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Abstract

Spatial patterns for seven soil chemical properties and textures were examined in two fields in southern Spain
(Monclova and Caracol, province of Seville, Andalusia) in order to identify their spatial distribution for the imple-
mentation of a site-specific fertilization practice. Two sampling grids of 35×20 and 35×35 m were established in
Caracol and Monclova, respectively. Fourteen and eight georeferenced soil samples per hectare were collected at
two depths (0–0.1 and 0.25–0.35 m) in early November 1998 before fertilizing and planting the winter crop. Data
were analyzed both statistically and geostatistically on the basis of the semivariogram. The spatial distribution
model and spatial dependence level varied both between and within locations. Some of the soil properties showed
lack of spatial dependence at both depths and at the chosen interval (lag h). Such was the case for clay, organic
matter and NH4 at Monclova; and clay and NH4 at Caracol. Bray P and exchangeable K showed a strong patchy
distribution at any field and depth. It is important to know the spatial dependence of soil parameters, as management
parameters with strong spatial dependence (patchy distribution) will be more readily managed and an accurate
site-specific fertilization scheme for precision farming more easily developed.

Introduction

Precision farming can be considered a new crop man-
agement system, in which inputs are limited to where
they are needed. In recent years, many scientific ef-
forts and economic resources have been spent on
measuring the spatial variability of crop yield and for
the distribution of weeds or soil nutrients, with the aim
of minimizing pesticide use and optimizing crop yield
(NRC, 1999). Developing accurate application maps
for site-specific fertilization is critical in implementing
precision farming technology and requires a profound
and precise knowledge of the variable soil factors.
Spatial variability drives precision agriculture because
soil parameters with little or no spatial dependence
will not be conducive to site-specific management and
will be managed on the average (Pierce and Nowak,
1999).

Positioning technology is made possible by the use
of global positioning systems (GPS). Further, spraying
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devices are available which inject nutrients near the
nozzles, making it possible to vary the rate of applic-
ation of nutrients over short distances (Tyler, 1993).
Therefore, a variable application strategy could be
based on a map showing soil chemical (pH, nitrogen,
phosphorus, and potassium) properties, positioning
devices and sprayer capable of varying the nutrient
application in response to soil variability. This strategy
will make it possible to reduce fertilizer use, costs and
environmental pressure.

Geostatistics is concerned with detecting, estim-
ating and mapping the spatial patterns of regional
variables, and is centered on the modeling and in-
terpretation of the semivariogram. This instrument
distinguishes variation in measurements separated by
given distances (Goovaerts, 1997; Isaaks and Srivast-
ava, 1989; Journel and Huijbregts, 1978; Rossi et
al., 1992). Semivariogram models provide the neces-
sary information for kriging, which is a method for
interpolating data at unsampled points.

To plan an optimal decision support scheme for
site-specific farming, the semivariogram has proven
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to be an excellent way of exploring the structure of
spatial variation in agricultural soils (Cambardella and
Karlen, 1999; Geypens et al., 1999; Webster and
Oliver, 1992). McBratney and Pringle (1999) have
used geostatistical techniques to estimate average and
proportional semivariograms based on previously re-
ported semivariograms. They discussed the possibility
of managing an average semivariogram for different
conditions and they warned us about the paradox of
seeking a site-specific strategy with only minimal data
acquisition.

Most soil spatial variability studies have been car-
ried out in diverse temperate countries, e.g., UK
(Blackmore et al., 1998), Belgium (Geypens et al.,
1999), Denmark (Heisel et al., 1999), The Netherlands
(Verhagen, 1997), Germany (Domsch and Wendroth,
1997), or at Iowa, USA (Cambardella and Karlen,
1999). Although these works provided very precise
information for site-specific recommendations, similar
information from soils under semiarid Mediterranean
conditions was lacking and needed to be assessed.
More precisely, it is necessary to consider the fact that
spatial variability of soils depends on the specific soil
studied. In other words, although the texture and the
organic matter in the same field may be fairly static,
soil mineral nitrogen may be highly variable over time
as well as in space (Geypens et al., 1999).

The research herein presented is part of a 3-year
collaboration with pioneering programs on large farm-
ing operations to determine the profitability of preci-
sion management under Mediterranean conditions and
to test if expectations for reducing fertilizer recom-
mendation according to a site-specific strategy would
be possible under such conditions.

