilbert random graph becomes a spatial graph under the Random Geometric Graph in §4.3).  An 

issue with the Erdős-Rényi model is that the networks produced do not represent real-world 

phenomena, in that they do not form local clusters of links, and do not exhibit hubs – this is due to the 

degree distribution of Erdős-Rényi networks being a Poisson distribution rather than exhibiting a 

power law. 

Small Worlds 

The Small World network model, introduced by Watts and Strogatz (1998) was motivated by the 

limitations of Erdős-Rényi graphs mentioned above.  Milgram (1967) had asked the question as to 

how many intermediaries were needed to connect two random individuals.  In a series of experiments, 

Milgram identified that the necessary path length was short, which, with earlier challenges by 
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Karinthy (1929), helped to popularize the phrase ‘six degrees of separation’ (Barabási 2002).  A 

Watts-Strogatz Small World network is formed by starting with a ring lattice network of N nodes 

connected to K / 2 neighboring nodes on each side.  The regular lattice is then ‘rewired’ with 

probability p where 0 ≤ p ≤ 1 (the intuition being that when p → 0, the network becomes fully ordered 

and when p → 1, the network tends to a random network).  When N ≫ k ≫ ln N ≫ 1, the rewired 

network exhibits ‘small world’ properties where there is local clustering and hubs are formed.  Watts 

and Strogatz simulate the spread of a disease on such a network, and note that a small world structure 

allows a more rapid spread of disease due to the hubs.  However, the Small World structure is non-

planar.  Prior work had been done by Stoneham (1977), based on a cellular lattice. Jespersen and 

Blumen (2000) have moderated the Small World network to make links closer in geographical space 

to have a higher probability of connection, while Kleinberg (2000) and Sen and Chakrabarti (2001) 

model a two-dimensional grid lattice where connection probability is a function of geographical 

distance. 

Scale Free 

Barabási and Albert (1999) modelled a mechanism for generating networks that exhibit power law 

(‘scale free’) the degree k (number of connections from each node) is distributed according to the 

formula ( )~ .  The mechanism for creating the network is that nodes are added sequentially, 

with the probability of connecting to a node i depending on the degree of that node, = ∑⁄  

where ki is the degree of node i and j are all existing nodes.  As such, preferential attachment occurs, 

where new nodes are preferentially attracted to nodes with higher degree (number of connections), 

which gives rise to the phenomenon of super-spreaders (Lloyd-Smith et al. 2005). 

Spatial variations of this have been proposed by Kaiser and Hilgetag (2004) where nodes are added 

randomly in space and the connection of the new node u to existing nodes v were weighted using a 

probability ( , ) = ( , ) where ( , ) is the Euclidean distance between nodes u and v, and 

α and β are constants.  This allowed power law distributions of edges to be formed. 
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Bancal and Pastor-Satorras (2010) show analytically that under certain parameters, the SIR model of 

§2.1 can be recovered from the forest fire model on complex networks. 

4.3. Random Geometric Network / Poisson Point Processes 

The Random Geometric Graph model first introduced by Gilbert (1961) (applying his previous non-

spatial (1959) random graph model to a spatial plane) has been used to determine the risk of an ad-

hoc wireless network being infected by a worm virus (Nekovee 2007).  Random movement of nodes 

on the geometric space has been successfully used to model a sexual interaction network where 

collisions between nodes generate connections (Gonzalez et al. 2006).  Further models of connection 

mechanisms, weakening the deterministic connection when another node is within distance d of the 

other, and instead modelling ‘soft’ or ‘probabilistic’ connections, has been reviewed by Dettmann and 

Gerogiou (2016).  A Random Geometric Graph is shown in Figure 9 below. 

 

Figure 9: Random Geometric Graph with Uninfected (Green) and Infected (Red) Nodes showing communication 
distance (red circles) 
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4.3.1. Random Graph Model with Regular Locations Decomposes to a Forest Fire Model 

When we constrain the Random Geometric Graph model to have node coordinates that are regular, we 

can see from Figure 10 that this decomposes to the Forest Fire cellular model of §3.2 – we have 

transformed a cellular model in to a network model.  Some work has been done in the physical 

sciences where these are referred to as lattice networks (Ziff 2009) where percolation (Broadbent and 

Hammersley 1957) is the process studied, but this representation has not been considered within the 

spatial transmission field. 

