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Spatial validation reveals poor predictive
performance of large-scale ecological mapping
models
Pierre Ploton 1✉, Frédéric Mortier 2,3, Maxime Réjou-Méchain1, Nicolas Barbier 1, Nicolas Picard4,

Vivien Rossi 5, Carsten Dormann 6, Guillaume Cornu 2,3, Gaëlle Viennois1, Nicolas Bayol7,

Alexei Lyapustin8, Sylvie Gourlet-Fleury 2,3 & Raphaël Pélissier 1

Mapping aboveground forest biomass is central for assessing the global carbon balance.

However, current large-scale maps show strong disparities, despite good validation statistics

of their underlying models. Here, we attribute this contradiction to a flaw in the validation

methods, which ignore spatial autocorrelation (SAC) in data, leading to overoptimistic

assessment of model predictive power. To illustrate this issue, we reproduce the approach of

large-scale mapping studies using a massive forest inventory dataset of 11.8 million trees in

central Africa to train and validate a random forest model based on multispectral and

environmental variables. A standard nonspatial validation method suggests that the model

predicts more than half of the forest biomass variation, while spatial validation methods

accounting for SAC reveal quasi-null predictive power. This study underscores how a com-

mon practice in big data mapping studies shows an apparent high predictive power, even

when predictors have poor relationships with the ecological variable of interest, thus possibly

leading to erroneous maps and interpretations.
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T
ropical forests have a key role in Earth’s carbon cycle, but
estimations of stocks and fluxes in these ecosystems remain
limited by large uncertainties1. In the last decade, space-

borne remote sensing (RS) has emerged as a promising way to
generate transparent and globally consistent spatiotemporal
syntheses of aboveground forest carbon stocks at pantropical2,3 or
global scales4. In particular, two reference pantropical carbon-
density maps have been produced using a combination of
environmental and RS predictors2,3. These maps have been used
in high-ranking studies to estimate greenhouse gas emissions5, to
assess the relationships between forest carbon and biodiversity6,
climate7, and land management8–10, or even to evaluate the
sensitivity of new space-borne sensors to aboveground biomass
(AGB)4,11,12. It is therefore very concerning that despite report-
edly high predictive power of their underlying prediction models,
these reference maps show major disagreements13–15 and poorly
correlate with higher-quality AGB maps produced at smaller
scales16. For instance, in the world’s second-largest tropical forest
block in central Africa, the two maps show strikingly opposite
regional patterns of AGB variation14. A number of reasons have
been evoked to explain these discrepancies, including the con-
tamination of RS optical imagery by clouds or the use of different
calibration data sets17. We, however, argue that a first-order
methodological drawback in the validation scheme of mapping
models, which ignores spatial dependence in the raw data, masks
overfitting and leads to highly optimistic evaluations of predictive
power. Here, our objective is to draw attention to this overlooked
yet critical methodological issue in the large-scale mapping of any
ecological variable, reproducing recent efforts in forest biomass
mapping as a study case.

To provide evidence for this issue, we replicated the general
approach for such mapping exercises, which consists of training a
prediction model on a discrete sample of reference AGB data to
project the estimations outside sampling areas, based on a set of
external, supposedly predictive variables. For that purpose, we
used a massive set of reference AGB data derived from more than
190,000 management forest inventory plots spread over five
countries in central Africa18. This unique data set, acquired
between the early 2000s and 2010s, represents a cumulative
sampling area of nearly 100,000 ha and c. 11.8 million trees that
were measured and identified. Inventory data were analyzed
through a standardized computation scheme to provide AGB
estimates at the plot level, which were then aggregated into c.
60,000 1-km pixels18 (Fig. 1). The final set of reference AGB
pixels spans the area from the Atlantic coasts of Gabon and
Cameroon to the Democratic Republic of Congo inlands and thus
covers wide regional gradients in terms of forest composition and
climate19. These AGB pixels constitute our model training data
set, having the same role here as AGB estimations derived from
Geoscience Laser Altimeter System (GLAS) data in other AGB
mapping studies2,3.

