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Abstract To obtain accurate spatial distribution maps of

soil organic carbon (SOC) and total nitrogen (TN) in the

Hetian Town in Fujian Province, China, soil samples from

three depths (0–20, 20–40, and 40–60 cm) at 59 sampling

sites were sampled by using traditional analysis and geo-

statistical approach. The SOC and TN ranged from 2.26 to

47.54 g kg-1, and from 0.28 to 2.71 g kg-1, respectively.

The coefficient of variation for SOC and TN was moderate

at 49.02–55.87% for all depths. According to the nugget-

to-sill ratio values, a moderate spatial dependence of SOC

content and a strong spatial dependence of TN content

were found in different soil depths, demonstrating that

SOC content was affected by both extrinsic and intrinsic

factors while TN content was mainly influenced by

intrinsic factors. Indices of cross-validation, such as mean

error, mean standardized error, were close to zero,

indicating that ordinary kriging interpolation is a reliable

method to predict the spatial distribution of SOC and TN in

different soil depths. Interpolation using ordinary kriging

indicated the spatial pattern of SOC and TN were charac-

terized by higher in the periphery and lower in the middle.

To improve the accuracy of spatial interpolation for soil

properties, it is necessary and important to incorporate a

probabilistic and machine learning methods in the future

study.
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Introduction

In order to offset difficult economic conditions, forests and

their understories were cleared and used as fuelwood in

rural areas of China (Wang et al. 2012). Long-term

acquirements for fuelwood in underdeveloped areas have

resulted in vegetation degradation, as well as other envi-

ronmental issues, such as greenhouse effect and soil ero-

sion (Heltberg et al. 2000; Foell et al. 2011; Wang et al.

2012). In addition, anthropogenic activities in these areas

have caused the degradation of terrestrial ecosystems (Bai

et al. 2014). In most cases, these anthropogenic activities

have profound effects on soil properties, especially on soil

organic carbon (SOC) and total nitrogen (TN) (Xin et al.

2016; Zhang et al. 2016; Yuan et al. 2017; Wang et al.

2018).

Soil organic carbon is considered as an important indi-

cator to assess soil fertility and quality, because of its

significant influences on soil physicochemical properties

(Sullivan et al. 2005; Wang et al. 2015). Furthermore, SOC

plays a major role in the global carbon cycle (Mirzaee et al.

Project funding: This study was supported by the National Natural

Science Foundation of China (Grant Nos. 31770760 and 41401385),

the Research Foundation Program of Fujian Water Department (Grant

No. MSK201705), the scholarship program of China Scholarship

Council (Grant No. 201707877012), and Science Fund Project of

Forestry College, Fujian Agricultural and Forestry University (Grant

No. 61201400833).

The online version is available at http://www.springerlink.com

Corresponding editor: Yu Lei.

& Jian Liu

fjliujian@fafu.edu.cn

1 College of Forestry, Fujian Agriculture and Forestry

University, Fuzhou 350002, China

2 University Key Lab for Geomatics Technology and Optimize

Resources Utilization in Fujian Province, Fuzhou 350002,

China

123

J. For. Res. (2020) 31(6):2385–2394

https://doi.org/10.1007/s11676-019-01014-8

http://www.springerlink.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s11676-019-01014-8&amp;domain=pdf
https://doi.org/10.1007/s11676-019-01014-8


2016; Xin et al. 2016; Chu et al. 2018). As a key deter-

minant of soil fertility and quality, TN also plays a vital

part in generating and maintaining soil productivity in

agricultural ecosystems (Wang et al. 2015; Zhang et al.

2016; Ma et al. 2018). Therefore, knowledge of the spatial

variability in SOC and TN is indispensable to evaluate

ecosystem productivity (Córdova et al. 2012).

Studies on spatial variability of SOC and TN have been

one of the hotspot in soil ecology in the past decades

(Bonmati et al. 1991; Nyamadzawo et al. 2008; Liu et al.

