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ABSTRACT: The purpose of this study is to develop a geostastistical model based on ordinary 

and disjunctive kriging technique to estimate spatial variability of SPT (N) data in the three 

dimensional subsurface of Bangalore. The database consists of 766 boreholes spread over a 220 sq 

km area, with several N values in each of them. The analysis has been done for corrected SPT 

(Nc) value. Ordinary kriging produces linear estimator whereas, disjunctive kriging produces 

nonlinear estimator. The knowledge of the semivariogram of the SPT data is used in the kriging 

theory to estimate the values at points in the subsurface of Bangalore where field measurements 

are not available. The capability of disjunctive kriging to be a nonlinear estimator and an 

estimator of the conditional probability is explored. A cross validation (Q1 and Q2) analysis is 

also done for the developed ordinary and disjunctive kriging model. For the data sets used in this 

study, disjunctive kriging has shown to be a better estimator than ordinary kriging in terms of 

reduced kriging variance and the comparison between an estimated and actual value.  

 

 

1 INTRODUCTION 

 

Information about spatial variability of soil properties is of great value in reliability analysis of 

geotechnical facilities and panning and optimization of soil exploration and testing. Also, it helps 

in selecting suitable construction procedures for soil engineering structure. In the literature, 

spatial variability of soil properties is generally studied by combining statistical analysis of site 

specific data with insights from random field theory (Vanmarcke 1977; Vanmarcke, 1983; Phoon 

and Kulhawy 1999; Uzielli et al, 2005). The standard penetration test is popularly used for field 

testing to characterize the subsurface soil profiles and field SPT value (N) derived from the test is 

used to determine the bearing capacity, settlement, liquefaction potential. N values are also 

correlated to many soil properties such as shear wave velocity, angle of internal friction, cone tip 

resistance, etc. 

In this study, ordinary kriging and disjunctive kriging has been adopted to evaluate the spatial 

and depth variability of corrected N (Nc) in the three dimensional (3D) subsurface of Bangalore. 

The kriging method was developed during the 1960s and 1970s and has been acknowledged as a 

good spatial interpolator (Matheron, 1963; Isaaks et al, 1989; Davis, 2002). A major advantage of 

kriging is that it is more flexible than other interpolation methods such as inverse-distance 

weighting, deterministic splines and Thiessen polygons. The weights are not selected arbitrarily 

but are based on how a function varies in space. Recently, much attention has been given to linear 

kriging methods in the analysis of spatially dependent phenomena. These include simple, ordinary, 

and universal kriging. Generally, the linear kriging estimator is not the best possible estimator. 

The minimum variance unbiased estimator of a random variable Y in terms of random 

variable
1 2 nY,X ,X , X⋅ ⋅ ⋅  is the conditional expectation of Y given

1 2 nY,X ,X , X⋅ ⋅ ⋅ . The knowledge of 

the joint density of 
1 2 nY,X ,X , X⋅ ⋅ ⋅  is required to determine the conditional ecpectation of Y. But, 

the joint density of 
1 2 nY,X ,X , X⋅ ⋅ ⋅  is difficult to obtain in practice. The conditional expectation is 

a function of n variables, that is, 
*

1 2 n(X ,X , X )Y g= ⋅⋅⋅                                                          (1) 
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It is also possible to relax the requirement that the joint density of (n+1) variables be known and 

define another nonlinear estimator 

( )∑
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=
n

1i i
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i
f
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DK

Y                                                                (2) 

 

Where each fi is a function of one X variable only. This is the disjunctive kriging(DK) estimator 

and requires only the bivariate densities be known. 

The linear kriging estimator has a special form 

∑
=

=
n

1i i
X

i
λ*

K
Y                                                                (3) 

In terms of estimating the value of a random variable at an unsampled location, equation (2) 

generally is a better estimator than equitation (3) in the sense of reduced kriging variance.  

 The paper has the following aims: 

1. To investigate the feasibility of ordinary kriging and disjunctive kriging model for 

modelling the spatial variability of Nc in the 3D subsurface of Bangalore. 

2. To estimate the variance of predicted data for ordinary kriging and disjunctive kriging 

model. 

3. To determine conditional probability that the value of a Nc at a location is above a known 

cutoff level (Nc=30) for disjunctive kriging. 

4. To develop a new type of cross-validation analysis for ordinary kriging and disjunctive 

kriging model. 

5. To compare the performance of developed ordinary kriging and disjunctive kriging model. 

 

2 GEOTECHNICAL DATA 

 

A large amount of geotechnical data consisting of 766 boreholes has been collated along with 

index and engineering properties of subsoil layers at different locations in Bangalore (see Fig.1). 

