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Abstract

Soils are highly variable at many spatial scales, which makes designing studies to accurately estimate the mean value of soil
properties across space challenging. The spatial correlation structure is critical to develop robust sampling strategies (e.g.,
sample size and sample spacing). Current guidelines for designing studies recommend conducting preliminary
investigation(s) to characterize this structure, but are rarely followed and sampling designs are often defined by logistics
rather than quantitative considerations. The spatial variability of soils was assessed across ,1 ha at 60 sites. Sites were
chosen to represent key US ecosystems as part of a scaling strategy deployed by the National Ecological Observatory
Network. We measured soil temperature (Ts) and water content (SWC) because these properties mediate biological/
biogeochemical processes below- and above-ground, and quantified spatial variability using semivariograms to estimate
spatial correlation. We developed quantitative guidelines to inform sample size and sample spacing for future soil studies,
e.g., 20 samples were sufficient to measure Ts to within 10% of the mean with 90% confidence at every temperate and sub-
tropical site during the growing season, whereas an order of magnitude more samples were needed to meet this accuracy
at some high-latitude sites. SWC was significantly more variable than Ts at most sites, resulting in at least 106more SWC
samples needed to meet the same accuracy requirement. Previous studies investigated the relationship between the mean
and variability (i.e., sill) of SWC across space at individual sites across time and have often (but not always) observed the
variance or standard deviation peaking at intermediate values of SWC and decreasing at low and high SWC. Finally, we
quantified how far apart samples must be spaced to be statistically independent. Semivariance structures from 10 of the 12-
dominant soil orders across the US were estimated, advancing our continental-scale understanding of soil behavior.
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Introduction

Researchers interested in measuring the mean value for a soil

property across space must make decisions about the number of

samples required and how far apart they should be spaced. These

decisions are inherently dependent on the variance structure and

spatial independence of the data, but quantitative guidelines to

inform these decisions are unavailable at most sites. For instance,

intuitively researchers know that a large number of widely-spaced

samples would be more likely to better measure the spatial mean of

a soil property than a few samples all located close to one another.

But it is typically not clear what ‘‘a large number’’ or ‘‘widely-

spaced’’ means. Moreover, since increasing the sample size

consumes resources (e.g., time, money, and analytical capacity), it

is important that sufficient samples are collected to meet the

accuracy requirement to answer a specific question without

wasteful over-sampling. Likewise, choosing an appropriate dis-

tance between samples is important for two reasons; 1) samples

should ideally be spaced sufficiently far apart to avoid correlation

and pseudoreplication in measurements at a given scale [1],

thereby maximizing the amount of information provided by a

limited number of samples, and 2) spacing between samples should

be minimized to constrain costs, which typically increase with

distance.

Here, we focus on sampling strategies designed to estimate the

spatial mean value of a soil property with the smallest possible
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sample size and sample spacing. However, it is also important to

note that other goals also exist that require different sampling

designs, e.g., redundant sampling (i.e., field duplicates) involving

two or more measurements at the same location to aid error

detection (e.g., sensor malfunction) and increase confidence in the

data, while varying the distance between adjacent samples can be

useful when characterizing the spatial variance structures.

The number of samples and sample spacing is rarely justified in

research papers or presentations. In many, if not most studies,

decisions relating to the sampling strategy appear to be based on a

combination of subjective opinion, repeating previously used

sampling designs (often from a different ecosystem or in relation to

a different soil property), and available resources. There are only a

few methodological articles that discuss sampling designs recognize

the importance of choosing an appropriate sample size and sample

spacing, and provide only vague- or no recommendations at all

[2–4]. The advice often given is to conduct a preliminary spatial

variability study (of soil properties) at the research site to determine

the number of samples and sample size required to achieve a given

accuracy [4,5]. While this is good advice, it is rarely followed,

presumably due to a lack of time, money, and/or an appreciation

of its importance.

Soils are highly variable and embody systematic (e.g., soil

forming processes) and random sources of variability across space

[6,7]. Some studies have used the coefficient of variation to assess

this variability at a given site, and used in sample size analyses [8–

14]. Geostatistical techniques, in particular semivariograms, have

increasingly been used over the last few decades to characterize

spatial variation in soil properties [15,16]. Semivariograms provide

two useful components for designing a robust sampling strategy: 1)

an estimate of the variance (i.e., the semivariogram sill), which can

be used to inform sample size in future studies; and 2) an estimate

of the minimum distance required for samples to be considered

spatially independent (i.e., the semivariogram range), which can be

used to inform sample spacing (Figure S1). We emphasize that the

use of sample size analyses in this paper is to inform decisions

relating to future studies, not to assess the power of a sampling

design retrospectively, which may be fundamentally flawed [17].

Site-specific studies that have assessed spatial variation in soil

properties have shown that spatially structured variability is

ubiquitous. For instance, Robertson et al. [11] studied variation in

soil physical, chemical, and biological properties across an

agricultural field in Michigan, USA. Almost every soil property

exhibited spatially structured variation, which in most cases

accounted for the majority of the variability that was observed

Robertson et al. [11], and indicated that measurements of soil

properties at one location could be used to predict values for those

properties up to ,60 m away (i.e., the range). Similar findings

have been reported elsewhere, across a range of ecosystems and

soils [9,12,18–24], although there are a few exceptions, with some

properties exhibiting little or no spatial dependence at the scale

studied [9,11,19,20]. The identification of spatial patterns in soil

properties among sites, in particular at larger continental scales has

been hampered, because most studies have investigated these

quantities at a single site.

The few cross-site comparisons studies have focused on soil

moisture variability located only within a small region with

relatively narrow ecoclimatic variability [13,14,25] or, if they

spanned larger scales, involved only a few sites [26] or combined

data from different studies with widely differing designs e.g., spatial

extent, physical quantities, sampling depth, seasonal timing,

measurement technique, etc. [12,27–30]. Moreover, previously

published data are often unavailable for additional analyses. A

single study that employs a uniform sampling and analysis

approach, i.e., the above mentioned quantities, as well as being

representative of site characteristics (e.g., ecosystem structure, soil

type, etc), made under similar environmental conditions for a wide

range of ecosystems is needed for meaningful cross-site compar-

isons and to develop quantitative sampling guidelines that can

inform sampling strategies in future soil studies.

Here, we studied the spatial variation in soil properties using a

consistent approach at 60 sites throughout the USA and developed

quantitative relationships to provide: 1) an ecological understand-

ing of spatial variability in soils, and 2) guidance on sampling

designs for future soil studies. We studied local scale (,1 ha)

variation in soil temperature (Ts) and soil water content (SWC) at

sites that included representatives from all major terrestrial

ecosystem types, soil types, and climates found in the USA. Soil

temperature and moisture were used as proxies for other soil

properties because they can be measured quickly and accurately in

Figure 1. The sampling sites (open circles) were widely distributed throughout the US.
doi:10.1371/journal.pone.0083216.g001
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the field, they are major drivers of soil biotic and biogeochemical

properties and processes, their spatial pattern integrates the spatial

pattern of ecosystem canopy structure and has been shown to

correlate with spatial patterning of other soil properties at the local

scale, and they are increasingly recognized as important variables

in understanding land-atmosphere interactions e.g., soil moisture is

recognized as a Global Climate Observing System Essential

Climate Variable [9,11,31–36]. The sampling scale (,1 ha)

corresponds to many ecosystem-level soil studies and is the basis

of many large emergent observatories (National Ecological

Observatory Network, NEON, www.neoninc.org; Integrated

Carbon Observing System, www.icos-infrastructure.eu). We used

these data to further examine the relationship between the spatial

structure of variability in soil properties and site characteristics at

broader landscape- to continental scales (e.g., latitude, climate,

ecosystem type, soil type, and vegetation structure). Lastly, we used

analyses to estimate the sample size required to accurately estimate

the spatial mean Ts and SWC at each site.