2014; Wang et al. 2015; Xiong et al. 2015). Different

interpolation techniques, such as ordinary kriging, cokrig-

ing, and inverse distance weighting have been used for

predicting the spatial distribution of soil properties (Guan

et al. 2017; Ghorbanzadeh et al. 2019). Compared to other

interpolation methods (e.g., cokriging), ordinary kriging is

easy to conduct without additional variables, which lead to

the reduction of work and does not decrease the accuracy

(Tang et al. 2016). Additionally, ordinary kriging presents

advantages in mapping the spatial distribution of soil

properties compared to other interpolation techniques, as it

is the most effective linear estimator which can provide the

best and linear unbiased estimates (Yang et al. 2016).

Therefore, ordinary kriging has been widely applied into

the spatial variability of SOC and TN. For example,

Elbasiouny et al. (2014) reported the spatial variability of

SOC and TN pools in the northern of Nile delta using

ordinary kriging. Wang et al. (2015) characterized the

spatial patterns of SOC and TN within 0–80 cm for

minesoils in the Loess Plateau area with ordinary kriging.

Yang et al. (2016) analyzed the spatial distribution of SOC

and TN for farmland ecosystem in northern China using

ordinary kriging.

In China, a growing number of studies have been con-

ducted in different areas on the spatial variability of soil

properties, including Loess Plateau (Wang et al. 2015),

Tibetan Plateau (Dai et al. 2014), and the Three Gorges

Reservoir area (Teng et al. 2017). Nevertheless, few studies

were carried out in red soil region, particularly in red soil

region of southern China (Mirzaee et al. 2016). Hetian

Town, one of the most degraded areas in this region, has

experienced severe soil erosion from intensive and exten-

sive human activities (e.g., deforestation and farming). To

mitigate soil and water loss, the local government has

implemented a series of ecological restoration measures

(e.g., closed forest measures), leading to a significant

change in soil nutrients. Nevertheless, there is a general

lack of the knowledge on the variations of spatial pattern

for SOC and TN in response to ecological restoration.

Additionally, our understanding on the variations of spatial

pattern for soil properties with the change of sampling size

is limited. Thus, the aims of this study were to: (1)

investigate SOC and TN status at three soil depths (i.e.,

0–20, 20–40, and 40–60 cm) in the hilly red soil of

southern China; (2) build the spatial distribution maps of

SOC and TN by means of geostatistical methods based on

59 analyzed soil sample; and (3) determine if this samples

number is reasonable to monitoring points for evaluating

the effects of ecological restoration measures.

Materials and methods

Study site

The study area is situated in the Hetian Town, Fujian

Province, China (25�330–25�480N,116�180–116�310E), and

the total land area reaches approximately 296 km2 (Fig. 1).

It is well-known for severe soil erosion and affluent rare

earth ore. This town belongs to a typical subtropical

monsoon climate, with a mean frost-free period, mean

annual temperature and mean annual precipitation of

260 d, 19 �C and 1621 mm (Yao et al. 2019; Yu et al.

2019). The main soil type of this town is acid red soil,

derived from crystalline granite. The dominant land use is

woodland which mainly consist of Pinus massoniana for-

ests. The P. massoniana forests are distributed mainly in

poor soil, and most of which are pure forests. Historically,

this town was covered by a lush forest but years of

deforestation and clearings resulted in severe vegetation

degradation and soil erosion. The dominant erosion type of

this study site is water erosion. Ecological restoration

measures, such as the arbor-bush-herb mixed plantation

and closed forest measures, have been widely implemented

in this town since the 1980s. Although these measures have

brought significant effect on the reduction of soil erosion,

the ecological environment condition in the town is still

pessimistic.