Materials and methods

Study area, sampling design and laboratory analysis

Soil analyses were conducted on samples from two
fields located at Monclova and Caracol (province of
Seville), both within one of the most important and
technologically advanced farming areas in Andalusia
(southern Spain, 38◦–36◦ N and 4◦–6◦ W). According
to the USDA soil series (1975), the soil at Monclova
was classified as Alfisol, and that at Caracol as Vertic
Xerochrep.

Sampling took place before winter crop fertiliz-
ing and planting. Each sampling area was 6 and 11.2
ha at Caracol and Monclova, respectively. Both were

located within larger fields (of around 40 ha), and
their borders were at least 50 m from the main bor-
ders of these fields. The farms were separated by
around 100 km from each other, and management
practices consisted in a 2-year wheat (Triticum aes-
tivum L.)–sunflower (Helianthus annuus L.) rotation
under conventional tillage (ploughing), weed control
and fertilization practices.

Two systematic sampling grids were established,
one at Caracol of 35×20 m and another at Mon-
clova of 35×35 m. Soil samples were collected at two
depths (0–0.1 m, topsoil, and 0.25–0.35 m, subsoil)
at the grid intersection points to produce a total of
84 and 80 sampling points per depth at Caracol and
Monclova, respectively. Each soil sample was col-
lected as follows: four 500-g soil cores were taken
within 2 m radius of each grid point and one more
core right at the intersection point (node). The posi-
tion of each node was geo-referenced using a DGPS
(differential global positioning system). These five
samples were mixed thoroughly to provide a bulked
sample and to ensure that the sample was repres-
entative of the surrounding area. Just 500 g of the
bulked sample were finally taken and kept at 4 ◦C
for further laboratory analysis. Soil samples were air-
dried overnight and passed through a 2-mm sieve.
The texture (% sand, % silt and % clay) was meas-
ured using a Bouyoucos densimeter; organic matter
content (%) was determined using Redox-Electrode
(Methrom Titroprocesador), and pH was measured in
a 0.1 mol KCl-solution. Bray extractable phosphor-
ous concentrations (P, ppm) were measured by col-
orimetry using ascorbic acid–ammonium molybdate
reagents, and exchangeable potassium (K, meq/100 g)
was measured using atomic absorption spectrophoto-
metry (AAS). NH4(ppm), NO3 (ppm) and NO2 (ppm)
were determined by colorimetry in SKALAR.

Statistical analyses

Exploratory statistical analysis

Data were analysed statistically. Classical descriptors
were determined, such as mean, maximum, minimum,
standard deviation and skewness of data distribution.
The descriptive statistics of the soil data suggested
that they were all normally distributed (skewness of
between 1 and −2) and therefore no transformation
was used for geostatistical analyses.
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Geostatistical analysis
The soil properties data were analysed using geos-
tatistics. A semivariogram was calculated for each
soil property as follows (Isaaks and Srivastava, 1989;
Journel and Huijbregts, 1978):

γ (h) = 1

2N(h)

N(h)∑

i=i

[z(xi + h) − z(xi)]2,

where γ (h) is the experimental semivariogram value
at distance interval h; N(h) is number of sample value
pairs within the distance interval h; z(xi), z(xi + h)

is sample values at two points separated by the dis-
tance interval h. All pairs of points separated by
distance h (lag h) were used to calculate the experi-
mental semivariogram. Lag h varied between 15 and
30 m depending on soil property, depth and loca-
tion. Several semivariogram functions were evaluated
to choose the best fit with the data. Semivariograms
were calculated both isotropically and anisotropically.
The anisotropic calculations were performed in four
directions (0, 45, 90 and 135 ◦) with a tolerance of
22.5 ◦ to determine whether semivariogram functions
depended on sampling orientation and direction (i.e.,
they were anisotropic) or not (i.e., they were iso-
tropic). Direction 0 ◦ corresponds to E–W and 90◦
to the N–S direction. The least-squares procedure in
VARIOWIN software was used to fit various models to
semivariograms. No nested semivariogram structures
were used, as we were able to obtain adequate fits with
a simple structure.