This study was made to inform the sensor-based soil plot designs

at NEON sites. In addition, several hypotheses were tested. We

hypothesized that;

1) the spatial variability in soil properties would be associated

with variability in ecosystem structure, e.g., we expect open

canopy ecosystems, which exhibit large spatial variability in

vegetation height (e.g., savannas) to have larger variability in

soil properties than closed canopy ecosystems,

2) agricultural ecosystems would exhibit lower spatial variability in

soil properties than other ecosystems, since management activities

(e.g., tillage and irrigation) aim to homogenize properties,

3) younger soils (e.g., inceptisols) would exhibit both lower spatial

variability and have smaller range values than older soils (e.g.,

ultisols). We expected that some soil properties (e.g., soil

texture) that influence the spatial structure of variability are

controlled by processes that operate over long temporal scales

(e.g., weathering),

4) the spatially structured variability (e.g., semivariogram range,

nugget, and sill), as well as the sample size required to

accurately estimate the mean, would be positively correlated

for soil temperature (Ts) and soil water content (SWC),

becuase some underlying site characteristics (e.g., canopy gaps,

etc.) are likely to influence both variables,

5) some forms of semivariograms may be more common than

other forms, e.g., , that small semivariogram range values

would be more commonly associated with small semivario-

gram sills than large sills, and

6) variability would be larger for SWC than Ts since water is

more mobile than heat and sensitive to microtopography, as

well as being actively transported by plants.

We also aimed to develop empirically-based rules that could be

used by other researchers to guide sampling designs to accurately

estimate the spatial mean of soil properties for future studies.

Methods

Site descriptions and data collection
The study was conducted at 60 NEON sites (Table 1). These

sites were chosen for landscape level representativeness using the

approaches of Hargrove and Hoffman [37,38], which divided the

USA into 20 eco-climatic domains. Within each domain, 3

representative site were chosen; 1 wildland (i.e., relatively

undisturbed) site and typically 2 sites that address key ecological

issues for that domain (e.g., urbanization, land management,

advance of invasive species, or climate change) [39,40]. Measure-

ments at these sites included ecosystem scale (i.e., 10‘3 to 10‘6 m2)

tower-based estimates of eddy covariance [41–44], and the long

term sensor-based soil measurements are required to be made in

the flux footprint of the tower, i.e., at the flux scale [45–47] and

occur on locally (co-) dominant soil series. No sampling occurred

requiring any sampling permits (re soil sampling), no human

sampling occurred, nor the use or impact to any endangered or

protected animals were involved in this study. The sampling area

for this study corresponded to the expected location of NEON’s

long term sensor-based soil measurements at each site. We

received permission to access and to measure soil properties by the

owner at all sites, and no soil samples were taken (hence not

requiring a sampling permit of any kind). Two National Park

Service sites required a research permit to gain access to the site

(see Table 1).

Soil taxonomic information at a site was gathered from the

USDA Natural Resource Conservation Service’s Web Soil Survey,

except for Wind River [48], Bartlett Experimental Forest (www.fs.

fed.us/ne/durham/4155/bartlett.htm#SOI), and Eight Mile

Lake [49]. Soil taxonomic information was not available for

Yellowstone National Park, WY, or Rocky Mountain National

Park, CO, while the soil at Murray, UT, was classified by the Web

Soil Survey as dumps (i.e., anthropogenosol), which cannot be

assigned to a specific soil order. Mean annual temperature and

mean annual total precipitation data were gathered from local site

sources when available, and from climate data for nearby towns

(www.usclimatedata.com) when site-specific information was

unavailable.

Field-based soil temperature and moisture data were collected

over 1 to 2 days at each site between August 2009 and April 2011

(with most sites visited between March and October 2010) and

were timed to coincide with peak growing season. The only

exception was sampling at Mountain Lake, VA, which occurred

prior to budburst due to logistical constraints. Our measurements

corresponded to the growing season because this is the time of year

when most biological activity occurs. It should be noted that

spatial variability of soil properties can change seasonally [44], i.e.,

there is often intra-annual nonstationarity in both functional

linkages and spatial correlation), although this does not always

occur [12,21,23,26,50]. As such, the spatial variability that we

observed may not reflect spatial variation among other seasons or

years.

Soil temperature, Ts (uC), was measured at 0–12 cm depth with

platinum resistance temperature sensors (RTD 810, Omega

Engineering Inc., Stamford CT) and soil water content, SWC

(vol H2O vol21 soil expressed as a percentage) was measured at a

0–15 cm depth with time domain dielectric sensors (CS616,

Campbell Scientific Inc., Logan UT). Due to the large number of

sites and soil types it was not possible to calibrate the soil moisture

sensor to the soil type at each site; instead a manufacturer

recommended equation was used to convert the sensor measure-

ment of the dielectric constant to SWC [51,52]. The sensors were

inserted into the soil and allowed to stabilize prior to data

Figure 2. The sites were broadly representative of the US. Percent occurrence of land in latitudinal (a), longitudinal (b), elevational (c), and soil
order (d) categories in the US (black bars), and our study sites (white bars). The study sites also occupied a wide range of climates (e) and Ts and SWC
conditions at the time of samplings (f). Error bars in (f) represent 61 SE.
doi:10.1371/journal.pone.0083216.g002
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acquisition. Data at each measurement point were acquired at 1 s

(execution interval), and descriptive statistics were calculated over

30 s averaging periods with a datalogger (CR3000, Campbell

Scientific Inc.). The sampling design was similar among the sites,

but it was not identical due to site-specific space constraints (e.g.,

property boundaries) and obstacles (e.g., rock outcrops, roads,

streams, tree trunks, and stone walls). The measurements were

taken along 2 to 4 intersecting transects at each site, with the

number and length of transects depending on site topography and

property size. The intersection point of the transects was typically

at the center of each transect. The length of transects ranged from

42 m to 210 m. The starting, center and ending points of each

transect were recorded by a GPS unit, which was used to calculate

distances during semivariogram analysis.

The determination of sampling locations followed the cyclic

sampling logic used by Bond-Lamberty et al. [23], with measurements

taken at 0, 2, 8, 28, 38, and 42 m (noted as transect points) and with

this spacing scheme repeated until the end of the transect was

reached (i.e., the next sampling points would occur at 44, 50, 70, 80,

84, 86, 92…m). In addition, two more Ts and SWCmeasurements

were made at 20.3 m and +0.3 m from each transect point along

the axis of the transect, thus resulting in a total of 3 Ts and 3 SWC

measurements made at each transect point (Figure S1). The

minimum and maximum distance between measurements ranged

from 0.3 m to at least 84 m at each site, and up to 210 m at some

sites, as a result, we were able to capture both small spatial scale

(,0.3 m) and the plot-to-footprint scale (,100’s m22) variability.

Measurements were taken at 13461 (mean 61 standard error,

convention used throughout the text, unless otherwise noted)

locations per site (maximum=156, minimum=111). The number

of measurement points at each site exceeded the recommendation

Table 3. Correlation coefficients indicating covariation among many site characteristics.