The wall-to-wall mapping step from these discrete sampling
points, however, poses the greatest challenge, as no single external
variable provides both exhaustive coverage of the Earth’s surface
and strong sensitivity to dense forest AGB variation. For instance,
a plethora of environmental (e.g., climate, topography, soil types)
variables is available at a global scale, but environmental control
over forest AGB is either weak20 or highly context-dependent16.
Similarly, current space-borne sensors that provide wall-to-wall
measurements, such as radar scatterometers or multispectral
imagers, usually show nonlinear sensitivity to biophysical forest
properties, becoming uninformative beyond a saturation threshold
of ~100 Mg ha−1 of AGB for MODIS and ALOS21, for instance,
which is far below the average AGB of carbon-rich tropical for-
ests22. However, the advent of machine-learning (ML) techniques
has apparently allowed a quantitative leap in the predictive power

of AGB models based on these sensors. Several studies indeed
combined environmental layers with RS data (such as MODIS2,3

or QuikSCAT2) to produce supposedly highly predictive mapping
models immune to saturation and inflation of prediction errors up
to AGB levels as high as 500 Mg ha−1. Despite ongoing debate on
the relationship (or lack thereof) relating dense forest reflectance
to AGB23, it has even been claimed that subtle annual changes in
AGB associated with forest degradation and growth could be
reliably monitored by MODIS-based ML models24.

Following the same approach, we thus used the random forest
(RF) algorithm25 to model dense African forest AGB derived
from the abovementioned inventory data18 using environmental
and MODIS variables as predictors. MODIS data corresponded to
a 10-year composite (2000–2010) of the latest collection (MAIAC
product26), which notably includes improved atmospheric cor-
rections. Environmental conditions were characterized using cli-
mate variables from the WorldClim-2 database27 and
topographic variables derived from SRTM data.

In mapping studies, a classical procedure is to evaluate model
performance and associated errors by randomly selecting a
number (e.g., 10%) of test observations (here, 1-km pixels of
“observed” AGB) that are set aside at the model calibration stage
and only used to quantify model prediction error (validation
step). This procedure, used in pantropical carbon mapping stu-
dies2,3, can be iterated K times with different test and training sets
for model cross-validation (hereafter random K-fold CV).
Instinctively, assessing model prediction error associated with
“new” pixels makes perfect sense since they mimic unsampled
pixels that represent the vast majority of most maps. However,
the random selection of test observations does not warrant
independence from training observations when dependence
structures exist in the data, i.e., when observations close to each
other tend to have similar characteristics. This phenomenon,
known as spatial autocorrelation, indeed has two major unde-
sirable consequences for statistical modeling. A first well-known
issue is that it may lead to autocorrelated model residuals, for
instance, when the model lacks an important explanatory variable
that spatially structures the response. Spatial autocorrelation in
the residuals is problematic because it violates the assumption of
error independence shared by most standard statistical proce-
dures, which often leads to biases in model parameter estimates
and optimistic parameter standard errors28,29. A second and
separate issue, which has received much less attention by ecolo-
gists, is that spatial autocorrelation in the raw data can invalidate
model validation approaches because an observation point cannot
serve as spatially independent validation of nearby training data
points30.

For instance, in our case, an empirical variogram shows that at
a 1-km spatial resolution, forest AGB presents a significant spatial
correlation up to c. 120 km (Fig. 2a). This spatial autocorrelation
can notably be observed in Fig. 1, where patches of relatively
homogeneous AGB values are visible. Climate, topographic and
optical variables considered to model AGB variations are also
strongly structured in the geographical space with autocorrelation
ranges on the order of c. 250–500 km (Fig. 2b). Given the rela-
tively high sampling intensity (and resulting proximity) of forest
inventory data (Fig. 3) and the long range of spatial auto-
correlation in AGB data (>100 km), it is obvious that any given
randomly selected test pixel will not be independent from a large
number of neighboring pixels (Fig. 3c), thereby violating the core
hypothesis of model validation (i.e., the independence between
training and test sets). Again, this second issue is separate from
the first one, in that, as shown in the following, even a model with
no apparent spatial autocorrelation in the residuals cannot be
validated correctly for its predictive ability when the training and
test data sets are spatially dependent.
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Fig. 1 Overview of the study area and field data distribution. Reference forest AGB estimations derived from field inventories, aggregated into 5-km pixels

(for visual purposes), are depicted in a magenta-to-yellow color gradient and are superimposed over the spatial distribution of moist forests61 (gray) and

country borders (black).
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Fig. 2 Spatial autocorrelation within model input variables and residuals. Semivariograms showing spatial autocorrelation of reference pixels AGB (a),

AGB predictors (b), and AGB model residuals (c). In b, we split predictors into three groups (i.e., MODIS, climate, and topography) and only displayed

three predictors by group for illustration purposes. In c, we computed AGB model residuals using a random 10-fold cross-validation (light red) and a spatial