Soil sampling and analysis

Soil was sampled from 59 sampling plots in January 2015

(Fig. 1). The sampling plots were established with a size of

666.7 m2 (i.e., 25.82 m 9 25.82 m). GPS was used to

determine the coordinate positions of the plots. In each

plot, a soil pit was excavated and soil were sampled from

three soil layers: topsoil (0–20 cm), eluviation layer

(20–40 cm), and subsoil (40–60 cm). For each soil depth,

approximately 1 kg weight was collected for soil chemical

analysis. In the laboratory, plant residues (e.g., visible root

and leaf litter) and rocks were removed, and then all soil

samples were air-dried and passed through a sieve

(0.15 mm) prior to measuring the SOC and TN contents

(Yao et al. 2019). SOC was determined using the

K2Cr2O7–H2SO4 wet oxidation approach (Tang et al.

2386 X. Yao et al.

123



2017). TN was measured using a CN elemental analyzer

(Yu et al. 2019).

Data analysis

Descriptive statistics

Outliers of the whole dataset were removed before

descriptive statistics. In this study, the outliers were defined

as extreme values which were caused by errors in soil

sampling and analysis. Extreme values were considered as

any data value is not within the three standard deviation of

the mean (�x� 3s, where �x and s are the average value and

the standard deviation value for each soil variable,

respectively) (Rosemary et al. 2017). After detecting and

removing the outliers, the mean, median, minimum, max-

imum, standard deviation (SD), coefficient of variation

(CV), skewness and kurtosis for each soil variable were

obtained from the rest entire dataset and within each soil

depth (Yao et al. 2019). At the same time, we used one-

sample Kolmogorov–Smirnov (K–S) method to test whe-

ther the soil variables values satisfy the normal distribution.

All statistical analyses were conducted on the SPSS version

21.0.

Geostatistical analyses

Geo-statistical analysis uses the semivariogram to generate

the spatial prediction of each soil variable (Zhang et al.

2016). The semivariogram (c(h)) of a soil variable for the

lag distance h was calculated using Eq. 1 below:

c hð Þ ¼
1

2N hð Þ

XN hð Þ

i¼1

Z xið Þ � Z xi þ hð Þ½ �2 ð1Þ

where Z(xi) and Z(xi ? h) are the measured values for a

soil variable at location xi and xi ? h, N(h) represents the

number of data pairs separated by the lag h.

To explore the spatial structure of SOC and TN, dif-

ferent models (i.e., spherical, exponential model, and

Gaussian model) was used. The best-fitted model for a soil

variable was selected based on the maximum model effi-

ciency and the minimum residuals. Thereafter, the optimal

parameters of the range (a), the nugget (C0) and the sill

(C0 ? C) were derived from the best-fitted models (Yao

et al. 2019), and then ordinary kriging interpolation

approach was applied to generate the distribution maps of

SOC and TN. The predicted value Ẑ xð Þ at unsampled

locations was calculated as below (Yao et al. 2019):

Ẑ xð Þ ¼
Xm

j¼1

kjZ xið Þ ð2Þ

where m is the number of the adjacent observations used

for the prediction and kj is the weight. In this study, the

semivariogram analysis and continuous distribution of

SOC and TN contents were conducted on the GS? 9.0 and

ArcGIS 9.3, respectively.

Model validation

The interpolation quality of SOC and TN was evaluated by

the leave-one-out cross-validation (Guan et al. 2017). In

this study, ordinary kriging model validation was carried

out using the determination coefficient (R2), mean error

(ME), root mean square error (RMSE), and mean stan-

dardized error (MSE) (Zhang et al. 2016; Yao et al. 2019).

Fig. 1 Geographic locations of the study area and sample plots
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Determination of reasonable sampling number

To determine the reasonable sampling points, CV was

applied. Because of the high spatial variability of soil

properties in the regional scale, a large number of sampling

points were needed to obtain reliable and accurate esti-

mation (Rodeghiero and Cescatti 2008). The coefficient of

variation, as a parameter, was used to estimate the number

of observation points (m), which can be estimated using the

following model (Rodeghiero and Cescatti 2008):

m ¼
CV2t2a
E2

ð3Þ

where m denotes the reasonable sampling number, CV

represents the coefficient of variation for a soil variable, ta
represents the Student’s t statistic at the a confidence level,

E is the specified error limit, which represents the sample

mean in an allowable error. Further details about the

specified error limit can be found in Rodeghiero and Ces-

catti (2008).