Latitude Longitude

Mean annual air

temperature

Mean annual

precipitation Elevation

Canopy

height Mean Ts Mean SWC

Latitude 1 20.808 20.921 20.288 20.001 20.211 20.700 0.084

Longitude 20.808 1 0.693 0.277 20.173 0.309 0.654 20.018

Mean annual air
temperature

20.921 0.693 1 0.284 20.252 0.196 0.701 20.061

Mean annual
precipitation

20.288 0.277 0.284 1 20.271 0.412 0.005 0.025

Elevation 20.001 20.173 20.252 20.271 1 20.154 20.129 20.325

Canopy height 20.211 0.309 0.196 0.412 20.154 1 0.012 20.199

Mean Ts 20.700 0.654 0.701 0.005 20.129 0.012 1 20.115

Mean SWC 0.084 20.018 20.061 0.025 20.325 20.199 20.115 1

doi:10.1371/journal.pone.0083216.t003

Table 4. Statistical significance (p values) of site characteristics on mean Ts and SWC, as well as semivariogram properties and
derived values.

Ts SWC

Mean Range Sill Nugget Sample size Mean Range Sill Nugget Sample size

Latitude ,0.001 NS NS NS NS NS NS NS NS NS

Longitude NS NS 0.013 NS 0.003 NS 0.008 0.023 0.002 0.004

Elevation NS 0.091 NS NS NS 0.032 NS NS NS NS

Mean annual air
temperature

NS NS 0.003 NS 0.004 NS NS 0.004 0.082 0.009

Mean annual
precipitation

NS NS NS NS NS 0.007 NS 0.050 NS 0.002

Canopy height NS 0.065 NS 0.024 0.087 NS 0.037 NS NS NS

Ecosystem type ,0.001 NS NS NS NS ,0.001 NS NS 0.015 0.071

Canopy structure NS 0.019 ,0.001 0.006 ,0.001 NS NS 0.053 ,0.001 ,0.001

Soil type NS 0.009 NS 0.046 0.021 NS NS NS 0.026 NS

Mean Ts NA NS 0.012 NS NS 0.032 NS 0.046 0.001 0.004

Mean SWC NS NS NS 0.005 NS NA NS ,0.001 0.072 0.037

Model r2 0.73 0.40 0.57 0.48 0.83 0.51 0.18 0.70 0.62 0.66

The r2 of the statistical model (observed versus predicted) is also shown.
NS: not significant (i.e., p.0.1 and factor was removed from the statistical model), NA: not applicable.
doi:10.1371/journal.pone.0083216.t004
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of at least 100 points to construct representative isotropic (i.e., non-

directional) semivariograms with soil data [53,54].

It typically took ,2.5 to 5 hours to collect the data at each site,

during which time natural changes to Ts and SWC could occur,

e.g., solar heating of the soil, evaporation and/or transpiration.

Thus, we also continuously collected Ts and SWC with a second,

stationary suite of 3 pairs of identical Ts and SWC sensors (spaced

0.3 m apart) adjacent to the point where all the transects

intersected to estimate diurnal and other weather-related influ-

ences on the measurements. Data at were acquired at 1 s

(execution interval), and descriptive statistics were calculated over

30 sec averaging periods with a datalogger (Models CR1000,

Campbell Scientific Inc.). Ts and SWC data from the transects and

the stationary system, as well as measurement coordinates, that

were used to create the semivariograms are available available by

completing the request form at the bottom of the webpage: http://

neoninc.org/pds/FIU007.php [55].

Semivariograms and model fitting
Two primary approaches were used to de-trend temporal

changes from the data collected along the transects, such that the

remaining variability in the data can be attributed to its spatial

sources and quantified with a semivariogram. First, mean Ts and

SWC values from the stationary location were subtracted from

transect data at each corresponding time of day to produce corrected

data. Second, a linear regression based on the relationship

between time of day and the corrected Ts and SWC data was

fitted, and the residuals calculated. These residuals were then used

to construct the semivariogram. In the context of geostatistics, de-

trending is driven by the need to satisfy the second-order

stationarity requirement, which needs to be met in order to

ensure that the resulting covariance function is valid, e.g., [24]. At

5 sites (Sterling, Rocky Mountain NP, Central Plains Exp. Range,

Caribou Poker, and Northcutt) the stationary system was either

unavailable or malfunctioned. Therefore, de-trending was done

using the linear regression approach only. If additional patterns

(i.e., gradients in Ts or SWC across the sampling site or non-

normal distribution) were still visible in the data after removing

temporal trends, we used a third method to de-trend the data

based on topographic relief (elevation, aspect, and slope calculated

from a digital elevation map) to meet the assumptions of the

semivariogram model. This third method consisted of adding

elevation, aspect, and slope in all combinations (i.e., elevation6as-

pect6slope, elevation6aspect, elevation6slope, etc.) to the time of

day linear regression described above. Linear regressions that were

not significant (p.0.05) were excluded, and the residuals were

recalculated. De-trending using elevation, slope, and/or aspect

was necessary at 18 sites (Barrow Environmental Observatory,

Poker Flats, Eight Mile Lake, Woodworth, Northern Great Plains

Research Lab, Tree Haven, Steigerwaldt, Upper Teakettle, Konza

– Core, UK Biological Station, Harvard Forest, Niwot Ridge,

Smithsonian Conservation Biology Institute, Ordway-Swisher BS,

Great Smoky NP, Talladega Nat’l Forest, Choctaw WMA, and

Murray).

Data collected were used for geospatial analyses in the R

statistical computing language with the geoR package [56,57]. At

each site the empirical semivariogram, ŷ(h), which is half the

average squared difference between data pairs, was calculated

using the following equation,

ĉc(h)~
1

2N(h)

XN(h)

a~1
½z(ua){z(uazh)�2 ð1Þ

where, z(ua), a=1, 2, …, n denotes the set of Ts or SWC data, ua is

the vector of spatial coordinates of the ath observation, h represents

a distance separating pairs of data, and N(h) is the number of data

pairs separated by a given distance. In general, the covariance

function for any pair of data that is h units apart can be

represented as,

C(h)~sc(h) ð2Þ

where, s is a variance parameter and c(h) is any positive definite

correlation function. The correlation function used in this work

was a spherical model with the following form,

ĉc(h)~
(1{1:5

h

a

� �

z0:5
h

a

� �3

0

8

>

<

>

:

,

,

if

otherwise

hva
ð3Þ

where, a is the semivariogram range. In addition, we allowed for a

nugget term, which is simply added to the covariance function.

Approximate values for the range, sill, and nugget were estimated

from the experimental semivariogram to seed the model and best-

fit values were subsequently estimated using weighted least

squares. It is important to note that a key goal of this study is to

provide meaningful comparisons of the results across a number of

sites, and this comparability was weighed as more important than

a potentially negligible difference in the fit of a model for varying

functional forms of the variogram, i.e., same sources of uncertainty

in the model fit for all sites. Based on these two constraints, we

selected the functional form of the variograms (spherical) that

provided the best fit at most of the sites and applied it to all sites for

the sake of consistency.

Lag spacing was set to 1 m for every empirical semivariogram.

Preliminary tests with Ts and SWC data from Eight Mile Lake,

AK, and Klemme, OK, showed that changing the lag spacing to 1,

2, or 5 m did not alter the estimated range value in any systematic

manner, and the change was 69% on average, which corre-

sponded to 64 m. Similarly, the coefficient of variation estimated

from the semivariogram model was strongly positively correlated

with the coefficient of variation calculated via the traditional

method (see Coefficient of variation and sample size subsection in the

Results section), indicating that 1 m lag spacing allowed the model

to accurately describe the variability in the dataset.

Calculating CVs and sample size
The coefficient of variation for Ts and SWC was calculated for

each site in two ways: 1) the traditional method of dividing the

standard deviation by the mean (referred to as CVTraditional); and

2) using the sill to estimate standard deviation and dividing that

value by the mean (referred to as CVSill) as follows,

CVsill~

ffiffiffiffiffiffiffiffiffiffiffi

2|ŜS
p

�xx
ð4Þ

Figure 3. Mean Ts (left column) and SWC (right column) at each site in relation to ecosystem type (a, b), canopy structure (c, d), and
soil type (e, f). Error bars represent 61 SE. Bars with different letter were significantly different (p,0.05) based on Tukey HSD tests. The letter ‘‘A’’
corresponds to the largest least square mean(s) and subsequent letters (B, C, …) correspond to progressively smaller least square means.
doi:10.1371/journal.pone.0083216.g003
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where, �xx represents the sample mean, and ŜS represent the

semivariogram sill.