Spherical, exponential, Gaussian or pure nugget
models were fitted to the empirical semivariograms.
The parameters of the model: nugget semivariance,
range, and sill or total semivariance were determined.
Nugget semivariance is the variance at zero distance;
sill is the lag distance between measurements at which
one value for a variable does not influence neigh-
boring values; and range is the distance at which
values of one variable become spatially independent
of another. To define different classes of spatial de-
pendence for the soil variables, the ratio between the
nugget semivariance and the total semivariance or sill
was used (Cambardella et al., 1994). If the ratio was
≤25%, the variable was considered to be strongly spa-
tially dependent, or strongly distributed in patches; if
the ratio was between 26 and 75%, the soil variable
was considered to be moderately spatially dependent;
if the ratio was greater than 75%, the soil variable was
considered weakly spatially dependent; if the ratio was
100%, or the slope of the semivariogram was close

to zero, the soil variable was considered non-spatially
correlated (pure nugget).

Semivariogram models were cross-validated (trial-
and-error procedure) to check the validity of the
models and to compare values estimated from the
semivariogram model with actual values (Isaaks and
Srivastava, 1989). Differences between estimated and
experimental values are summarized using the follow-
ing cross-validation statistics: mean estimation error
(MEE), mean squared error (MSE) and standardized
mean squared error (SMSE) (Hevesi et al., 1992;
Isaaks and Srivastava, 1989).

Once cross-validated, the parameters of the
semivariogram models described above were used in
the construction of maps by kriging for each soil prop-
erty determined for each field. Ordinary point kriging
was performed on a regular grid of 7 m and produced
unbiased estimates of each soil property value at un-
sampled points. Soil mapping of each single property
was achieved by kriging. Thus, site-specific fertilizer
application maps could be developed.

Geostatistical analysis, cross-validation and kri-
ging were conducted on measured and calculated vari-
ables using VARIOWIN and GEOEAS software, and
contour maps were generated using SURFER, contour
mapping software based on GEOEAS kriged values
showing the estimated soil properties and the standard
deviation of the kriged estimates.

Results

Exploratory statistical analysis

The summary of the statistics for soil parameters are
shown in Tables 1 and 2 (for Monclova and Caracol,
respectively). The parameter values strongly varied
both between and within fields. Low coefficients of
variation (CV between 1 and 8%) for pH and organic
matter content (OM), medium CV (from 16 to 49%)
for texture, K and P, and high CV (> 50%) for NO3,
NO2 and NH4 were found in general at each location.
Comparing mean values, lower pH, OM and P were
observed at Caracol than at Monclova, while mean
values of NO2 and NH4 were similar for the two loca-
tions. In contrast, higher K and NO3 values were found
at Caracol.

Results from the two depths showed that, in gen-
eral, the means of soil variables were similar regard-
less of sample depth, although trends indicated that
soil parameters were slightly higher in the upper than
in the lower layer.
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Table 1. Descriptive statistics and geostatistical analysis of soil parameters in the topsoil (0–0.1 m depth) and subsoil (0.25–0.35 m
depth) at Monclova (Seville, southern Spain)

Soil property Depth Mean Min Max CV SD Skew Range Nugget Sill (§) Spatial (∗)MSE r (∗)SMSE
(m) (%) (m) semivariance distribution,

(#) Ratio (%) model

Sand (%) 0–0.1 57.4 44 80 15 8.5 0.65 0 69 (100) 69 Pure Nugget 70.2 0.14 1
0.25–0.35 55.6 36 76 14 7.8 –0.01 0 57 (82) 69 W, Exponential 51 0.39 1

Silt (%) 0–0.1 23 4 40 50 11.6 –0.31 29.4 2.8 (2.1) 133 S, Exponential 95 0.55 1
0.25–0.35 22.4 4 48 50 11.2 –0.22 74.5 25 (20) 122 S, Spherical 91.5 0.55 1

Clay (%) 0–0.1 19.6 4 44 55 10.8 0.22 0 113 (100) 113 Pure Nugget 112.1 0.17 1
0.25–0.35 22 4 44 46 10.2 0.30 0 102 (100) 102 Pure Nugget 96.8 0.31 1

pH 0–0.1 78.8 7.60 8.08 1 0.10 –0.61 66 0.003 (30) 0.01 M, Spherical 0 0.38 1.1
0.25–0.35 78.8 7.54 8.04 1 0.09 –0.96 21.2 0 (0) 0.08 S, Exponential 0 0.24 1.1

O.M. (%) 0–0.1 1.6 1.3 2 6 0.1 0.47 0 0.02 (100) 0.02 Pure Nugget 0 0.1 1
0.25–0.35 1.5 1.2 1.8 7 0.1 0.33 0 0.016 (100 0.016 Pure Nugget 0 0 1