Results and discussion

Brief results of SOC and TN contents

Among those samples, only two samples showed a very

high SOC (49.79 g kg-1) or TN (4.35 g kg-1) value at

20–40 cm and were considered as outliers. The mean SOC

contents were 19.31 g kg-1 at 0–20 cm, 17.47 g kg-1 at

20–40 cm and 16.10 g kg-1 at 40–60 cm (Table 1), indi-

cating that the mean SOC decreased with increased soil

depths, which was in agreement with results obtained in

other studies (Yang et al. 2016; Guan et al. 2017). Nev-

ertheless, the SOC contents were lower than those in sec-

ondary forest (20.50–60.36 g kg-1), irrespective of soil

depth (Guan et al. 2015). The dissimilarity was mainly due

to the sparse vegetations and the presence of soil erosion in

our study, which produced less SOC than secondary forest

mostly covered with lush vegetations. Additionally, the

mean SOC contents were approximate to the median values

in different soil depths, with a lower mean values com-

pared with the median values, demonstrating a positive

skewness can be found in the data (Mirzaee et al. 2016). A

similarity between mean value and median value for SOC

in different soil depths has been reported in previous study

(Wang et al. 2015). One-sample Kolmogorov–Smirnov test

manifested that all of the values of SOC were normal

distribution (p[ 0.05) (Table 1).

Similarly, the mean TN in different soil depths were

characterized by 0–20[ 20–40[ 40–60 cm, ranging from

0.28 to 2.71 g kg-1. In addition, the mean TN contents

were smaller than the median TN contents in all depths

except the depth of 40–60 cm. One-sample Kolmogorov–

Smirnov test manifested that all TN contents were normal

distribution (p[ 0.05) (Table 1).

The CV was used for assessing the degree of dispersion

of the variables (Yao et al. 2019). If the CV was less than

10%, the variable has low variability, if the CV was

between 10% and 90%, the variable was defined as mod-

erate variability, if the CV was greater than 90%, and the

variable was defined as high variability (Fang et al. 2012;

Yao et al. 2019). Our study indicated the CVs varied from

52.87% to 55.87% for SOC and 49.02% to 50.00% for TN

in different soil depths (Table 1), which generally greater

than most of results in other studies (She and Shao 2009;

Wang et al. 2015). Therefore, all soil properties at different

depths showed a moderate variability.

Spatial variability in SOC and TN contents

Semivariograms were extensively adopted to determine the

spatial variability in soil properties (Goovaerts 1999).

Similar to many related findings (Rossi et al. 2009; Wang

et al. 2015), Gaussian and exponential models can accu-

rately reflect the spatial variability in SOC across different

soil depths; however, only Gaussian models showed

superiority for all depths of TN (Fig. 2 and Table 2).

Among the variables analysis, the R2 values of the optimal

models for all depths of SOC were below 0.9, whereas,

Table 1 Brief results of SOC and TN (n = 57)

Soil

properties

Depth

(cm)

Mean

(g kg-1)

Median

(g kg-1)

Minimum

(g kg-1)

Maximum

(g kg-1)

SD

(g kg-1)

CV

(%)

Skewness Kurtosis pk-s

SOC 0–20 19.31 20.79 2.86 47.54 10.21 52.87 0.27 - 0.32 0.872

20–40 17.47 19.50 2.74 44.34 9.76 55.87 0.34 - 0.26 0.274

40–60 16.10 16.17 2.26 35.39 8.64 53.66 0.19 - 0.77 0.757

TN 0–20 1.23 1.33 0.34 2.71 0.61 49.59 0.28 - 0.99 0.209

20–40 1.14 1.23 0.35 2.65 0.57 50.00 0.27 - 0.83 0.243

40–60 1.02 0.94 0.28 2.22 0.50 49.02 0.41 - 0.76 0.302
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their values for all depths of TN were over 0.9. It indicated

that TN distribution was more stable than SOC (Table 2),

and the human factors might be the possible reason for this

phenomenon (Huang et al. 2007).