Geotechnical data was evaluated for geotechnical investigations of several major projects in 

Bangalore. In total, 766 borelogs information have been entered into the data-base using a GIS 

with ARCINFO package. The sub-surface three dimensional (3D) GIS model of Bangalore has 

been developed with a scale of 1:20000. Fig.1 depicts a 1kmΧ1km grid within the corporate 

boundary, along with other boundaries, ring roads and borehole locations. It may be noted that an 

average of about two boreholes are available within each grid. Geotechnical data was collated 

from archives of Torsteel Research Foundation (India) and the Indian Institute of Science; these 

data were collected as part of several major projects in Bangalore during the years 1995-2003. 

The data in the model are on average to a depth of 30m below the ground level. The borelogs 

contain information about depth, density of the soil, fines content and N values and depth of 

ground water table. 

 

 
Fig.1 Borehole location in Bangalore Map (scale: 1:20000). 
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3 METHODOLOGY 

 

In this study, two models (ordinary and disjunctive) have been adopted for prediction of N in the 

subsurface of Bangalore. Brief description of two models developed for our study is given below: 

 

3.1 Ordinary kriging 

Ordinary kriging is a geostatistical approach to modelling. Instead of weighting nearby data points 

by some power of their inverted distance, Ordinary kriging relies on the spatial correlation 

structure of the data to determine the weighting values. This is a more rigorous approach to 

modeling, as correlation between data points determines the estimated value at an unsampled 

point. In ordinary kriging, the most important thing is semivariogram. The semivariogram model 

used in this analysis is the spherical model. Spherical model converges to the sill value more 

quickly than the exponential model. A vertical anisotropy factor has been introduced to the 

semivariogram model for vertical dimension. Because of multiple layers of different properties, 

vertical variations are more significant compare to horizontal variation. The anisotropy is taken 

into account to avoid the distortion of the semivariogram relationship due to the large fluctuation 

over small vertical distance. A horizontal/vertical anisotropy factor has been used to weight the 

influence of horizontal samples more than the influence of vertical samples during prediction. 

Anisotropy factor depends on the soil type. Based on previous studies of other researchers on the 

spatial correlation in soil deposits (DeGroot, 1996; Phoon and Kulhawy, 1996), a factor of 20 has 

been chosen. In the literature, the range for horizontal to vertical anisotropy used for soil is 10-40 

(DeGroot, 1996; Phoon and Kulhawy, 1996). a factor of 20 means that the known data values 

located vertically from a prediction point influence the prediction of the same data points located 

20 times the distance horizontally from the prediction point. Once the model of semivariogram is 

constructed, the weights are computed for kriging. The details of ordinary kriging are given by 

Journel & Huijbregts,(1978).  

 

3.2 Disjunctive kriging  

Disjunctive kriging represents a form of nonlinear kriging(i.e., results in a nonlinear estimator) which 

in general offers an improvement over linear kriging methods, yet doesn’t require knowledge of the 

n=1 joint probability distributions necessary for the conditional expectation. The disjunctive kriging 

estimator is made up of a sum of nonlinear functions and it can be written as (Yates, Warrick, and 

Myers, 1985a) 
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Fig.2 Semivariogram model for ordinary kriging 
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Fig.3 Kriged surface of Nc using ordinary kriging 
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Fig.4 Variance map for ordinary kriging 
 

 
Fig.5 Test for normality 
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Where x is a vector in 3D space which represents the coordinates of the sample location, n is the 

number of transformed sample values, Y(xi), used in the estimation process, fi is a function to be 

determined and expressed on the right hand side of equation (4) as a series of Hermite polynomials of 

order k where the fik’s are the coefficients of the Hermite expansion. Now, a transform function, 

φ[Y(x)], is necessary to transform Z(x) to a random function with a standard normal distribution. The 

transformation relationship, (φ(x)), is written as a linear combination of Hermite polynomials 

(Abramowitz and Stegun, 1970) 
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The coefficients,Ck, are determined by orthogonality and numerical integration as follows 
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Where the yj s are the abscissas and the wj’s are the weight factors for Hermite integration. Values 

of yj and wj are given by Abramowitz and Stegun(1970,p.924). 

The disjunctive kriging estimator is defined as follows (Journael and Huijbregts, 1978; Rendu, 1980 

and Yates, Warrick, and Myers, 1985a for further details) 
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Where the coefficients Ck are calculated from the sample value distribution as indicated earlier. In 

practice, only a finite number K of coefficients, Ck will be calculated (k=1, 2,…, K). 