P (ppm) 0–0.1 15.5 5 30 28 4.4 0.48 27.4 0.6 (3.1) 19.2 S, Exponential 17.8 0.31 1.1
0.25–0.35 12.7 6 31 33 4.2 0.11 67.4 3.24 (18.5) 17.3 S, Spherical 13.6 0.45 1.1

K (meq/100 g) 0–0.1 1.2 0.6 2.1 25 0.3 0.24 34.5 0 (0) 0.1 S, Exponential 0 0.55 1.1
0.25–0.35 1.1 0.6 2.1 27 0.3 0.61 32.4 0 (0) 0.1 S, Gaussian 0 0.55 2.2

NO3(ppm) 0–0.1 7.1 0 44 75 5.3 0.39 0 27.2 (100) 27.2 Pure Nugget 26.7 0.31 1
0.25–0.35 7.9 1 17 42 3.3 0.23 65.7 0.8 (7.5) 10.6 S, Spherical 8.1 0.55 1

NO2 (ppm) 0–0.1 2 0.2 5 55 1.1 0.57 35.6 0.27 (24) 1.1 S, Gaussian 1.1 0.45 1.3
0.25–0.35 1.9 0.2 5 58 1.1 0.72 0 1.2 (100) 1.2 Pure Nugget 1.2 0 1

NH4(ppm) 0–0.1 1.9 0.4 3.6 42 0.8 0.10 0 0.53 (100) 0.53 Pure Nugget 0.6 0.14 1
0.25–0.35 1.9 0.1 4.4 42 0.8 0.55 0 0.6 (100) 0.6 Pure Nugget 0.6 0 1

(#) Percentage of the sill due to the nugget.
(§) Spatial distribution (S – Strong spatial dependence; M – Moderate spatial dependence; W – Weak spatial dependence; Pure Nugget
– no spatial correlation), and spatial distribution model.
(∗) MSE – Mean squared error expressed as percentage of the sample variance; SMSE – standardised mean squared error.

Geostatistical analysis

Anisotropic semivariograms did not show any differ-
ences in spatial dependence based on direction, for
which reason isotropic semivariograms were chosen.
The geostatistical analysis indicated different spatial
distribution models and spatial dependence levels for
the soil properties both between and within the loca-
tions. For example, at Monclova (Table 1) clay, OM
and NH4 at both depths; sand and NO3 in the top-
soil; and NO2 in the subsoil did not follow a spatially
correlated distribution (Figure 1a,b for OM, slope of
semivariogram was close to zero or maximum, 100%,
nugget semivariance/sill ratio). In contrast, silt, P
and K at both depths; NO2 in the top layer; and
pH in the subsoil were strongly distributed in patches
(Table 1, Figure 2a for P and Figure 2c for K). The
remainder (pH in the top) was moderately spatially
correlated. Exponential, spherical, pure nugget and
Gaussian models were fitted to the soil characteristics.

At Caracol (Table 2) soil properties such as silt
and pH in the topsoil (Figure 3a), clay in the subsoil,
and NH4 at both depths were not spatially correl-
ated. Other parameters were strongly distributed in
patches (P, NO3 and NO2 at the top layer; pH in the

subsoil (Figure 3b); and OM and K at both depths),
and the remainder (sand at both depths; clay at 0–
0.1 m depth; and silt, P, NO3 and NO2 at 0.25–0.35
m depth) were moderately spatially correlated. Ex-
ponential, pure nugget and spherical models were
fitted.

Exchangeable K and Bray’s P exhibited a strong
distribution in patches at any depth and location (Fig-
ure 2a–d at Monclova). Range values varied from 21.2
m (pH in the subsoil) to 74.5 m (silt in the subsoil)
at Monclova (Table 1); and from 13.9 m (NO2 in the
topsoil) to 104 m (P at 0.25–0.35 m depth) at Caracol
(Table 2).