44-fold cross-validation (dark red).
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We thus investigated the consequences of ignoring spatial
dependence in the data when evaluating the predictive power of
AGB mapping models by contrasting the results of cross-
validation procedures ignoring (random K-fold CV) or
accounting for spatial autocorrelation. Following recent metho-
dological guidelines30,31, we tested two alternative approaches
(see “Methods” section for details) that stem from the fairly
simple objective to increase the spatial distance and therefore
independence between training and test sets of data compared to
a classical random K-fold CV. The first approach consists of
splitting observations into K sets based on their geographical
locations rather than at random to create spatially homogenous
clusters of observations. Spatial clusters (Fig. 3a) are then used K
times alternatively as training and test sets for cross-validation
(hereafter spatial K-fold CV). The second approach is similar to a
leave-one-out cross-validation (i.e., where the test set consists of a
single observation) but includes spatial buffers around the test
observations (hereafter B-LOO CV)32. Spatial buffers are used to
remove training observations in a neighboring circle of increasing
radii around the test observations (illustrated in Fig. 3c), thereby

assuring a minimum (and controlled) spatial distance between
the two sets.

Our results show that ignoring spatial dependence in the data
conceals poor predictive performance of the mapping model
beyond the range of autocorrelation in forest AGB, leading to
false confidence in the resulting map and erroneous assessment of
predictor importance, contributing to the debate over the utility
of MODIS data in this context23,33. This very general methodo-
logical issue is also discussed in the broader context of global
mapping models with “Big Data” approaches recently at the
forefront of ecology literature.

Results
Ignoring data spatial structure in cross-validation. We built an
RF model to predict AGB from a combination of nine MODIS
and 27 environmental variables (RFRSE, see the “Methods” section
for a list of variables) and assessed model predictive performance
with a classical random 10-fold CV procedure, i.e., ignoring any
spatial dependence structure in the data. This led to an estimated
R2 of 0.53 and a mean prediction error (RMSPE) of 56.5 Mg ha−1

600 km
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b c

100 km

Field data

8 km

r1

r2

Fig. 3 Assessment of predictive performance in a spatially structured environment. a Clustering of field data into 44 spatial folds (bright colors) used in

spatial K-fold CV, superimposed over the spatial distribution of moist forests61 (light gray) and country borders. b At the regional scale (a few hundred km,

clipped from a), field data (light gray) are aggregated into dense clusters, leaving large swaths of unsampled areas. The outlined region is further expanded

in c. c At the landscape scale (a few tens of km), reference pixel AGB and AGB covariate values are spatially dependent (as seen in Fig. 2a, b), which

violates the independence hypothesis of training and test sets in cross-validation procedures based on random data splitting. We used circular buffers of

increasing radii r to exclude training data (gray) located around the test data (dark gray) in a leave-one-out CV (B-LOO CV) to evaluate how spatial

dependence in the data impacted CV statistics.
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(19%). Model predictions showed a fairly linear relationship with
observed AGB, although the model tended to overestimate low
AGB values and underestimate high AGB values (Fig. 4a), a
common bias pattern with the RF algorithm for which bias-
correction methods have been proposed34. One could, therefore,
conclude from the random K-fold CV that dense tropical forest
AGB can indeed be predicted at 1-km resolution from MODIS
and environmental data while constraining the prediction error to
<20% on average.

Accounting for data spatial structure in cross-validation. We
then tested the same RF model with a spatial K-fold CV approach
to assess the influence of spatial autocorrelation in the data on the
statistics of the model predictive power. In this approach, refer-
ence AGB pixels were split into 44 homogeneous spatial clusters
(Fig. 3a) based on a maximum distance threshold of 150 km for
observations within clusters (i.e., a slightly longer distance than
the range of autocorrelation of forest AGB; Fig. 2a), and clusters
were alternatively used as training and test sets. The spatial 44-
fold CV led to a sharp decline in model R2 (R2= 0.14, Fig. 4b)
and an increase in RMSPE (i.e., 77.5 Mg ha−1, or 26%). By
comparison, a null model that systematically predicted the mean
of the training observations regardless of test observation cov-
ariate values (i.e., a model with no predictors but an intercept)
yielded an RMSPE of 82 Mg ha−1 (27.7%). A comparison of
model residuals derived from random and spatial K-fold CVs also
provides important insights into the insidious effect of spatial
autocorrelation30. Indeed, a common model diagnosis practice
consists of looking for spatial autocorrelation in model residuals.
If present, a range of statistical methods can be applied to
minimize deleterious effects on model parameter estimation35.
Here, even after a random 10-fold CV, the residual structure was
completely absorbed in RFRSE’s predictions (Fig. 2c). Diagnosis
methods that target model residuals would thus fail to detect any
problem in the model’s specification and lead to undue con-
fidence in model predictions.