We calculated the sample size (n) needed to estimate the mean

Ts and SWC to within 10% of the spatial mean and with 90%

confidence using [4],

n~

(1:645)2

ffiffiffiffiffiffiffiffiffiffiffi

2|ŜS
p

X

 !

0:1ð Þ2
ð5Þ

where, �xx represents the sample mean, and ŜS represents the

semivariogram sill. The constants 0.1 and 1.645 represent the

accuracy requirement (i.e., 10%) expressed as a proportion and the

value of t statistic that corresponds to the 90% confidence interval,

respectively. These accuracy and confidence thresholds were

chosen because they are conservative enough to meet the goals of

most studies. An assumption of the hypothesis test underlying this

analysis is that the data are normally distributed, which we

ensured prior to constructing the semivariograms.

Statistical analyses. Several of the hypotheses that we tested

involved relating site characteristics to dependent variables. Some

site characteristics (i.e., factors in the statistical tests) were

continuous variables (latitude, longitude, mean annual air

temperature, mean annual precipitation, elevation, canopy height,

mean Ts, and mean SWC), while others were categorical variables

(ecosystem type, canopy structure, and soil type). Some levels of

the categorical site characteristics contained too few sites to allow

statistical analyses to be conducted. For example, Andisols were

only found at 2 sites (Wind River and Abby Road, WA) and a

tropical deciduous forest ecosystem only occurred at 1 site

(Guanica, PR). As a result, levels were combined to increase the

number of sites within each level prior to conducting the statistical

tests. Ecosystem types were grouped into 6 levels: deciduous forests

(both tropical and temperate), temperate coniferous forests,

grasslands (incl. shrublands, and savannas), agricultural, boreal

(including montane forests), and tundra. While we recognize that

short stature ecosystems (e.g., grasslands) can have closed canopies

with only small gaps between neighboring plants or open canopies

with substantial amounts of bare ground between plants, they

clearly differ in structure from taller stature ecosystems. The

ecosystem and canopy structure classifications were somewhat

subjective and some sites could have been reasonably placed in

two or more different groups, but the chosen category represents

our best judgment. Canopy structure was grouped into 3 levels:

closed canopy ecosystems, open and semi-open canopy ecosys-

tems, and short stature ecosystems. Vegetation canopy heights

were measured in the field and reflect the average height of the

T
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Table 6. Correlation coefficients and statistical significance
for Ts and SWC semivariogram properties and derived values.

Spearman correlation

coefficient p value

Ts range – SWC range 0.26 0.089

Ts sill – SWC sill 0.36 0.016

Ts nugget – SWC nugget 0.34 0.021

Ts CVSill – SWC CVSill 0.59 ,0.001

Ts sample size – SWC sample size 0.59 ,0.001

doi:10.1371/journal.pone.0083216.t006
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tallest component of the plant community (e.g., in a savanna

ecosystem the canopy height reflects the average height of the

trees, rather than the grasses). Soils were grouped according to soil

orders: Inceptisols, Spodosols, Ultisols, Mollisols, Gelisols, and

other (incl. Vertisols, Andisols, Alfisols, Entisols, Aridisols, as well

as sites with .1 soil order and sites where the soil order was

unknown).

In all statistical models described below, factors in the model

that had a p value of .0.1 were removed in a stepwise manner

and the model was re-run until all remaining factors had a p value

of ,0.1. Statistical significance was assumed at p,0.05 for all

tests. Post-hoc Tukey HSD tests were performed when ANOVAs

identified a significant effect of the categorical factor(s).

We expected that many of the site characteristics would covary

(e.g., latitude and mean annual air temperature) and it is necessary

to understand this covariation when interpreting the statistical tests

that we performed. To assess covariation in the explanatory

variables used in the statistical tests, we calculated correlation

coefficients for each combination of site characteristics (latitude,

longitude, mean annual air temperature, mean annual precipita-

tion, elevation, canopy height, mean Ts, and mean SWC).

Categorical site characteristic factors (i.e., ecosystem type, canopy

structure, and soil type) were excluded from this analysis. Stepwise

removal of non-significant factors from statistical tests tends to

remove factors that covary with one-another, therefore, interpre-

tation of a significant effect caused by a site characteristic should

also consider other covarying site characteristics.

At some sites it was not possible to estimate the range or sill

because the semivariogram did not reach an asymptote (see

Semivariograms subsection in the Results section); therefore these sites

were excluded from further statistical analysis. We tested whether

these sites had different characteristics than sites where the

semivariograms did reach an asymptote to determine whether this

could influence the interpretation of our results. To achieve this,

nominal logistic models were performed in JMP (SAS Institute

Inc., Cary, NC) to determine whether significant differences in

latitude, longitude, elevation, mean annual air temperature, mean

annual precipitation, canopy height, mean Ts, mean SWC, and

maximum semivariogram lag distance existed between sites where

semivariograms did and did not reach an asymptote. Categorical

site characteristic (i.e., ecosystem type, canopy structure, and soil

type) were excluded from this analysis due to the limited number

of sites within each level of the categories.

ANOVAs were performed in JMP to determine the relationship

between site characteristics and Ts and SWC. The factors in the

ANOVAs were latitude, longitude, elevation, mean annual air

temperature, mean annual precipitation, canopy height, ecosystem

type, canopy structure, and soil type and the dependent variables

were mean Ts and mean SWC. Both mean Ts and mean SWC

were log10 transformed to meet assumptions of normality and

homogeneity.

ANOVAs were also used to test hypotheses 1–4. ANOVAs were

performed in JMP to assess the relationship between site

characteristics and semivariogram range, nugget, and sill, as well

as estimated sample size required to meet the accuracy require-

ment for Ts and SWC. Semivariogram nugget data for Ts and

SWC met the assumptions of normality and homogeneity;

however, range, sill, and sample size data required log10
transformations to meet these assumptions.

Because some factors often explained the majority of variation

in an ANOVA, relatively weak relationships that were statistically

significant were sometimes masked by the dominant factors when

plotted as graphs. This is because the ANOVA accounts for

variability in the data caused by others factors, whereas the graphs,

Figure 4. Semivariogram range (a), sill (b), and nugget (c) for Ts

versus SWC at the sites. Sill values are plotted on a log scale due to
large differences in magnitude across the sites.
doi:10.1371/journal.pone.0083216.g004
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which are based on raw data, do not. This should be taken into

account when comparing the statistical results to the graphs.

A Spearman’s rank correlation was performed in JMP to assess

the relationships between mean Ts and mean SWC to determine

whether they were significantly correlated. Additional Spearman’s

rank correlations were performed in JMP to assess the relation-

ships among Ts range and SWC range, Ts nugget and SWC

nugget, Ts sill and SWC sill, and Ts sample size and SWC sample

size (Hypothesis 5); and Ts range, nugget, and sill, as well as SWC

range, nugget, and sill (Hypothesis 6).

Paired one sample t-tests (JMP) were used to assess whether

range, nugget, sill, and sample size values differed between Ts and

SWC among the sites to test Hypothesis 6. In addition, to test

whether the semivariograms accurately described the variability in

Ts and SWC at each site, linear regressions (JMP) were used to

assess the relationship between CVTraditional and CVSill for both Ts

and SWC.