Nugget values was commonly regarded as the degree of

spatial variability result from random factors (e.g., sam-

pling error) (Goovaerts 1999; Yao et al. 2019). In the

present study, the nugget values for SOC contents were

higher than the values of TN, mainly because of the larger

magnitude of SOC contents. Moreover, the nugget values

for SOC and TN declined with soil depth increased

(Table 2). The sill values reflect the total spatial variation

result from structural factors (e.g., soil and vegetation

types) (Fang et al. 2016; Yao et al. 2019). Similar to the

nugget values, the sill values of SOC and TN decreased

with the depths increased (Table 2). Furthermore, the sill

values of SOC and TN were positive for different soil

depths, implying that there were varieties of positive sub-

strate effects result from sampling error (Yao et al. 2019).

The nugget-to-sill ratio (C0/(C0 ? C)) was used for

determining the degree of spatial dependence for soil

nutrients (Guan et al. 2017). Based on the criterion defined

by Cambardella et al. (1994), when the C0/(C0 ? C) is

lower than 25%, the variable was regarded as having spa-

tial dependence; moderate for C0/(C0 ? C) between 25 and

75% and weak for C0/(C0 ? C) larger than 75%. A weak

spatial dependence for a soil variable may be primarily due

to extrinsic sources of variability (i.e., soil factors imposed

on a site, such as fertilizer application, tillage and man-

agement practice), whereas a strong spatial dependence for

a soil variable is mainly affected by the intrinsic sources of

variability (i.e., natural variations in soils, such as soil

texture, soil types and soil parent material) (Fu et al. 2013;

Guan et al. 2017). The C0/(C0 ? C) values of SOC of all

depths were between 25 and 75% (Table 2), suggesting the

Fig. 2 Theoretical semivariogram models for SOC and TN contents. The parameters are given in Table 2

Table 2 The optimal parameters of semivariogram analysis for SOC and TN contents

Soil

properties

Depth

(cm)

Model Nugget

(C0)

Sill

(C0 ? C)

Range

(m)

Residuals Determination coefficient

(R2)

Nugget/Sill

(%)

SOC 0–20 Gaussian 56.8 224.1 13430 1986 0.783 25.35

20–40 Gaussian 49.2 177.2 12260 1783 0.758 27.77

40–60 Exponential 36.1 133.2 19750 2900 0.412 27.10

TN 0–20 Gaussian 0.125 0.589 8860 6.017E-03 0.966 21.22

20–40 Gaussian 0.107 0.561 9970 3.608E-03 0.971 19.07

40–60 Gaussian 0.089 0.403 9500 3.946E-03 0.945 22.08
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spatial dependence was moderate. This was mainly attrib-

uted to the complex topography and local ecological

restoration measures. The study region was characterized

by the complex physical geography, a typical valley basin,

which might directly impact soil nutrient contents (Bai

et al. 2014). Contrary to that, the C0/(C0 ? C) values of TN

of all depths were lower than 25% (Table 2), suggesting a

strong spatial dependence.

The ranges were calculated to represent the minimum

distance of spatial autocorrelation for soil variables

(Blanchet et al. 2017; Yao et al. 2019). If the distance

between the observations fall within the range, the obser-

vations can be defined as spatial autocorrelation and the

spatial dependence for the distance greater than the range.

(Webster and Oliver. 1992). The largest range was

observed for SOC at 40–60 cm (19,750 m), whereas the

lowest range was found for TN at 0–20 cm (8860 m)

(Table 2). Similar to many previous studies, the spatial

range values were much larger than the sampling distance

(Fig. 1) in the present study, indicating the sampling

strategy was adequate to estimate the spatial variability of

soil properties (Zanini and Bonifacio 1992; Yao et al.