While implementing a spatial K-fold CV is straightforward, it
requires choosing a size for spatial clusters, which defines the
average distance between training and test data sets. A more
insightful approach, though computationally demanding, consists
of assessing the model predictive power for a range of increasing
distances between training and test data. In this buffered

leave-one-out cross-validation (B-LOO CV) approach32, model
validation is performed on one test observation at a time, which is
buffered by omitting from the training set neighboring observa-
tions in circles of increasing radii (Fig. 2e). We thus implemented
a B-LOO CV on 1,000 randomly selected test observations,
considering each time a buffer distance from 0 to 150 km. In the
absence of an exclusion buffer, i.e., for a buffer radius of 0 km
between training and test observations, the B-LOO CV led to an
R2 of 0.50 on average, in good concordance with results obtained
with a random 10-fold CV. However, increasing the size of the
exclusion radius - hence weakening the spatial dependence
between training and test observations - led to a rapid decrease in
model R2 (Fig. 5a) and a concomitant increase in model RMSPE
(Fig. 5b). For test pixels located at c. 50 km of the nearest training
pixel, R2 decreased to c. 0.15 on average - close to what was found
with the spatial K-fold CV - and became virtually null beyond
100 km. First and foremost, this result shows that there is a strong
spatial component in the variance of pixel AGB explained by the
RFRSE model. This spatial component cannot be predicted by the
model so that its predictive performance actually decreases with
decreasing spatial autocorrelation between training and test data
(as illustrated in Fig. 4c). Second, this result suggests that the
cluster size set in the spatial K-fold CV was not sufficiently large
to move all test pixels out of the autocorrelation range of training
pixels.

A further important question is to quantify the share of model
performance actually pertaining to the considered predictors. We
compared RFRSE to a purely spatial model taking pixel geographic
coordinates as sole predictors (RFXY). RFRSE and RFXY showed
very similar predictive performance, both in terms of absolute R2

and RMSPE values, which similarly varied with buffer radii
(Fig. 5a, b). RMSPE reached a plateau for pixels located beyond
100 km of the nearest training pixel, which coincided with the
average prediction error of the null model. Taken together, these
results show that the MODIS and environmental variables used in
RFRSE have weak, if any, predictive power over forest AGB
variation at the 1-km scale. Rather, RFRSE likely leans on the
geographical proximity and the resulting correlation between
training and test pixels to exploit the spatial distributions of the
model’s predictors to predict the pixel AGB. Simply put, the
model predicts a given pixel AGB based on its spatial - not optical
and environmental - proximity to training pixels. An intuitive
illustration of this phenomenon can be obtained by taking the
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reverse approach of predicting geographical coordinates using the
optical and environmental predictors. Doing this exercise, we
obtained a RMSE on the predicted coordinates of about 25 km.
This means that the combinations of predictor variables are
sufficiently unique to predict pixel approximate location, and
thereby predict the AGB.

Discussion
In this study, we used the largest known data set of reference
AGB estimations derived from field data in tropical forests and
widely used environmental and optical RS data to undertake
spatial prediction using a common machine-learning (ML)
approach. Our results illustrate a serious methodological flaw in a
number of large-scale ecological mapping studies, where the

predictive power of ML models is evaluated using nonspatial
cross-validation.

Assessing model predictive power is indeed a key step in
ecological mapping studies, as the purpose of such models is
precisely to extrapolate the variable of interest beyond sampling
locations. A classical approach to evaluate whether predictive
models are transferable is to withhold a random subset of
observations for model testing (e.g., a random K-fold CV). This
approach has been common practice for a decade in pantropical
AGB mapping studies2,3 and is broadly used in the prolific field of
Big Ecology36. This approach, which assimilates test observations
to independent new observations, is inherently invalid in a
geospatial context because ecological data are almost always
autocorrelated37. This means that observations located within the
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range of spatial autocorrelation in the data, which exceeds 100 km
in our case study on forest AGB in central Africa, should be
treated as pseudoreplicates rather than new observations in model
validation schemes. Ignoring spatial dependence in model cross-
validation can create false confidence in model predictions and
hide model overfitting, a problem that has been well documented
in the recent literature on statistical ecology30,32,35,38. This issue
was particularly evident in our results: (1) the model explained
more than half of the AGB variation in the vicinity of sampling
locations but completely failed to predict AGB at remote loca-
tions, showing that it was strongly locally overfitted, and (2) the
random K-fold CV scheme did not allow the diagnosis of model
overfitting and provided overly optimistic statistics of model
predictive power. It is even likely that ML algorithms that opti-
mize the local adjustment of predictions in the variable space39

amplify the problem. Indeed, overfitting was less obvious when
using linear modeling approaches with the same data set (e.g.,
Supplementary Fig. 1).