The range and sample size for Ts and SWC were plotted against

the cumulative proportion of sites to investigate the frequency

distribution. These relationships were modeled with a 3-parameter

logistic curve using SigmaPlot (Systat Software Inc., Chicago,

Illinois).

In the interest of brevity, we only present graphs relating to a

subset of site characteristics in this paper, namely ecosystem type,

canopy structure, and soil order. The relationship between

dependent variables and other site characteristics, including

latitude, longitude, elevation, mean annual air temperature, mean

annual precipitation, mean Ts, and mean SWC, are presented in

the Appendices.

Results

Site characteristics
The sites encompassed a continental-scale range of eco-climatic

properties (Table 1, Figure 1), and were broadly representative of

the proportion of US land in different latitudinal, longitudinal, and

elevational categories, as well as spanning a wide range of soil

types, climate space, and soil temperature and moisture conditions

at the time of sampling (Figure 2). Ts varied from 2.160.1uC

(mean 61SE) at Pump Station 2, AK, to 30.860.2uC at Santa

Rita Exp. Range, AZ, while SWC varied from 1.160.1% at

Burlington, MA, to 37.860.7% at Ponce, PR (Table 2). Ts and

SWC estimates were not correlated with each other among the

sites (p = 0.143), resulting from several sites with contrasting Ts

and SWC combinations (i.e., warm and wet, warm and dry, cool

and wet, and cool and dry, Figure 2f).

As expected, correlations demonstrated a substantial amount of

covariation in the site characteristics (Table 3). For example, mean

annual air temperature, mean Ts, and longitude were all strongly

negatively correlated with latitude. Weaker correlations were

observed between mean annual precipitation and canopy height,

and elevation and mean SWC. These correlations should be

considered when interpreting the results, since the stepwise

removal of non-significant factors from the ANOVA models tends

to remove factors that covary from the model. For example, a

significant relationship between longitude and a dependent

variable would likely also be significant for latitude, mean annual

air temperature, or mean Ts if longitude had not been included as

a factor.

Figure 5. Semivariogram range for Ts (left column) and SWC (right column) at each site in relation to ecosystem type (a, b), canopy
structure (c, d), and soil type (e, f). Error bars represent61 SE. Bars with different letter were significantly different (p,0.05) based on Tukey HSD
tests. The letter ‘‘A’’ corresponds to the largest least square mean(s) and subsequent letters (B, C, …) correspond to progressively smaller least square
means.
doi:10.1371/journal.pone.0083216.g005

Figure 6. Semivariogram range for Ts, SWC, and the largest range for Ts or SWC at each site versus the cumulative proportion of
sites. A logistic curve was fitted to the data with R2 of 1.00, 0.99, and 0.99 for Ts, SWC, and Ts and SWC, respectively. Equations for the curves can be
found in the results section (Eq. 6a–c).
doi:10.1371/journal.pone.0083216.g006

Spatial Variation in Soils

PLOS ONE | www.plosone.org 16 January 2014 | Volume 9 | Issue 1 | e83216



Spatial Variation in Soils

PLOS ONE | www.plosone.org 17 January 2014 | Volume 9 | Issue 1 | e83216



Mean Ts among sites was negatively related to latitude and

differed among ecosystems, i.e., not surprisingly being higher in

temperate ecosystems, and lower in montane and high-latitude

ecosystems (Table 4, Figure 3). Mean Ts among sites followed

expected relationships to mean annual air temperature, elevation,

and soil type (e.g., being lower in Gelisols, which are associated

with cold climates; Figure 3), but the effects were not significant

due to covariation among these factors and the factors that were

statistically significant in the model (i.e., latitude and ecosystem

type). Mean SWC was positively related to mean total annual

precipitation, decreased with increasing elevation and mean Ts,

and was significantly related to ecosystem type, being largest in

tundra ecosystems, which have low evapotranspiration rates, and

in agricultural ecosystems, several of which were irrigated, and the

lowest in temperate coniferous forests (Table 4, Figure 3).

Semivariograms
In 12% and 17% of cases the semivariograms for Ts and SWC,

respectively, had not reached an asymptote at the maximum lag

distance used to construct the modeled semivariogram (Table 2).

As a result, sill, range, and nugget (expressed as a percent of sill)

values for these semivariograms were based on extrapolation,

which may not accurately represent the true values. At 75% of sites

both the Ts and SWC semivariogram reached an asymptote, at

13% of sites only the Ts semivariogram reached an asymptote, at

8% of sites only the SWC semivariogram reached an asymptote,

and at the remaining 3% of sites no asymptote was reached for Ts

or SWC. Sites with semivariograms that did not reach an

asymptote were not different from other sites in terms of their

environmental characteristics (i.e., latitude, longitude, elevation,

mean annual air temperature, mean annual precipitation, canopy

height, mean soil temperature, or mean soil moisture). However,

the SWC semivariograms that did not reach an asymptote were

associated with shorter maximum lag distances (Table 5). Unless

stated otherwise, all subsequent results are based solely on

estimated sill, range, and nugget values from semivariograms that

reached an asymptote. Since there were no significant differences

in environmental characteristics between sites where the semivar-

iogram did and did not reach an asymptote, there is no evidence

that excluding sites where the semivariogram did not reach an

asymptote introduced a systematic bias into the interpretation of

our results.

Semivariogram range
The mean range value was 2764 m and 2663 m for Ts and

SWC, respectively. A paired t-test demonstrated that Ts range

values did not significantly differ from SWC range values

(p = 0.773). Despite the similarity in the mean range, range values

for Ts were not correlated with range values for SWC (Table 6;

Figure 4a). At some sites, the Ts and SWC range values were

similar, but at many sites one range value was substantially larger

than the other.

Range values for Ts were significantly influenced by canopy

structure and soil type, while those for SWC were significantly

related to longitude and canopy height (Table 4, Figure 5). Ts

range values were lower in short stature ecosystems than those in

closed canopy or open and semi-open canopy ecosystems, and also

lower in Inceptisols and ‘‘other’’ soils than in Ultisols (Figure 5).

SWC range values increased with longitude (i.e., increased from

west to east) and decreased with canopy height (Table 4).

The relationship between the Ts range and the cumulative

proportion of sites exhibited a logistic pattern (Figure 6). For

example, 88%, 75%, and 55% of sites had a range value for Ts of

less than 100, 50, and 25 m, respectively. Similar patterns were

observed for SWC range values, as well as the largest range value

for Ts or SWC (i.e., whichever was largest at a site; Figure 6). The

equations that described these relationships were,

Soil temperature : y~
94:3705

1z x=19:1852ð Þ{1:3735
h i ð6aÞ

Soil moisture : y~
90:0096

1z x=19:801ð Þ{1:4759
h i ð6bÞ

Soil temperature=moisture : y~
100:4066

1z x=46:6724ð Þ{1:2824
h i ð6cÞ

where, x is the range distance expressed in meters, and y is the

percent of sites that had smaller ranges than x.

Semivariogram sill
Sill values for Ts and SWC were positively related to one

another, suggesting that underlying site properties, in part,

mediate the spatial variability in both variables (Table 6,

Figure 4b). The sill values for Ts were negatively related to

longitude (i.e., decreasing from west to east), and mean annual air

temperature, positively related to mean Ts, and higher for open

and semi-open ecosystems than for closed canopy or short stature

ecosystems (Table 4, Figure 7). The sill values for SWC were also

negatively related to longitude and mean annual air temperature,

and positively related to mean Ts as well as mean SWC (Table 4).

Notably, neither ecosystem type nor soil type were significantly

related to sill values for Ts or SWC (Table 4).