Hk[Y(x0)] in equation is estimated by  
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Where the bik’ are obtained by solving the following system of n linear equations 
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Where ρij is the spatial correlation function for a separation distance, xi-xj. The correlation function 

also can be written as:
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= , where ( )ji xxC −  is the spatial covariance function or for 

second-order stationary conditions
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ρ , where γ is the semivariogram.. 

The disjunctive kriging variance on the estimation is 
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When estimating Nc data at a particular location in 3D subsurface of Bangalore, estimating a 

conditional probability that the value of a Nc data is above a specified cutoff value(zc) is possible 

because disjunctive krigiing estimator is nonlinear (Matheron, 1976; Journel and Huijbregts, 1978; 

Kim, Myers and Kundsen, 1977). A number of publications can be found in the literature which preset 

the procedure of the determination of conditional probability (Yates er al, 1986; Carr et al, 1986). The 

conditional probability is given by the following equation (Journel and Huijbregts, 1978; Yates, 

Warrick, and Myers, 1985a). 
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Where, yc is the associated transformed cutoff value of zc , g(yc) and G(yc) are the Gaussian density 

and cumulative distribution functions, respectively. The conditional probability density function, 

Pdf*(u), is determined by taking the derivative of equation (12) with respect to yc. 
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4 CROSS-VALIDATION OF THE MODEL  

 

Cross-validation of the model has been carried out before it is used for predictions. In practice, 

model validation based on statistical tests is dependent on the residuals. The detailed description 

of method of residuals in the case of kriging is given by Kitanidis (1997) and it is detailed as 

below: 

It has been assumed that the n measurements are available at a time, in a given sequence and 

the kriging estimate of z at the second point (x2) from the first measurement (x1) is calculated. So, 

one can write 2ẑ =z(x1) and ( )21

2

2 2 xx −= γσ . Where, 2ẑ  is the kriged value at the point x2. The 

actual error (δ2) = ( ) 22 ẑxz −  is normalized by the standard error (σ2   ) and this normalized value of 

the error is given by: 

2

2
2 σ

δ
ε =                                                                                 (13) 

For the k-th measurement location, the actual error ( )kδ and normalized error ( )kε   can be 

written as respectively: 

( ) kkk zxz ˆ−=δ , for k=2,…..,n                                              (14) 

k

k

k σ
δ

ε = , for k=2,…,n                                                          (15) 

Q1 (mean of the residual εk) and Q2 (variance of εk) are used to check the statistical distribution 

of the residuals between the observed data and the kriged values at the original observation 

location by using the kriging parameters and semivariogram model parameters. Q1 is the mean of 

the residual εk and it is written as: 

∑
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Q1                                       (16) 

Under the null hypothesis, Q1 is normally distributed with mean 0 and variance
1

1

−n
. The 

probability density function (pdf) of Q1 is: 
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Where, n is the number of data. If the experimental value of Q1 turns out to be acceptable 

close to zero then this test gives no reason to question the validity of the model. The Q2 is the 

variance of εk and it is written as:  

∑
=−

=
n
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2
k
ε

1n

1
Q2                      (18) 

(Q2)*(n-1) approximately follows the chi-square distribution with parameter (n-1). Where, n is 

the number of data points. The mean and variance of Q2 are 1 and 
1

2

−n
 respectively. The pdf of 

Q2 is given by the following equation: 
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Where, Γ is the gamma function. The experimental value of Q2 should be close to one. 

 

5 RESULTS AND DISCUSSIONS 

 

In case of ordinary kriging, the semivariogram of Nc obtained from the experimental values is 

shown in Fig.2. The spherical model has been plotted in Fig.2 and gives a reasonable fit to the 

values obtained. In the semivariogram, “relative to the full length scale” means normalized lag 

distance ⎟
⎠
⎞

⎜
⎝
⎛

a

h
 . Where, h= lag distance and a= range of semivariogram. The range, sill and nugget 

of the semivariogram are 0.95, 1.096 and 0.769 respectively. The estimation of Nc has been done 

by using developed model of semivariogram (shown in Fig.2). The variability of the Nc data with 

spatial coordinate as well as depth of the Bangalore is represented by Fig.3. In Fig.3, the actual 

Nc data is also plotted and represented by the point marks. Fig.4 gives the associated estimation 

variance for ordinary kriging. 

The sample mean, variance, skew, and kurtosis for Nc data were: 36.43, 367.27, 1.05 and 4.02 

respectively. From the Fig.5, it is clear that the data set are not normally distributed. To calculate 

the Ck, all 2722 sample values have been used. Ck for k=0 to 9 are: 35.7350,-18.0881, 3.1662, 

0.0768,-0.3176, 0.1048, 0.0046, 0.0803, 0.0001, and 0.0065 respectively. From these Ck’s, 

estimates of the mean and variance for the sample distribution has been obtained and are 35.7350 

and 398.9866. The mean and variance of actual dataset are 36.4364 and 367.2766 respectively. 