2019). According to the study by Rosemary et al. (2017), a

sampling distance\ 4430 m in this study can be applied

for studying the spatial variability in soil properties. For the

sake of comparing the spatial variability in soil variables

among different studies, additional studies are required to

identify the effects of topographic and environmental fac-

tors (e.g., slope, elevation, aspect, and stand management)

on the spatial variability.

Cross-validation of ordinary kriging

Figure 3 showed the fitting models of SOC and TN were

closer to the 1:1 line. However, the predicted values of

SOC (TN) for each depth seemed to underestimate the

measured values which were more than 20 g kg-1

(1 g kg-1) and to overestimate the measured values which

were less than 20 g kg-1 (1 g kg-1). This conclusion was

in agreement with results obtained in other studies owing to

the nature of the algorithms, which aimed to achieve

unbiased predictions of mean values (Liu et al. 2013; Guan

et al. 2017; Wang et al. 2018; Yao et al. 2019). The slopes

of the model were close to each other, irrespective of soil

depth (Fig. 3).

The MEs of SOC and TN for each depth were all close

to zero (Table 3), illustrating that ordinary kriging was

relatively unbiased in interpolating the SOC and TN. The

MEs were all negative, which indicated that ordinary

kriging underestimated the SOC and TN contents. The

RMSE of SOC and TN declined as the soil depth increased

(Table 3). The MSEs of SOC and TN was low and close to

zero, indicating the ordinary kriging method in our study

was reliable.

Although the determination coefficient values for SOC

and TN were relatively low (Fig. 3), they were similar to

many other findings (Liu et al. 2013; Yao et al. 2019). This

phenomenon is likely attributed to the primary dataset

without probabilistic design (Veronesi et al. 2014; Guan

et al. 2017; Yao et al. 2019). In the present study, the

sampling points were mainly determined by random

designs, making the model have a poor performance. Thus,

a dataset of probabilistic design is proposed for interpo-

lating the soil properties in the future study. Moreover,

machine learning methods are recommended for improving

the accuracy of spatial interpolation for soil properties.

Spatial distribution of SOC and TN contents

According to the optimal parameters derived from the best-

fitted model, we used ordinary kriging method to estimate

the spatial patterns of SOC and TN contents (Fig. 4). In

order to better compare the spatial distributions, maps for

each depth of SOC and TN contents were plotted on the

same scale.

The SOC content changed markedly from 0–20 to

40–60 cm (Fig. 4), it also had the largest change at

0–20 cm, which was in accordance with the study by Wang

et al. (2015). The low SOC content was majorly distributed

in the mid-south of our study site because of the lower

coverage of vegetations and intensive human activities. In

contrast, high SOC content areas mainly appeared in

northern parts of the study site where the land use types

were mixed forests within high vegetation cover (e.g.,

broadleaved trees mixed with Pinus massoniana, Cun-

ninghamia lanceolata mixed with Pinus massoniana).

Therefore, the SOC content was characterized by a center

area with low content surrounded by bands with high

content that steadily and continuously increased outwards

towards the region’s peripheries for all three depths.

The distribution of the TN content had something in

common with that of the SOC content at all three depths,

which was changed markedly within each depth. The low

TN content was mainly located in the middle areas because

of long-lasting conflicts between land protection and

human activities, which resulting in serious forest degra-

dation and soil erosion. Thus, the spatial pattern of soil

properties were found to be higher in the periphery and

lower in the middle. Although afforestation and other

ecological restoration measures were implemented in the

study area in the past 40 years, especially in the middle, the

pattern of soil properties will not be changed in the next

short period of time. However, this pattern may be

expanded under rapid urbanization process.
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Reasonable sampling number to monitor SOC

and TN contents

We used variation coefficient approach to estimate rea-

sonable number of sampling points for SOC and TN

(Table 4). The mean numbers of sampling points needed to

estimate the mean TN contents, within specified error

limits equal to 10% and 20% at the 95% confidence level,

were 25 and 99, respectively. The optimal sampling points

of each depth for SOC contents were more than 100 within

specified error limits which equal to 10% at the 95%

confidence level, and that ranged between 29 and 32 within

specified error limits equal to 20% in our study (Table 4).