   

(a) (b) (c) 

Figure 10: A Network Representation of the Forest Fire Model by way of a Regular Geometric Graph Model 

 

We need to define a risk metric for network models.  Fortunately, a great deal of work has been done 

in the physical sciences on percolation – when long range connections are made through a chain of 

local interactions – meaning that local links can be transformed into global links across the entire 

system.  The application to risk is summarized by Robert A. Frosch, the fifth Administrator (head) of 

NASA, in his testimony to the National Academy of Engineering Committee on Accident Precursors 

wrote about system failure and identified self-organized criticality and percolation as a model and 

mechanism through which systems fail (Frosch 2004) – the idea being that small errors occur with 

large probability, and large errors occur with low probability (and follow a power law distribution) – 

what has to be prevented is a series of small errors cascading into a catastrophic error. 
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4.3.2. Random Geometric Graph Exhibiting SIR Trajectories 

We study the percolation threshold of the Random Geometric Graph by determining for which 

connection distance d does the system connect fully – when all nodes can be reached from all other 

nodes.  This is termed a giant cluster.  We run a series of repetitions of the model, starting a 

transmission at a random node, and then spreading to neighbors within the connection distance d.  We 

repeat this connection mechanism until no more connections can be made, and determine whether the 

network has formed a giant cluster where all nodes are connected.  We plot the probability of a giant 

cluster forming as a function of the number of nodes and the connection distance d in Figure 11. 

 

 

Figure 11: Percolation from Simulation showing critical points and phase transition 

We further study the percentage of nodes that are connected (rather than measuring whether a giant 

cluster has formed or not) as a function of time.  Results from these experiments are shown in Figure 

12.  We see that these exhibit SIR-like infection logistic curve trajectories (as shown analytically in 

Figure 2), with the asymptotic limit dependent on the density of connections. 
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Figure 12: Percolation over time showing SIR-like behaviour 

5. AGENT MODELS 

5.1. From Networks to Agent-Based Models 

Instead of abstracting away the spatial elements in a network model in §4, we can instead have the 

spatial coordinates of these nodes as an integral part of the model.  By treating nodes as agents, we 

can generate an agent-based model, where we model individual, possibly heterogeneous, agents, and 

give them characteristics that allow more complex and sophisticated interactions, where more 

nuanced transmission mechanisms can be investigated. 

Agent based models have been used in risk studies for bank systems (Robertson 2003), economic 

agents (Holland and Miller 1991), and road traffic (Erol et al. 2000) amongst others. A wide range of 

toolkits can be used to develop agent-based models – for a review of toolkits for agent-based 

modelling, see Robertson (2005). 
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Agent-based models, instead of modelling the system at a system level, model individuals or groups 

of individuals at a micro level.  These ‘agents’ are heterogeneous, but can be modelled as 

homogeneous agents by restricting the variability in the agent parameters.  Agent parameters can 

include age, energy levels, location in space, rules of behavior etc. 

Agent-based models can be used to model SIR-like systems of §2.1 on top of a geographical space 

(using GIS data - §5.2 - or a stylized map).  They can also be used more generally to model the 

transmission of ‘information’ – be it virus spread leading to population-level infection; discontent 

leading to civil unrest; fire leading to forest fires; or terrorists moving through a city to set off a 

nuclear device.  Policy interventions can be modelled using system-level parameters, for example the 

number and locations of respectively, culling regions for disease; of pro- or anti-Government 

propagandists; of fire breaks; police officers deployed. Figure 13 shows an agent-based model where 

transmission takes place by local interaction between agents.  