Semivariogram nugget
The nugget was expressed as a percent of the sill and indicates

the proportion of variation that occurred at scales of ,1 m. The

nugget ranged from 0–81% for Ts and 0–96% for SWC, and a

paired t-test demonstrated that the mean Ts nugget (3263%) was

significantly different from the mean SWC nugget (4463%, p,

0.001). Similar to the sill values, Ts nugget values were positively

correlated with SWC nugget values, indicating that underlying site

characteristics mediate sub-meter variability of both parameters

(Table 6, Figure 4c).

Nugget values for Ts were negatively related to canopy height

and mean SWC, and were higher in closed canopy ecosystems

than short stature or open/semi-open ecosystems (Table 4,

Figure 8). There was also a significant effect of soil type on Ts

nugget values, however, a subsequent post-hoc test did not reveal

significant differences among soil types (Figure 8). Nugget values

for SWC were positively related to longitude (i.e., increasing from

Figure 7. Semivariogram sill for Ts (left column) and SWC (right column) at each site in relation to ecosystem type (a, b), canopy
structure (c, d), and soil type (e, f). Error bars represent61 SE. Bars with different letter were significantly different (p,0.05) based on Tukey HSD
tests. The letter ‘‘A’’ corresponds to the largest least square mean(s) and subsequent letters (B, C, …) correspond to progressively smaller least square
means.
doi:10.1371/journal.pone.0083216.g007
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west to east), negatively related to mean Ts, as well as being

significantly related to ecosystem type, canopy structure, and soil

type (Table 4, Figure 8). SWC nugget values were larger in forest

ecosystems (particularly boreal/montane forests), and lower in

tundra ecosystems, as well as being larger in closed canopy and

short stature ecosystems and lower in open/semi-open canopies

ecosystems (Figure 8). SWC nugget values were larger for Gelisols

than for Inceptisols (Figure 8).

Relationships among the semivariogram sill, range, and
nugget
Range values were positively related to nugget values (expressed

as a percent of the sill) for the Ts semivariograms (Table 7,

Figure 9a). However, there was no relationship between range and

sill values or nugget and sill values for Ts (Table 7). Likewise,

range, sill, and nugget values were all unrelated to one another for

the SWC semivariograms (Table 7, Figure 9b).

The relative abundance of different semivariogram shapes was

assessed by assigning them to four categories: small nugget (,50%

sill) and small range (,50 m); large nugget (.50% sill) and small

range (,50 m); small nugget (,50% sill) and large range (.50 m);

and large nugget (.50% sill) and large range (.50 m). For Ts the

most common combination was a small nugget and small range,

which accounted for 37 of the 60 sites (62%; Figure 9c). Small

nugget and range values were also the most common combination

for SWC, accounting for 24 of the 60 sites (40%). In addition, 18

of the sites (30%) had SWC semivariograms with a large nugget

combined with a small range value. For both Ts and SWC, it was

relatively rare to observe a large range value with either a small or

large nugget value (Figure 9c).

Coefficient of variation and sample size
The two estimates of the coefficient of variation (CVTraditional

and CVSill) were strongly and positively correlated with one

another (Ts, r2=0.96, p,0.001; SWC, r2=0.95, p,0.001;

Figure 10), demonstrating that the semivariograms accurately

described the pattern of spatial variability among the sites.

However, CVTradtional values were typically smaller than corre-

sponding CVSill values for both Ts and SWC (p,0.001). This

occurred because the traditional method of calculating CV does

not account for spatial correlation in data, yet spatial correlation

was ubiquitous at our sampling sites (data not shown). Across all

sites, CVSill values were 2463% and 4462% larger than

CVTradtional values for Ts and SWC, respectively.

The CVSill values ranged from 0.02 to 0.88, with a mean of

0.1660.03, and 0.09 to 1.22 with a mean of 0.5160.04 for Ts and

SWC, respectively (Table 2). A paired t-test demonstrated that Ts

CVSill values significantly differed from SWC CVrange values (p,

0.001), demonstrating that SWC was more variable across space.

Similar to the sill values, there was a positive correlation between

CVSill values for Ts and SWC (Table 6, Figure 10), again

suggesting that variability in these parameters may be controlled

by the same site characteristics.

We used a sample size analysis based on CVSill (Eq. 5) to

calculate the number of samples required to estimate Ts and SWC

to within 10% of the mean with 90% confidence (Table 2). We

used CVSill rather than CVTraditional to calculate sample size

because CVTraditional underestimated variability (Figure 10), which

in turn would cause the sample size to be underestimated. For

example, at Harvard Forest the sample size required to estimate

SWC to within 10% of the mean with 90% confidence was 127

when calculated with CVTraditional (0.69), but was 204 when

calculated with CVSill (0.87). Across all the sites, the sample size

calculated using CVTraditional underestimated the sample size

calculated with CVSill by a factor of 1.660.1 (maximum: 2.6) and

2.160.1 (maximum: 3.0) for Ts and SWC, respectively. Hereafter,

we focus on sample sizes calculated using CVSill.

Since we used the sill to represent the variance in the sample

size analysis, the number of samples required assumes that the

sample spacing will be larger than or equal to the range value from

the semivariogram (i.e., the distance at which the sill is reached). In

addition, because the sample size was based on CVSill, both

parameters (CVSill and sample size) exhibited similar patterns. For

example, the sample size analyses indicated that the number of

samples necessary to meet the accuracy requirement varied from 1

to 211 for Ts (mean of 2067) and from 2 to 405 for SWC (90613),

and a paired t-test demonstrated that sample size was significantly

larger for Ts than SWC (p,0.001), which is similar to findings for

CVSill. In addition, the sample size required for Ts was positively

correlated to the sample size required for SWC (Table 6,

Figure 11).

The number of samples required to estimate Ts to within 10%

of the mean with 90% confidence was negatively related to

longitude (i.e., decreasing from west to east) and mean annual air

temperature, and was also influenced by canopy structure and soil

types (Table 4, Figure 12). More samples were required in open/

semi-open canopy ecosystems than other ecosystems, and in

Gelisols than in Mollisols (Figure 12). At 87% of sites, 20 or fewer

samples were sufficient to meet the accuracy requirement for Ts.

The remaining 13% of sites that required more samples were all

Alaskan sites that shared a number of similarities, including high

latitudes, westerly longitudes, low mean annual air temperature (,

2uC), low mean Ts at the time of sampling (,6uC), low mean

annual precipitation (,500 mm), tundra or boreal forest ecosys-

tem types, primarily Gelisols or Inceptisols, low to mid elevations

(,1000 m.a.s.l.), and low to mid-vegetation canopy heights (,

15 m; Figure 12).

Figure 8. Semivariogram nugget expressed as a percent of the sill for Ts (left column) and SWC (right column) at each site in
relation to ecosystem type (a, b), canopy structure (c, d), and soil type (e, f). Error bars represent 61 SE. Bars with different letter were
significantly different (p,0.05) based on Tukey HSD tests. The letter ‘‘A’’ corresponds to the largest least square mean(s) and subsequent letters (B, C,
…) correspond to progressively smaller least square means.
doi:10.1371/journal.pone.0083216.g008

Table 7. Spearman correlation coefficients and statistical
significance for Ts and SWC semivariogram properties.

Correlation coefficient P value

Ts

Range – nugget 0.53 ,0.001

Range – sill 20.07 0.628

Nugget – sill 20.15 0.278

SWC

Range – nugget 0.10 0.492

Range – sill 0.03 0.863

Nugget – sill 20.17 0.237

doi:10.1371/journal.pone.0083216.t007
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The number of samples required to estimate SWC to within

10% of the mean with 90% confidence was positively related to

mean annual precipitation and mean Ts, negatively related to

longitude, mean annual air temperature, mean SWC, and was also

influenced by canopy structure (Table 4, Figure 12). More samples

were required to meet the accuracy requirement in closed and

open/semi-open canopy ecosystems than short stature ecosystems

(Figure 12). Unlike Ts, sites that required a large number of

samples (i.e., .100) to accurately measure SWC did not share

many similar characteristics, although none had a mean soil

moisture of .16% (data not shown).