Discussion

The spatial variation in soil parameters observed
should not be surprising, since the values of the vari-
ables are usually the result of an intrinsic variation
in soil properties and management practices as previ-
ously reported by Mallarino et al. (1999). Classical
statistics did not show the strongly patchy distribution
of some soil parameters and provided mean values that
produced medium and large CV for all the soil prop-
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Table 2. Descriptive statistics and geostatistical analysis of soil parameters in the topsoil (0–0.10 m depth) and subsoil (0.25–0.35 m depth)
at Caracol (Seville, southern Spain)

Soil property Depth Mean Min Max CV SD Skew Range Nugget Sill (§)Spatial (∗)MSE r (∗)SMSE
(m) (%) (m) semivariance distribution,

(#)Ratio (%) model

Sand (%) 0–0.1 33.4 4 56 40 13.4 –0.86 84.8 85 (46) 184 M, Spherical 156.5 0.55 1.1
0.25–0.35 34.4 4 60 32 11 –0.96 94.4 66 (57) 116 M, Spherical 142.6 0.31 1.2

Silt (%) 0–0.1 40.4 24 52 14 5.8 –0.05 0 32 (100) 32 Pure Nugget 33.2 0.39 1
0.25–0.35 39.6 16 56 16 6.3 –0.55 14.5 26 (68) 38 M, Exponential 40.7 0.45 1.1

Clay (%) 0–0.1 26.3 8 56 46 12 0.92 29.9 61 (42) 145 M, Exponential 154.2 0.71 1
0.25–0.35 26.4 12 52 37 9.7 0.95 0 87 (100) 87 Pure Nugget 103.8 0.77 1.1

pH 0–0.1 7.73 7 7.99 1 0.12 –1.17 0 0.01 (100) 0.01 Pure Nugget 0 0.63 1
0.25–0.35 7.73 7.51 8.03 1 0.09 0.13 17.6 0 (0) 0.1 S, Exponential 0 0.55 0

O.M. (%) 0–0.1 1.3 1 1.8 8 0.1 0.99 44.8 0 (0) 0.02 S, Spherical 0 0.63 1.1
0.25–0.35 1.3 1.1 1.7 8 0.1 0.71 24.1 0 (0) 0.01 S, Exponential 0 0.77 1.1

P (ppm) 0–0.1 11.3 3 31 49 5.6 0.95 28.3 0.7 (2) 34 S, Exponential 23.5 0.31 1
0.25–0.35 10.2 3 23 46 4.7 0.49 104 9 (43) 21 M, Spherical 14.7 0.89 1

K (meq/100 g) 0–0.1 1.9 1.3 4 21 0.4 1.09 54.6 0 (0) 0.1 S, Spherical 0.3 0.31 1.12
0.25–0.35 1.8 1.1 3 22 0.4 0.91 37.7 0.01 (10) 0.1 S, Exponential 0.2 0 0.9

NO3 (ppm) 0–0.1 23.2 9 79 44 10.2 1.25 31.7 10 (10) 101 S, Exponential 110.8 0.45 1
0.25–0.35 20.8 2 93 59 12.2 0.86 16.5 54 (40) 136 M, Exponential 173 0.63 1.13

NO2 (ppm) 0–0.1 2 0.1 7.5 80 1.6 1.26 13.9 0 (0) 2 S, Exponential 3 0.77 1
0.25–0.35 2 0.1 8 80 1.6 1.19 26.1 1.6 (64) 2.5 M, Exponential 2.6 0.71 1

NH4 (ppm) 0–0.1 2 0.4 5 50 1 0.70 0 1 (100) 1 Pure Nugget 1 0.37 1
0.25–0.35 2 0.1 8 55 1.1 1.09 0 1.3 (100) 1.3 Pure Nugget 1.3 0.36 1.1

(#) Percentage of the sill due to the nugget.
(§) Spatial distribution (S – Strong spatial dependence; M – Moderate spatial dependence; Pure nugget – no spatial correlation), and spatial
distribution model.
(∗) MSE– Mean squared error expressed as percentage of the sample variance; SMSE – standardised mean squared error.

erties except pH and OM. Cambardella and Karlen
(1999) and Geypens et al. (1999) found similar general
trends and reported CV in agreement with those report
the one in this study.

With regard to the geostatistical analysis, the
semivariogram function tests the null hypothesis that
soil variable does not exhibit spatial dependence at
the chosen lag h. The large nugget semivariance and
the non-spatial dependence for some soil variables,
e.g., clay at Monclova (Table 1), suggest that the
lag h apparently did not characterize the spatial vari-
ation and that an additional sampling of these vari-
ables at smaller lag distances and in larger numbers
might be needed to detect spatial dependence, if any
is indeed present. However, under no research cir-
cumstances (which means in a commercial context) a
larger sampling density usually is not feasible. It is ne-
cessary to consider if sampling costs could exceed the
value of the resulting fertilizer savings and if a greater
sampling density will result in a more accurate nutri-
ent recommendation map (Birrell et al., 1996). At the
moment other alternative techniques, including aerial
photographs of bare soil to obtain the soil fertilization
status, are being undertaken at the same locations.