In the agent-based model in Figure 13, agents are in one of two states: susceptible (green) or infected 

(red).  Agents move randomly around the space, and if they are then in the proximity of an infected 

agent, they transition between susceptible and infected states.  The agent-based model has similarities 

and differences to the random geometric graph model in §4.3: transmission takes place through a 

transmission radius, where the distance between agents is measured, and if a susceptible agent is 

within radius r of an infected agent, they will become infected (either deterministically or with a 

probability that depends on r).  The transmission in the agent-based model in Figure 13 is by 

movement of the agents themselves: the agents themselves can move around space and in doing so, 

infect susceptible agents.  The agent-based model is also more versatile: each agent can be 

heterogeneous in that they can have different susceptibility to infection, different durations in which 

they remain infected (a recovered state can also be included when agents transition from infected to 

recovered).  Entrants and exits of agents to/from the model can also be modelled. 
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Figure 13: Agent-Based Model showing agents with different states 

 

Fundamentally, the fact that agents are (at least in most models) physically located in space, makes 

them an ideal candidate for modelling risk in spatial systems.  As with the models above, changes to 

parameters such as agent density can have a critical, non-linear effect on the system as a whole, and 

such effects may not be able to be modelled using alternative approaches.  Indeed, the landscape can 

be deformed by the presence of agents (e.g. Robertson and Caldart 2009). 

Agent-based models can build on and do not necessarily replace the models described in earlier 

sections of this paper.  Indeed, reducing the complexity of agent behavior (e.g. restricting the location 

of agents in space and restricting the possible connections between agents) means that earlier systems 

can be modelled using agent-based models by not taking advantage of the benefits of modeling agent 

heterogeneity.   
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5.1.1. From Agent-Based Models to Network Models 

Agent-Based Models can be combined with network models, so that the transmission network is 

generated from the locations of the agents (which can move over time meaning a dynamic network is 

created). 

Figure 14 shows an endogenously created social network where social network relations are created 

by reference to height on a landscape (represented by the depth of purple color).  In this model, agents 

compare their height to their nearest neighbor, and if their height is within a height threshold of their 

neighbor, they will stop moving; if the threshold is not reached, the agents will move randomly across 

the space.  The arrows in Figure 14 show the direction of comparison at equilibrium (when all agents 

have stopped moving).  In this way, a social network of connections is generated endogenously, 

which has the side effect of splitting the space into unconnected social network regions similar to the 

domains of Voronoi cells in §3.4. 

 

Figure 14: Social Network Created Endogenously in an Agent Based Model 
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5.2. From Agent-Based Models to Agent-Based GIS Models 

Figure 15 (after Wilensky 2017) shows a Geographic Information System (‘GIS’) where landscape 

and rivers are shown as a multi-layered landscape.  Agents are able to traverse the landscape, taking 

into account attributes of the geographic space such as land type, hydrological features, topology, etc.  

For a review of a GIS adaptation of Snow’s cholera map discussed in §3.4, see Koch (2004).  Uses of 

GIS and Agent-Based Models include Crooks and Wise’s (2013) analysis of aid distribution following 

natural disasters. 

 

Figure 15: Agent-Based Model on a GIS Landscape 

 

5.2.1. GIS Models and Agent-Based Models 

There is a debate as to whether Agent-Based Models on GIS landscapes should be considered separate 

from agent-based models.  Heppenstall et al. (2011) provide a field review of agent-based models of 

geographical systems. Torrens and Benenson (2005) consider the explicit integration of GIS and 

ABM in ‘geographic automata systems’, which merge agent-based modelling and GIS within a 
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specialized modelling environment.  However, several authors take the view that GIS data should be 

incorporated into ABM software.  Brown et al. (2005) discuss this debate further, considering how 

GIS and ABM should be integrated, concentrating on a ‘middleware’ approach which links together 

GIS and ABM modelling platforms, particularly systems such as RePast Symphony, which integrates 

open source GIS, specifically GeoTools (North et al. 2013).  More recent work has used shapefiles 

from GIS data to generate polygons as the topology upon which an agent-based model such as the 

Schelling model (§5.3) can be run (Zhou 2015). 

5.3. From Agent-Based Models back to Cellular Models 

The transmission within cellular grid models uses simple rules (for example, a cell will become 

infected if next to an already infected cell), but these rules do not allow for more complex 

transmission or the movement of hosts.  More recent grid models, inspired by complexity science, 

have used models where hosts can move.  In the Schelling model of spatial segregation (Schelling 

1971), the hosts are modelled as individual agents, each with their own identity.  By varying the 

agents’ proclivity for having neighbors of the same color, segregation of the agents is found to occur, 

meaning that the hosts move around the system.  In this way, dynamics on the cellular grid model are 

extended to include movement of hosts on the cellular grid. 