The methodological flaw documented here likely affected previous
pantropical AGB mapping studies based on ML algorithms2,3, which
may largely explain their disagreements. Indeed, reference sets of
AGB observations in these studies were derived from space-borne
LiDAR data from the Geoscience Laser Altimeter System (GLAS),
assuming these data provide, when calibrated with field measure-
ments, accurate estimates of forest AGB40. The GLAS sampling
layout takes the form of a set of footprints regularly spaced out every
170m along tracks but separated by tens of km across tracks. It is,
therefore, reasonable to think that once aggregated at the mapping
resolution (i.e., 500m or 1 km), the distance between observed AGB
pixels along GLAS tracks is considerably smaller than the range of
autocorrelation in the data (as illustrated in Supplementary Fig. 2).
This layout likely facilitates overfitting by ML algorithms, in a way
similar to what was observed in our study case. Proving this claim is,
however, not possible, as the data used in these studies, including the
geolocation of reference AGB data, which have been heavily filtered
through quality-check procedures, have not been publicly released.
However, our results show that including high-quality annual
composite MODIS images as predictors in RFRSE did not permit the
establishment of a predictive relationship for closed-canopy,
dense tropical forest AGB, despite a fivefold variation factor in the
reference data set (c. 100–500 Mg ha−1). Our observations shed
strong doubts on the pertinence of such variables to spatialize
AGB variations in closed-canopy tropical forests3, let alone to
monitor subtle changes in carbon dynamics associated with degra-
dation or growth24. Rather, our results likely reflect the well-known
saturation of medium- and high-resolution passive optical data23,41

beyond 100 Mg ha−1 and confirm the overoptimistic assessment of
MODIS-based AGB models made in previous studies - an issue that
has already been raised in the very thematic of large-scale forest
AGB mapping42.

It should, however, be emphasized that our results are contingent
upon the MODIS variables used in this study, which, for instance,
do not account for intra-annual variation in vegetation reflectance
(as in, e.g., ref. 2), and we cannot exclude that other approaches to
exploit the MODIS signal may improve its potential for forest AGB
inference. We also do not claim that the AGB maps published in2,3

are necessarily wrong: they would simply not be better than the
spatial kriging of the GLAS data because of the low predictive
power of underlying mapping models beyond the range of data
autocorrelation. This suggests that projections between GLAS tracks
are likely very uncertain and that models are not transferable to
unknown locations, whether in space (i.e., to a different region) or
in time (i.e., to future conditions, e.g., based on a change in MODIS
reflectance).

Going forward, recent and upcoming Earth observation mis-
sions dedicated to documenting variations in forest structure by

space-borne LiDAR (the Global Ecosystem Dynamics Investiga-
tion) or SAR (BIOMASS missions) will undoubtedly greatly
advance our understanding of forest AGB distribution across the
tropics. Sampling of the territory by airborne or UAV-LiDAR
scanning is also becoming denser across the tropics43–47. At the
same time, this study shows that a better valorization of com-
mercial forest inventory data is possible, while concerted
efforts are ongoing to develop national forest inventories
and improve the coordination between scientific plot net-
works48,49. We argue that the unprecedented amount of data
produced by these efforts will provide a unique opportunity to
clarify, develop, and extensively validate a conceptual modeling
framework for biomass mapping from high- or medium-
resolution multispectral data, which could allow leveraging dec-
ades of image archives.

Beyond the context of forest AGB mapping, our analysis clearly
shows that a random K-fold CV does not provide sufficient
information to demonstrate the predictive ability of a mapping
model. This questions recent high-impact publications of several
global-scale maps50–52 that completely overlooked the issue of data
autocorrelation. A recent example is a global-scale map of nema-
tode worms50, which was built with an RF model based on a set of
73 environmental, optical, and anthropogenic predictors. Following
a random 10-fold CV, the authors obtained an R2 of 0.86, which
they interpreted as a sign of high model predictive strength. Using
their publicly available data set and a purely spatial RF model
(based on geographic coordinates alone), we obtained fairly similar
results (R2= 0.8, Supplementary Fig. 3), indicating that simple
spatial kriging would be as predictive as the proposed model and
that any interpretation of the ecological determinism of these
organisms should be done with extreme caution. We thus would
like to draw attention to the fact that in an ecological or biological
context, where processes inherently create a positive or negative
correlation between neighboring locations, rigorous, spatially
explicit assessment of ML models is required and should become
the norm for every large-scale mapping study.