In contrast, because the nugget semivariance of the
semivariogram function for some soil parameters, e.g.,
NO3 in the subsoil, and P and K at both depths at Mon-
clova (Table 1), was very small and approached zero,
the scale of lag h closely matched the spatial variation
of them.

When the distribution of soil properties is strongly
or moderately spatially correlated, the average extent
of these patches is given by the range of the semivari-
ogram. There were big differences between ranges of
the different soil variables, as had been already repor-
ted in several other studies, e.g., it was 80 m for total
organic N at an Iowa (USA) farm (Cambardella et al.,
1994), for nitrate and ammonium it was 20 m at an old
field community in Michigan (USA) (Robertson et al.,
1997), and less than 2 m for nitrate in a southern Que-
bec (Canada) forest ecosystem (Lechowicz and Bell,
1991).

A larger range indicates that observed values of the
soil variable are influenced by other values of this vari-
able over greater distances than soil variables which
have smaller ranges (Samper-Calvete and Carrera-
Ramírez, 1996). Thus, sand had a range of more than
80 m at both depths at Caracol (Table 2). This indicates
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Figure 1. (a) Experimental (circles) and modelled semivariogram of the organic matter content (OM,%), and (b) Map of estimated OM, in the
topsoil (0–0.1 m depth) at Monclova.

that sand values influenced neighboring values of sand
over greater distances than other soil variable, e.g.,
NO2, which had a range of less than 30 m at both
depths.

Soil properties exhibited both a consistent and non-
consistent spatial pattern regarding the sampling depth
at both locations. There were soil properties, e.g., NO3
and pH, following a different spatial distribution at
each depth showed both no patchy distribution in the
topsoil, and a strong spatial dependence in the subsoil

(Table 1 and 2 for Monclova and Caracol, respect-
ively). At the same time, there were soil characteristics
that showed a similar trend at both sampling depths
as well. Thus, texture (sand, silt and clay), OM, P,
K and NH4 at Monclova, and sand, OM, K and NH4
at Caracol, followed the same spatial pattern at both
depths (Table 1 and 2).

Cambardella and Karlen (1999) reported a sim-
ilar consistent and non-consistent spatial distribution
according to sampling depths, e.g., exchangeable K
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Figure 2. (a,c) Experimental (circles) and modelled semivariograms for phosphorus (ppm) and potassium (meq/100 g), (b,d) Maps of estimated
phosphorus (ppm) and potassium (meq/100 g), in the topsoil (0–0.1 m depth) at Monclova.

exhibited three spatial patterns: strong spatial depend-
ence at topsoil (0–0.05 m depth), moderate from 0.05
to 0.2 m depth, and no spatial correlation in the lower
layer (0.2–0.3 m), while pH or OM showed a strong
spatial dependence at all depths. They hypothesized
that intrinsic variations, such as intensive tillage, may
control the strongly spatially dependent soil variables.

Our study demonstrated that, even though the
former agricultural management was similar, the spa-
tial distribution and spatial dependence level of soil
properties can be different. These results support one
of the objectives of this paper concerning the import-
ance of collecting information in every agricultural
region to know how a site specific system should
be undertaken. Long-term field management histories

should be known since even the same farming practice
clearly affected both spatial distribution and the level
of spatial dependence.

The clearly patchy distribution of P and K at
both locations, together with the results reported by
Pierce and Nowak (1999) regarding the low temporal
component of variability that P and K usually show,
indicated the feasibility of developing a strategy for a
site-specific application of P and K at least under the
most representative farming management practices of
southern Spain.

We can conclude that prospects for precise man-
agement of P and K increase as the degree of spatial
dependence of P and K increases. On the other hand,
precision N management (including nitrate, nitrite and
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Figure 3. (a) Map of estimated pH in the topsoil (0–0.1 m depth), (b) map of estimated pH in the subsoil (0.25–0.35 m depth) at Caracol.
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ammonium) would be more complex than precision
management of P and K because the spatial distri-
bution and spatial dependence of N varied between
locations and depths.
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