One major advantage of agent-based models is that they are dynamic: agents can adapt to a changing 

environment.  One of the concepts behind complex systems modelling is the concept of emergence 

(Goldstein 1999) – the properties of a macro system generated by the micro-level interactions 

between the actors in the system.  Schelling (1978) was one of the first to identify this emergence in 

his book Micromotives and Macrobehaviors based on the spontaneous racial segregation observed in 

Chicago.  With only one parameter – the percentage of neighbors of the same color – segregation (a 

macro scale property) takes place without the input from a social planner: the macro level property is 

generated from micro level interactions. 

 



- 26 - 

 

 

Figure 16: Schelling Segregation Model 

 

6. A TAXONOMY OF SPATIAL TRANSMISSION MODELS 

The decision as to which modelling framework (population, cellular, network, or agent) to choose is a 

difficult one, and we build on previous work (Brennan et al. 2006, Riley 2007) to compare the pros 

and cons of the disparate modelling techniques introduced in this paper.  This allows a modeler faced 

with a problem of spatial modelling to determine at a glance whether a choice of modelling technique 

is appropriate for the particular problem that is being studied.  This can be used in conjunction with 

the links between modelling frameworks introduced in §7 to determine whether other methods may be 

more appropriate. 

In Table 1, we set out model characteristics and compare modelling techniques introduced in this 

paper.  In the table, the transmission route indicates how the transmission takes place, whether 

modelled as a neighboring spatial interaction or from node to node in a network; transmission 

interface describes the boundary between hosts; host mobility specifies whether hosts are mobile or 

are assumed to be static; spatial locations of hosts shows whether hosts are constrained to particular 
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positions such as on a grid, domain, within a network, or on continuous or GIS space.  Note that 

population (e.g. SIR) models and agent-based models are different: population models do not 

explicitly model spatial locations (except when sub-divided into spatial compartments), and agent-

based models are versatile in that they may model transmission through the movement of hosts, 

transmission vectors, or neither. 

Transmission Route & Transmission Interface 

The transmission route and transmission interface determine how transmission is considered in the 

model.  In the case of a population that becomes infected, it may not be necessary to explicitly model 

the nature of that transmission: the information that is of interest is the proportion of the population 

that is infected rather than the spatial distribution.  In this case, population models can be used.  

Where however transmission takes place from neighbor to neighbor, the unit of analysis must be 

decided.  We could decide to model each individual agent, but modelling domains may be sufficient, 

for example transmission from town to town or field to field.  In this case, cellular models can be 

used.  Where local transmission occurs, this can either be modelled via network models (Eubank et al. 

2004) or via modelling the individual host movements.  The decision as to which modelling 

framework to use is as much a decision as to the necessary level of abstraction and the unit of 

analysis: population, geographical region, connection, or individual. 

Host Mobility & Spatial Locations of Hosts 

Most transmission takes place where hosts are mobile, i.e. can move in space.  However, whether this 

mobility needs to be considered as part of the modelling process, or whether it can be abstracted 

away, can determine the most suitable type of model to be used: the movement of individuals can be 

an important factor in the transmission of a pathogen (Stoddard et al. 2009).   If hosts move slowly, or 

the transmission speed is much faster than what we will refer to as the ‘drift speed’ (i.e. the averaged 

net movement speed) of the hosts, the movement of individual hosts need not necessarily be 

considered, although the mixing of individuals within a domain may be important in determining the 

persistence within that domain (Cross et al. 2005).    Similarly, the location of hosts may be (a) not 
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considered, (b) within a grid or network structure, (c) within a continuous space, or (d) taken from 

geographic information system (GIS) data. Hosts may also be modelled as being constrained within a 

domain, and host mobility may be considered only at the domain boundary, so that movement from 

one domain to the next is considered, not intra-domain movement.  