When the required sample size for Ts was plotted against the

cumulative proportion of sites the relationship could be accurately

described by a logistic equation (Figure 13). For example, based on

the sample size analyses, one sample was sufficient to estimate Ts

to within 10% of the spatial mean with 90% confidence at 45% of

sites, while 10 samples was sufficient to meet this requirement at

79% of sites. A similar pattern emerged for SWC sample size

plotted against the cumulative proportion of sites, although at least

an order of magnitude more samples were required than for Ts

(Figure 13). In addition, the pattern was similar for the number of

samples required for Ts or SWC (whichever was largest at a site;

Figure 13). The equations that described these relationships were,

Soil temperature : y~
94:3653

1z x=1:2306ð Þ{0:9435
h i ð7aÞ

Soil moisture : y~
95:9175

1z x=49:799ð Þ{1:8399
h i ð7aÞ

Soil temperature=moisture : y~
99:5316

1z x=56:6125ð Þ{1:4619
h i ð7cÞ

Figure 9. Semivariogram range versus nugget for Ts (a) and SWC (b), and the relative occurrence of semivariograms with small
(.50 m) or large (.50 m) range values and small (,50% sill) or large (.50% sill) nugget values. The percentages in (c) are based on all
60 sites, including the sites where range values exceeded the maximum distance of the semivariogram model (i.e., 7 sites (12%) for Ts and 10 sites
(17%) for SWC). As a result, the percentages do not add up to 100%. Since the semivariograms that did not reach an asymptote all had range values
that exceeded 50 m, the percentages in the right two quadrants are underestimated by a total of 12 and 17 percentage points for Ts and SWC,
respectively.
doi:10.1371/journal.pone.0083216.g009
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where, x represents a number of samples and y is the percent of

sites that require x (or fewer) samples to estimate the spatial mean

to within 10% of the mean with 90% confidence.

Efficacy of sampling strategies
To estimate the mean Ts across the area we sampled at a

particular site with the fewest samples, sample spacing should

equal or exceed the range value estimated from the Ts

semiovariogram at that site. This is because samples spaced this

distance apart are effectively independent, thereby providing the

maximum amount of information from each individual sample. In

contrast, if the sample spacing was less than the range value then

adjacent samples would be correlated (i.e., each sample would

provide less than the maximum amount of information), which

meant that more samples would be needed to accurately estimate

the spatial mean of Ts. We emphasize that using the semivario-

gram range to inform sample spacing is appropriate here because

we are only constraining the sampling to accurately estimate the

mean. However, this may not be appropriate for studies with

different goals.

Since Eq. 6a describes the proportion of sites with a soil

temperature range less than a given value and Equation 7a

describes the proportion of sites where a given sample size would

be required to estimate soil temperature to within 10% of the

mean with 90% confidence, we created a matrix that outlines the

efficacy of different sampling strategies based on these two

equations (Figures 14–16). For example in Figure 14, two

temperature measurements spaced 5 m apart would only be

sufficient to estimate mean Ts to within 10% of the mean with

90% confidence over ,1 ha (the approximate size of the area we

sampled) at 7% of our sites. Interestingly, increasing the number of

samples while keeping sample spacing at 5 m barely improved the

efficacy of the sampling strategy and this occurs for two reasons, i)

because spatial variation in Ts is often low (Figure 10), so few

samples are needed at most sites (Figure 13), and ii) because only

12% of sites had a range value of 5 m or less (Figure 6). However,

if the sample spacing were increased to 100 m, just two samples

Figure 10. Coefficient of variation calculated by dividing the standard deviation by the mean (CVTraditional) versus coefficient of
variation calculated using the semivariogram sill (CVSill) for Ts, SWC, and CVSill for Ts versus SWC. Dotted line is 1:1.
doi:10.1371/journal.pone.0083216.g010

Figure 11. Number of samples required to measure Ts to within
10% of the spatial mean with 90% confidence versus the
number of samples required to meet the same accuracy
requirement for SWC. Values are plotted on a semi-log scale due
to large differences in magnitude across the sites.
doi:10.1371/journal.pone.0083216.g011
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would be needed to meet the requirement of measuring Ts to

within 10% of the spatial mean with 90% confidence at half the

sites, although common sense dictates that more samples would be

preferable (e.g., 5 samples). This matrix can be used as a guide to

quantitatively evaluate the efficacy of increasing sample size and/

or sample spacing to measure the spatial mean of Ts at scales of

,1 ha at our sampling sites.

Using Equation 6b and 7b, we created a similar matrix to

evaluate the efficacy of different sampling strategies for measuring

SWC at spatial scales of ,1 ha (Figure 15). As with Ts, 2 samples

spaced 5 m apart would not be an effective sampling strategy to

measure SWC to within 10% of the mean with 90% confidence.

Increasing the sample size or sample spacing only slightly improves

the efficacy, however, by increasing both the sample size and

sample spacing the sampling strategy can become substantially

more effective at meeting the accuracy requirement. Figure 15 also

demonstrates how a sampling strategy that is effective at a given

proportion of sites can be achieved in many different ways. For

instance, 150 samples spaced 10 m apart would meet the accuracy

requirement for SWC at the same proportion of sites as 60 samples

15 m apart or 30 samples 55 m apart.

Lastly, using Equation 6c and 7c we created a matrix to

evaluate the efficacy of measuring both Ts and SWC to within

10% of the mean with 90% confidence at spatial scales of ,1 ha

(Figure 16). I n this case, more samples spaced further apart were

always required to meet the accuracy requirement at a given

proportion of sites than for Ts or SWC alone.

Discussion

We characterized the spatial structure of variability in soil

properties over ,1 ha at 60 sites throughout the US. Our study

included nearly an order of magnitude more sites than any

previous study that examined the spatial variation in soil

properties, and as a result, allowed us to derive some empirical

rules to describe the observed variability in soils. Moreover, we

were able to evaluate the efficacy of different sampling strategies

(i.e., sample size and sample spacing) at measuring the spatial mean

of Ts and SWC, which can guide future soil studies. We emphasize

that our guidelines for sampling strategies are designed to

accurately estimate the spatial mean of a soil property, and as a

result, our guidelines may not be suitable for studies with different

goals. Because our sites were broadly representative of US

geography and ecology (i.e., including every major terrestrial

ecosystem type and soil type), our findings are broadly applicable

to US soils, and to a lesser extent other regions of the world.

Variability
Generally, variability was larger for SWC than Ts, which

resulted in a larger sample size required to measure SWC to within

10% of the spatial mean with 90% confidence than for Ts. This is

consistent with other studies that have also observed larger CV

values for SWC than Ts [23,24,58–60]. We did not specifically set

out to determine the sources of variability, or why variability was

larger for SWC than Ts, but a likely explanation is that water is

more mobile than heat, and as a result more sensitive to

Figure 12. Number of samples to measure Ts (left column) and SWC (right column) to within 10% of the spatial mean with 90%
confidence at each site in relation to ecosystem type (a, b), canopy structure (c, d), and soil type (e, f). Error bars represent 61 SE. Bars
with different letter were significantly different (p,0.05) based on Tukey HSD tests. The letter ‘‘A’’ corresponds to the largest least square mean(s) and
subsequent letters (B, C, …) correspond to progressively smaller least square means.
doi:10.1371/journal.pone.0083216.g012

Figure 13. Number of samples required to measure Ts, SWC, or Ts and SWC to within 10% of the spatial mean with 90% confidence
versus the cumulative proportion of sites. A logistic curve was fitted to the data with R2=0.99 for each equation (Eqs. 7a–c). Values are plotted
in a semi-log scale due to large differences in magnitude across the sites.
doi:10.1371/journal.pone.0083216.g013
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microtopography (i.e., water drains from hummocks to depres-

sions, whereas heat does not), and is actively transported by plants

(i.e., transpiration induced uptake and hydrologic lift), resulting in

larger variability at this spatial scale.