Methods
Reference aboveground forest biomass data. The reference set of forest
aboveground biomass (AGB) pixels, i.e., The Congo basin forest AGB (CoFor-
AGB) data set has recently been publicly released18. CoFor-AGB was built from
management forest inventories of 113 logging concessions spread across dense
forests of central Africa (Fig. 1). In total, CoFor-AGB contains 191,563 plots,
covering a cumulative sampling area of 94,513 ha and representing 11.82 × 106 tree
measurements and 1,091 identified taxa. A standardized computation scheme was
applied across all inventories to estimate plot AGB for all trees ≥10 cm in diameter
at breast height. The computation scheme was evaluated using higher-quality
scientific inventory data18. The estimated average error of the 0.5-ha management
forest plot AGB was 15%, which was only moderately higher than that based on
scientific inventory plots (c. 8.3%)18. Plot AGB estimations were aggregated at the
1-km spatial resolution, resulting in 59,857 unique pixels across the study area.

Environmental and MODIS data. To create spatial predictive models of forest
AGB, we stacked freely available and seemingly relevant global map layers char-
acterizing local environmental conditions (including climate, topography, and soil
types) and MODIS-derived vegetation reflectance properties. Covariates were
cropped to the extent of the study area (Fig. 1), aligned and resampled to a 1-km
spatial resolution.

Concerning climate conditions, we first assembled monthly average statistics of
precipitation (P), temperature (T), solar radiation (SR), and water vapor pressure
(WP) from the Worldclim2 database27 for the period 1970–2000, monthly
potential evapotranspiration (PET) from the Global-PET database53 and statistics
of annual cloud cover (CC) frequency derived from MODIS54. Monthly P and T
were used to compute the 19 standard WorldClim bioclimatic variables, including
annual trends (i.e., the mean of monthly means), seasonality (i.e., standard
deviation and coefficient of variation of monthly means for T and P, respectively)
and indicators of extreme conditions (e.g., mean temperature of the driest quarter).
Annual trends and seasonality (i.e., standard deviation of monthly means) were
also computed for SR and WP. We further computed several climate layers from
monthly P and PET, including an index of annual water availability (WA, defined
as the ratio of cumulative P to PET)55, the maximal climate water deficit56, and a
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simple metric of monthly water deficit (defined as P PET). The monthly water
deficit metric was used to identify dry season months (with a negative deficit) and
to compute dry season-specific climate layers, including the length (number of
months) and severity (cumulative water deficit, mean and maximum SR and WP)
of either all dry season months throughout the year or only months pertaining to
the longest dry season. The full set of climate variables was then submitted to
principal component analysis to identify and remove highly collinear variables
along the principal climate variation axes. We finally retained the 22 variables listed
in Table 1. Topographic variables were computed using the 30 m SRTM data and
included the average elevation, slope, height above the nearest drainage (HAND)57,
and convexity within the 1-km pixels. Soil types were extracted from the
Harmonized World Soil Database (HWSD)58 and merged into a class containing
Arenic Acrisols (sandy soils) and a mixed class containing all other soil types
following ongoing analyses on the influence of soil types on the spatial distribution
of forest floristic and functional compositions across the Congo basin.

Vegetation reflectance data corresponded to the MODIS Collection 6 product
processed using the latest version of the MAIAC algorithm26. The MODIS data cube
was generated at a 1-km resolution as a stack of 8-day composite images for the
2000–2010 period, which corresponds to the period of field data collection. For each
pixel, we retained only the best quality observations based on aerosol optical depth
(AOD) and bidirectional reflectance function (BRF) quality flags and generated 10-
year reflectance mean and standard deviation layers for each spectral band.
Following3, we used the reflectance mean layer to compute EVI2 and NDII vegetation
indices and selected the same 9 reflectance variables as AGB covariates (Table 1).

Spatial forest biomass modeling and pixel exclusion. The set of reference AGB
pixels was filtered to focus the analysis on forested pixels with stable canopy cover
from 2000–2010 and reliable pixel-level AGB estimations. First, we used the 30-m
Landsat forest classification for the year 20005 to remove pixels with less than 89%
vegetation cover at the beginning of the study period (i.e., 11,566 pixels or c. 19.3%
of the initial data set) and hence reduce the potential indirect influence of canopy
cover on the relationship between reflectance variables and forest AGB23. The
choice of the 89% threshold was a trade-off between maximizing pixel forest cover
and avoiding discarding all pixels on the western side of the study area, where all