The difference between actual mean and calculated mean from Ck’s is 1.92% and for variance, 

this difference is 8.63%.The semivariogram has been calculated using same anisotropy factor as 

used in ordinary kriging. A spherical model has been fitted to the semivariogram with parameters: 

0.701 for nugget, 1.128 for sill and 0.95 for range. The autocorrelation function, which is used in 

Equation(9), has been calculated by using
( )

( )0
1

C

xx ji

ij

−
−=

γ
ρ . The estimation of Nc has been 

done by using developed model of semivariogram (shown in Fig.6). The variability of the Nc data 

with spatial coordinate as well as depth of the Bangalore is represented by Fig.7. In Fig.7, the 

actual Nc data is also plotted and represented by the point marks. The variance map for estimated 

Nc data has been given in Fig.8. The disjunctive kriging estimator has been used to determine the 

conditional probability the unknown value is greater than a specified cutoff value. Fig.9 shows the 

probability that the Nc is above 30. This information is unavailable typically when using ordinary 

kriging. Disjunctive kriging has also used to estimate the conditional probability density function 

and the cumulative probability distribution. In Fig.10 the cumulative probability distribution is 

with respect to the cutoff value whereas in Fig.11 the probability density is plotted as function of 

the transformed value Y. From this Fig.it is possible to obtain an indication of how the samples 

combine together to from the estimate as well as obtaining the probability level of an occurrence 

given a specified cutoff values. 
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Fig.6 Semivariogram model for disjunctive kriging 
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Fig.7 Kriged surface of Nc using disjunctive kriging 
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Fig.8 Variance map for disjunctive kriging 
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Fig.9 The map of the conditional probability that the Nc is above 30 
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Fig.10 Cumulative probability distribution as function of cutoff value, yc 
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Fig.11 Probability density with respect to transformed variable, Y 
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Fig.12 Comparison of actual Nc measured with predicted at BH 1253-1 
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Fig.13 Comparison of actual Nc measured with predicted at BH 937-4 

 

Kriging maps (Figures 3 and 7) provide a qualitative means for showing the difference between 

the ordinary kriging and simple kriging models. From Figures 4 and 8, it has been seen that the 

variance increases with increasing distance between estimated points and the actual point. The 

overall pattern of Figures 4 and 8 give an indication of where adequate or inadequate sampling 

occurred. In the Figures 4 and 8, it is clear that the variance of the estimated data from ordinary 

kriging analysis is always greater than that estimated data from disjunctive kriging analysis. 

The values of Q1 and Q2 for both kriging are given in Table 2. For both the models, the values 

of Q1 and Q2 are close to 0 and 1 respectively. The cross-validation indicates that the developed 

ordinary kriging and simple kriging models estimate reasonably the Nc data in the 3D subsurface 

of Bangalore. However, the disjunctive kriging model seems to predict better than the ordinary  

kriging model.     

Table 1 Result from cross validation analysis. 

Model Q1 Q2 

Ordinary kriging -0.018 0.987 

Disjunctive kriging -0.010 1.006 
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Two additional boreholes have been chosen in Bangalore for verifying the model results as a 

function of depth. For boreholes BH-1253-1, BH-937-4, Nc values have been predicted by 

ordinary as well as disjunctive kriging models with depth. Figures 12 and 13 show the Nc profiles 

with depth. It can be seen from the Fig.12 and13 that the disjunctive kriging model has given 

better prediction of the actual Nc data than the ordinary kriging model. 

 

6 CONCLUSIONS 

 

The spatial variability of Ncorrected in Bangalore has been modelled by ordinary kriging and 

disjunctive kriging. Cross-validation analysis has been also done for the developed ordinary and 

disjunctive kriging model. For the data sets used in this paper, disjunctive kriging has been shown 

to be a better estimator than ordinary kriging in terms of reduced kriging variance and 

comparision between an estimated and actual value. This result is expected since theoretically a 

nonlinear estimator should be equal to or better than a nonlinear estimator. Disjunctive kriging has 

been also explored to determine the conditional probability that the value is above an arbitrary 

cutoff level. This is an important result since it offers one geostatistical method whereby 

quantitative information is available to aid in management decisions. The geostatistical model 

provides valuable results that can be used for seismic hazard analysis, site response and 

liquefaction studies for the development of microzonation maps. The predicted ‘Nc’ values from 

the developed model can also be used to estimate the subsurface information, allowable bearing 

pressure of soils and elastic modulus of soils. 
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