6.1.  Multimethod Models 

Modelling techniques have been described in this paper as being independent but linked through the 

connections shown in Figure 17. Models can however be developed that use more than one method 

within the same model.  Shanthikumar and Sargent (1983) provide a classification of ‘hybrid’ models 

where the interaction is between a simulation model and an analytical model, although this can be 

extended to models where there is interaction between two different modelling techniques.  The  

Shanthikumar and Sargent classification can be generalized as follows: multimethod models alternate 

between two independent models; multimethod models run in parallel with interactions through their 

solution procedures; multimethod models use a modelling technique subordinate to another; and 

multimethod models require inputs from the solution procedure of another method.  A variety of these 

combinations within multimethod models that link Agent and Population models include Tekippe and 

Krejci (2016) for psychology; and Helel et al. (2007) for manufacturing systems.    The link between 

Agent and Network models is made by models such as Carley’s BioWar simulation (Carley et al. 

2006), while the link between Population and Network models is made by authors such as Sloot et 

al.’s (2008) study of HIV transmission.  The link between SIR Population models and Cellular models 

has been made by White et al. (2007), while SIS Population models have been developed in a Cellular 

model (Boccara and Cheong 1993).  The link between Cellular and Agent models, the final 

combination, is less strong, as cellular models can be considered a more restrictive subset of Agent 

models, so that a combination of these could be considered to be a Cellular model subsumed into an 

Agent model: for a review, see Clarke (2013). 

More than one technique can be used to model the same system, and these models can be aligned.  We 

leave this more formal ‘alignment of computational models’ or ‘docking’ (Axtell et al. 1996) of the 
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spatial transmission models introduced in this paper for future research.  While comparisons of two 

modeling techniques to model the same system have been performed by authors such as Rahmandad 

and Sterman (2008) and Morecroft and Robinson (2005), the alignment of more than two of the 

modelling techniques described in this paper opens up a rich area for future research.   
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Type 
 

POPULATION 
 

CELLULAR NETWORK AGENT 

Model SI/SIS/SI/ 
M(S)E(I)R Cellular Grids Voronoi Cells Network CA Network models Geometric 

Network / PPP Spatial ABM ABM on GIS 

Section 
Discussed §2.1 / §2.2 §3.2 §3.4 §4.3.1 §4.2 §4.3 §5.1 §5.2 

Representation 
= ⋯ 
 

    
 

   

Transmission 
Route Population Level Spatial 

Neighbors  
Spatial 

Neighbors  
Network 

Neighbors  
Network 

Neighbors 
Spatial 

Neighbors 
Either Spatial 

Neighbors with 
distance d or 

explicit modeling 
of transmission 

vectors 

Either Spatial 
Neighbors with 

distance d or 
explicit modeling 
of transmission 

vectors 

Transmission 
Interface 

Implicit (Not 
Modelled 
Explicitly) 

Neighbors on 
Domain 

Boundary 

Neighbors on 
Domain 

Boundary 

Neighbors 
connected by 
network links 

(edges) 

Neighbors 
connected by 
network links 

(edges) 

Neighbors within 
distance d  

Host Mobility 
Implicit (Not 

Modelled 
Explicitly) 

Fixed within 
Domain 

Fixed within 
Domain Not Mobile Not Mobile Not Mobile Mobile Mobile 

Spatial 
Locations of 

Hosts 

Implicit (Not 
Modelled 
Explicitly) 

Grid Irregular 
Domains Grid Network Continuous Continuous GIS 

Example 
Uses 

Thompson 
(2016) 

Atkinson et al. 
(2008) 

Shi and Pang 
(2000) 

Ziff 
(2009) 

Eubank et al. 
(2004) 

Nekovee 
(2007) 

Robertson and 
Caldart (2009) 

Crooks and Wise 
(2013) 

 
Table 1: Overview of Types of Spatial Models 
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7. A FRAMEWORK FOR SPATIAL TRANSMISSION MODELLING APPROACHES 