forested lands are assigned a 90% vegetation cover in the Landsat product, which
likely reflects atmospheric pollution in optical Landsat data. Second, to maximize
the representativity of field plots within the pixels, we removed all pixels con-
taining fewer than 3 field plots (i.e., 19,240 pixels or 39.8% of the filtered data set).
This resulted in a minimal sampling rate of 3 * c. 0.5 ha by 1 km pixels (with a
mean ± standard deviation of 4.14 ± 1.03 plots), equivalent to the rate found in
pantropical AGB mapping studies (e.g., 5 * c. 0.25 ha GLAS shots2). Third,
acknowledging that any substantial change in pixel land cover during the period
covered by the MODIS image composite (2000–2010) might unduly blur the
relationship between field-derived AGB and MODIS reflectance variables (e.g.,
conversion of forests to cultures after the time of field inventories), we also
excluded pixels characterized by (i) a cumulative forest loss between 2000 and
2010 greater than 5% of the pixel area and (ii) a nonnull percentage of fire
occurrence between 2000 and 2012 (736 pixels or 2.5% of the filtered data set).
Forest loss data were obtained from the 30-m Landsat vegetation cover change
product5. The percentage of fire occurrence data was obtained from the burnt area
product (version 2) of the Land Cover project of the European Space Agency
Climate Change Initiative (ESA CCI-LC)59. Finally, we screened pixel spectral
responses in each MODIS variable and removed obvious outliers, defined as pixels
whose spectral value was more than 10 standard deviations from the mean (90
pixels or 0.2% of the filtered data set). The final data set contained a total of 28,225
unique pixels (Supplementary Fig. 4) that were used as input in Random Forest25

for spatial forest AGB modeling.

Assessing model prediction error. We used three strategies to cross-validate
models and generate statistics of the model predictive power (Fig. 6).

The first strategy corresponded to a common K-fold cross-validation whereby
observations were randomly split into K sets (random K-fold CV), ignoring any
structure of spatial dependence in the data. Model training was then performed
iteratively on K-1 sets, each time withholding a different set for testing. The vector
of so-called independent AGB predictions was then used to generate CV statistics,
namely, the squared Pearson’s correlation between observed AGB values and AGB
predictions (noted R2) and the root mean squared prediction error (RMSPE). Here,
we used K= 10, a common choice made by modelers.

Table 1 Mean and range of forest AGB and AGB covariates.

Code Description Mean (range)

1. AGB Aboveground biomass (Mg ha−1) 296 (49–678)
2. T_am Annual mean temperature (°C) 24.3 (22.1–26.5)
2. Prec_am Annual mean precipitation (mm) 1713.6 (1125.9–2864.5)
2. CC_am Annual mean cloud cover frequency (%*100) 7806.5 (6246.4–9758.3)
2. Vapor_m Annual mean water vapor pressure (kPa) 2.5 (2.2–2.9)
2. SolRad_m Annual mean solar radiation (kJ m−2 day−1) 14,705.8 (11,500–18,236.2)
2. WA Water availability (unitless) 1 (0.8–2)
3. T_seaso Temperature seasonality (standard deviation*100) (°C) 78.7 (40.7–185.9)
3. Prec_seaso Precipitation seasonality (coefficient of variation) (mm) 51.8 (22.4–83)
3. Vapor_sd Standard deviation of monthly water vapor pressure (kPa) 0.1 (0–0.3)
3. SolRad_sd Standard deviation of monthly solar radiation (kJ m−2 day−1) 1410 (546.7–2251.2)
4. T_mdq Mean temperature of the driest quarter (°C) 23.6 (20.3–26.2)
4. T_mwarmq Mean temperature of the warmest quarter (°C) 25.2 (23.2–27.5)
4. Prec_dm Precipitation of the driest month (mm) 31.2 (0–105.6)
4. DS_long_length Long dry season length (number of months) 4.4 (2–6)
4. DS_cumu_length Dry season(s) length (number of months) 5 (2–8)
4. DS_long_sever Long dry season severity (mm) 316.8 (49.1–602.6)
4. DS_cumu_sever Dry season(s) severity (mm) 332.6 (49.1–602.6)
4. CWD Maximal climate water deficit (mm) −172.7 (−558.8–0)
4. Vapor_DS_m Mean monthly water vapor pressure during the longest dry season (kPa) 2.4 (2–3)
4. Vapor_DS_max Max. monthly water vapor pressure during the longest dry season (kPa) 2.5 (2.2–3)
4. SolRad_DS_m Mean monthly solar radiation during the longest dry season (kJ m−2 day−1) 14613.2 (8971.9–19218.7)
4. SolRad_DS_max Max. monthly solar radiation during the longest dry season (kJ m−2 day−1) 15519.6 (9572.9–20211.4)
5. Elev Elevation (m) 532.6 (102–935.4)
5. Slope Slope (°) 9.3 (1–43.2)
5. HAND Height above the nearest drainage (m) 35.4 (0–449.9)
5. Convexity Convexity (unitless) 39.9 (9.8–53.6)
6. Soil_types Soil types (unitless) –