According to the study by Adachi et al. (2005), the optimal

sampling points to monitor soil properties ranged from 18

to 75 at the same specified error and confidence level in a

forest area in Malaysia. Han et al. (2016) reported that the

reasonable sampling points were 17 or less within an

allowable error of 10% and the same confidence level in

California forest soils. These results suggest that sampling

points were higher than the previous studies due to the high

CV of soil properties in this study (Table 1). Moreover, it

also demonstrated that more sampling points are needed to

calculate the variability of soil properties in tropical Asia

than in temperate Asia (Adachi et al. 2005; Han et al.

2016). This information is important for monitoring SOC if

we are to accurately estimate soil carbon stock for an area

of interest in hilly red soil region.

Several studies have reported that the size of sampling

points will affect the kriging interpolation accuracy (Liu

et al. 2010; Wang et al. 2015). In general, the more the

number of sampling points, the more accurate the inter-

polation. However, the measured points were hard to

derive in the field due to the restricted human and material

resources. Therefore, the rational sampling strategy is

essential if we are to require reliable results with minimum

sampling costs and maximum prediction accuracy of soil

properties. The present study did not supply enough data

for this aim due to the data was collected only once in the

study area. Thus, further investigations are required for us

to monitor the spatial variability of soil properties in the

hilly red soil after soil erosion and afforestation.

Fig. 3 Measured versus predicted SOC and TN at different soil depths, using ordinary kriging model (dashed line is a 1:1 line)

Table 3 Evaluation indices of ordinary kriging method

Soil properties Depth (cm) ME RMSE MSE

SOC 0–20 - 0.0437 8.1930 - 0.0039

20–40 - 0.0270 7.5970 - 0.0031

40–60 - 0.0359 6.9060 - 0.0047

TN 0–20 - 0.0042 0.4114 - 0.0055

20–40 - 0.0014 0.3811 - 0.0017

40–60 - 0.0007 0.3297 - 0.0009
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Fig. 4 Spatial patterns of SOC and TN contents, using ordinary kriging model (g kg-1)

Table 4 Reasonable sampling number points required to estimate the SOC and TN contents within different specified error limits at the 95%

confidence level

Soil properties Depth (cm) Reasonable sampling number points required to estimate the SOC and TN contents

Within 20% Within 10%

SOC 0–20 29 113

20–40 32 126

40–60 29 116

TN 0–20 25 99

20–40 26 101

40–60 25 97

2392 X. Yao et al.
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Conclusion

Our study provides spatial distribution maps of SOC and

TN with 59 soil samples in Hetian Town, China. We found

that SOC was regulated by both extrinsic factors (e.g.,

fertilizer application, tillage, management practice) and

intrinsic factors (e.g., soil texture, soil types, soil parent

material), while TN content was mainly influenced by

intrinsic factors. Nevertheless, more studies are needed to

identify the effects of these variables on the spatial vari-

ability in soil nutrients.

We also found that the spatial pattern of SOC and TN

were characterized by higher in the periphery and lower in

the middle. Therefore, more ecological restoration mea-

sures are recommended for further increase of nutrients in

the middle. Additionally, we found that the variation

coefficient is a reliable approach to obtain the reasonable

sampling number for monitoring SOC and TN. However,

there is an urgent need to more studies are needed on the

dynamic recovery of SOC and TN because of the

increasing interest of spatial pattern of SOC and TN in red

soil region of southern China as a result of soil erosion and

land degradation.

Open Access This article is distributed under the terms of the
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