There is a tension between simple, tractable models for risk analysis, and complex models with many parameters.  The 

use of simple models to produce interesting results has been advocated by Zagmutt et al. (2016:951).  However, in the 

context of risk within a spatial setting, mechanisms for transmission may be non-trivial.  Seminal risk analysis papers 

have identified the ‘social amplification’ (Kasperson et al. 1988) of risk where there is a transition from a well-ordered 

system into a system that is out of control.   These transitions or ‘tipping points’ are not easily captured by traditional 

models for the analysis of risk.  In the physical sciences, one measure of risk is that of percolation transitions – when a 

system becomes ‘critical’.  Such critical systems are seen in stock market crashes where local action cascades to a 

failure of the entire system, or propagation of small errors such as in space exploration disasters.  A range of different 

modeling techniques should therefore be available to practitioners so these phenomena can be captured where they exist. 

To this end, we introduce a framework for assisting in deciding which modelling technique can be used for a particular 

spatial transmission problem.  Figure 17 sets out this framework.  A series of questions (in blue diamonds) leads to an 

appropriate modelling technique, shown by red rectangles.  An important point to note is that these modelling 

techniques (labelled as red rectangles) can, in certain circumstances, revert to each other, and therefore provide a 

pathway to alternative modelling techniques that can be considered by the modeler.  These links are shown as dotted 

purple links between the modelling techniques.  For each modelling technique and link between these techniques, a 

reference is made to the section number below, where the technique is described in more detail. 

The choice of technique is however not prescriptive, and the dotted purple lines show relationships between the 

techniques.  It is therefore possible that an alternative modelling technique can be chosen if appropriate.  For example, 

to model the logistic curve (see Figure 2), any of the techniques shown may be chosen depending on the required level 

of model granularity.   
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MODELS

§5
AGENT
MODELS

§4
NETWORK

MODELS

§2
POPULATION

MODELS

no no

Transmission 
mechanism

SI/SIS/SIR
§2.1

unknown/population level

Complex space e.g. by 
irregular geography or social 
short cuts

local geographical transmission

(M)S(E)IR
§2.2

Cellular Grids
§3.2

yesMore states 
than 

uninfected/ 
infected?

Are spatial 
locations 

constrained?

Is 
geographical 

location 
important?

Network Models
§4.2

Geometric 
Network/PPP

§4.3

yes

yes

Spatial ABM
§5.1

Is host 
mobility 

important?
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no

yes

§2.3

Euler
§4.1.1

Voronoi
Cells
§3.4

§3.5

§3.3

§4.3.2 §4.3.1

§3.2.1

ABM on GIS
§5.2

§5.1.1
Delaunay 

Triangulation
§3.5

§5.3§5.2.1

 

 Figure 17: Spatial Transmission Modelling Flowchart showing Links (Dotted Purple Lines) Between Modelling Techniques
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8. CONCLUSION 

The choice of modeling technique is often not one that is thought about with much deliberation – it 

may be a matter of ‘the way we do things around here’.  In this paper, we have set out a framework 

for determining not only which is an appropriate method, but also identifying relationships between 

apparently disparate methods.  Modelling is not an exact science – the choice of modelling technique 

is a matter of experience, the availability of data, and the type of system that is being modelled. 

We have presented a framework that guides the reader to an appropriate modelling technique for the 

particular spatial transmission phenomenon under investigation.  It should be noted that a variety of 

modelling techniques can produce the same qualitative outcome – any of the models presented can, 

for instance, replicate logistic growth. 

Furthermore, individual modelling techniques have for too long been considered in isolation, without 

allowing the analytical technique used for the analysis of a problem to change from one modelling 

technique to another.  We have presented links between modelling techniques in order that modelers 

using one technique can explore different methodologies, whether of higher or lower complexity. 

While the decision of how to model should not be taken away from the domain-specific expert, the 

introduction of a framework for deciding which techniques are possible, is a step towards producing 

more valid models, which is the ultimate goal, for practitioners and modelers alike. 

Future research may combine network and analytical models with heterogeneous agents, combining 

network and agent-based approaches, to generate dynamic models of transmission.  Without explicitly 

modelling the spatial component, by situating transmission agents in geographical space, risk analysis 

models may lead to erroneous policy interventions and costs to individuals, companies, and society as 

a whole. 
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