7. R_mean RED (mean - unitless) 0.048 (0.000–0.254)
7. NIR_mean NIR (mean - unitless) 0.444 (0.291–0.567)
7. G_mean Green (mean - unitless) 0.067 (0.000–0.158)
7. SWIR1_mean SWIR 1 (mean - unitless) 0.44 (0.288–0.534)
7. SWIR2_mean SWIR 2 (mean - unitless) 0.234 (0.156–0.306)
7. SWIR3_mean SWIR 3 (mean - unitless) 0.086 (0.000–0.196)
7. SWIR3_sd SWIR 3 (sd - unitless) 0.03 (0.004–1.14)
7. EVI2 EVI2 (unitless) 0.635 (0.238–0.857)
7. NDII NDII (unitless) 0.676 (0.308–1.032)

Variables are split into seven categories, namely, the dependent variable (1) and covariates representing mean climate conditions (2), climate seasonality (3), extreme climate conditions (4), topography

(5), soil types (6), and MODIS reflectance (7).

Topographic variables were computed using 30-m STRM data over 1-km2 pixels.
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The second strategy, i.e., spatial K-fold CV, differs from the random K-fold CV
in the way observations are split into spatially structured sets. Here, the objective is
to group observations into spatially homogeneous clusters of larger size than the
range of autocorrelation in the data to achieve independence between CV folds.
Spatial clusters were generated using a hierarchical cluster analysis (complete
linkage method) of the distance matrix of pixel geographical coordinates and a
clustering height (i.e., the maximum distance between pixels within each cluster) of
H= 150 km, i.e., a slightly longer distance than the range of autocorrelation of
forest AGB (Fig. 2a).

The third strategy, i.e., the buffered leave-one-out cross-validation (B-LOO
CV), is inspired by the leave-one-out cross-validation scheme, in that a single
observation is withheld for model testing per model run. In the case of B-LOO CV,
however, observations within a distance r from the test observation are excluded
from the model training set. Training and testing the model for a range of r values
allows investigation of the influence of spatial proximity between test and training
observations on model prediction error. Here, we considered 16 r values (from 0 to
150 km by 10 km); hence, the model was calibrated and tested 16 times per test
observation. To generate B-LOO CV statistics presented in Fig. 5a, b, we (1)
generated AGB predictions for 100 randomly selected test observations (i.e., 1600
model runs), allowing computation of the model’s R2 and RMSPE for each r value,
and (2) repeated this procedure ten times (i.e., 16,000 model runs) to provide the
average and standard deviation of CV statistics over the 10 repetitions. It is worth
noting that we integrated a safeguard against predictive extrapolation within the
iterative B-LOO CV procedure. Because the geographical and environmental
spaces are closely linked, removing training observations in the spatial
neighborhood of a test observation may remove the environmental (and optical)
conditions found at that test location from the model’s calibration domain. The
model’s prediction at that test location would thus amount to a case of predictive
extrapolation (i.e., forcing the model to predict outside the calibration domain),
leading to an inflation of model error that we did not intend to consider here. For
each randomly selected test observation, we thus first removed neighboring
observations at the largest r value and verified that optical and environmental
conditions at the test location still fell within the range of values found in the
model’s calibration domain. If not, we discarded the test observation and randomly
selected a new observation.

Predicting pixel geographic location. We used a multivariate implementation of
the random forest algorithm60 to predict pixel geographic coordinates (i.e., latitude
and longitude) from the set of optical and environmental predictors listed in
Table 1. The model was trained on 500 pixels randomly drawn from the full set of
reference AGB pixels.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
All data analyzed in this study are publicly available. The raster of observed AGB pixels is

available through figshare (https://doi.org/10.6084/m9.figshare.11865450).

Environmental data used in this study were obtained from the following sources:

Worldclim (https://worldclim.org/data/worldclim21.html), Global-PET (https://cgiarcsi.

community/data/global-aridity-and-pet-database/), Cloud Cover (http://www.earthenv.

org/cloud), SRTM (http://srtm.csi.cgiar.org/srtmdata/), and Harmonized World Soil

Database (HWSD, http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases).

The MODIS MAIAC product cropped over the study area is available through figshare

(https://doi.org/10.6084/m9.figshare.12751628). Data sets used to filter pixels were

obtained from the following sources: Global Forest Change (https://data.

globalforestwatch.org/datasets/tree-cover-2000) and CCI-LC database (Burn Area

product v.2.0, 2000–2012 epoch, http://maps.elie.ucl.ac.be/CCI/viewer/download.php).

An access link to the nematode worm data set is provided in the original publication

(https://gitlab.ethz.ch/devinrouth/crowther_lab_nematodes). The GLAS data used in

Supplementary Fig. 2 are available from www.theia-land.fr/en/product/lidar/.

Code availability
The analysis scripts for the random cross-validation, spatial cross-validation, and

buffered leave-one-out cross-validation are available through figshare (https://doi.org/

10.6084/m9.figshare.12790085).
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