Despite generally larger spatial variability in SWC than Ts, (i.e.,

sill and CVSill), Ts and SWC were positively correlated suggesting

that they were likely controlled by similar site properties at the

scale we sampled. Indeed, ANOVAs also indicated that sill values

for both measures decreased with increasing longitude (i.e., from

west to east) and mean annual air temperature, while they

increased with mean Ts. In addition, among the sites sill values for

temperature and moisture increased with mean Ts and SWC,

respectively, exhibiting the commonly observed pattern of

increased variability with increasing mean values, i.e., hetero-

scedastic [61]. Similarly, data presented by Brocca et al. [12]

shows that the standard deviation for SWC increased from the

driest site (MON, mean 6 SD: 22.862.0) to the wettest site (LEC,

38.563.0) for seven Italian sites. In contrast, Western et al. [26]

found no clear relationship between SWC and variance at

locations in Australia and New Zealand, while data reported by

Famiglietti et al. [25] show a negative relationship among six sites

in Oklahoma. These studies however, differ in their design (e.g.,

spatial scale, sampling frequency, geographic region), making it

difficult to determine why different patterns were observed among

the studies. But one explanation could be that the driest sites in the

other studies had a mean SWC of between 10% and 23%,

whereas half of our sites had a mean SWC of ,10% (all of which

had relatively low semivariogram sill values) and previous studies

that have monitored SWC over time at individual sites often

observed that low mean SWC coincided with relatively low

variability, e.g., [13,14]. We studied the relationship between the

mean and variability (i.e., sill) across space, whereas most previous

studies have investigated this relationship at individual sites across

time and have often (but not always) observed the variance or

standard deviation increasing with intermediate SWC and

decreasing at low and high SWC [12–14,20,26].

Ecosystem type did not significantly influence sill values for

either Ts or SWC, despite the common assumption that

agricultural soils were less variable than soils in other ecosystems

[4,11]. Similarly, Robertson et al. [11] were surprised by the large

variability in a wide range of soil properties from a soybean field

that visibly appeared homogeneous, supporting the notion that

agricultural ecosystems are typically more variable than many

researchers appreciate.

The ANOVA models left 43% and 30% of the variability in Ts

and SWC sill values unexplained for, respectively, indicating that

other site properties (i.e., besides the ones we measured) also are

sources of variability. In part this may relate to vegetation canopy

structure at the sites. For example, soil beneath canopy gaps would

receive both more radiation and precipitation inputs than soil

Figure 14. Efficacy of different sampling strategies at measuring Ts to within 10% of the spatial mean with 90% confidence at
scales of ,1 ha. Values represent the percent of sites where the corresponding sampling strategy would achieve the accuracy requirement. The x-
axis is based on Equation 6a and the y-axis is based on Equation 7a.
doi:10.1371/journal.pone.0083216.g014
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beneath a closed-canopy, which would increase spatial variability

in both measures at a site [62]. Indeed, Ts sill values were

significantly larger in open/semi-open ecosystems (i.e., sites with

high variability in vegetation cover) than in closed-canopy or short

stature ecosystems, but this pattern did not occur for SWC. In a

rangeland ecosystem, diurnal maximum Ts at 5 cm were found to

be much lower beneath sagebrush plants (10uC) than in

interspaces between plants (17uC), indicating that canopy structure

strongly influenced spatial variability in Ts [63]. Similar results

have been found with SWC [64,65]. In addition, previous studies

have shown that topography influences the spatial variability of

SWC [12,66,67], which may also account for some of the

unexplained variation found here.

Sample size
We estimated the number of samples required to measure Ts

and/or SWC to within 10% of the spatial mean with 90%

confidence at each site for prospective purposes (i.e., to inform

future study designs). This represents a conservative number of

samples for most studies, as this level of accuracy is often deemed

more than sufficient and some have supported even lower

accuracy requirements [4,5]. Of course each study should evaluate

their required accuracy, and if these criteria were relaxed, design

elements like sample size could be reduced.

Previous estimates of the sample size required to measure soil

properties to a given accuracy have often assumed that their data

was not spatially correlated [12,13,14,24]. However, our data, and

data from many other studies [9,18,23,24,26,59,68–72], show that

spatial correlation is ubiquitous for Ts and SWC. Since

CVTraditional did not account for spatial correlation (i.e., it assumes

that all measurements are independent regardless of how closely

they are spaced) it underestimated the true variability in the data,

causing the required sample size to be underestimated [73]. In

contrast, CVSill did account for spatial correlation, therefore, it

reliably estimated the variability in the data and is appropriate for

calculating the required sample size. Had we used CVTraditional

rather than CVSill to calculate sample size, we would have

substantially underestimated the required sample size (i.e., by 60%

for Ts and 109% for SWC when averaged across all sites). As a

result, caution should be used when relying on sample size

estimates that assume no spatial correlation in Ts and SWC data.

Other methods can be used to estimate the number of samples

required to accurately estimate the spatial mean of a soil property.

For example, previous research has shown that fewer samples are

sufficient to meet an accuracy requirement if the spatial mean is

calculated by kriging, rather than by averaging the data [74–77].

However, the kriging method requires knowledge of the semivar-

iogram at the sampling site, which is frequently unknown.

Moreover, our data shows that it is not possible to reliably

estimate the key features of Ts and SWC semivariograms (i.e., sill,

nugget, and range) based on the site characteristics we studied.

Similarly, the temporal stability (or rank stability) approach and

the random combination method can also be used to reduce the

required sample size, but these approaches require detailed

knowledge of spatial variation of soil properties at the sampling

site, which is also often unknown [14,24,77,78]. It should be noted

that these approaches address a slightly different goal (i.e.,

estimating the number of samples required to estimate mean soil

Figure 15. Efficacy of different sampling strategies at measuring SWC to within 10% of the spatial mean with 90% confidence at
scales of ,1 ha. Values represent the percent of sites where the corresponding sampling strategy would achieve the accuracy requirement. The x-
axis is based on Equation 6b and the y-axis is based on Equation 7b. Legend in Figure 14.
doi:10.1371/journal.pone.0083216.g015
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moisture over a number of time steps) than the statistical method

to calculate sample size, which focuses on a single time step.

Because of these limitations, we calculated the required sample

size using the classical statistical approach (Eq. 5) to allow our

findings to be more easily applied to sampling designs at sites

where the spatial structure of variation may be unknown.

Spatial variability in Ts was so low at many sites that the sample

size analyses indicated that even just one sample was sufficient to

meet our accuracy requirement (although common sense dictates

that more samples would be preferable), while 10 samples were

sufficient at 79% of sites, and 100 samples were sufficient at all but

3 sites. In contrast, SWC often required at least an order of

magnitude more samples to meet the accuracy requirement at a

similar proportion of sites (e.g., 100 samples were sufficient at 72%

of sites). Because more samples were required to meet our

accuracy requirement for SWC than Ts at almost every site, the

sample size needed when examining both Ts and SWC was very

similar to that found for SWC alone.

The large sample sizes needed to accurately measure the spatial

mean SWC based on our findings differ substantially from

previous studies that assumed SWC was not spatially correlated

[12–14]. For example, Brocca et al. [12] reported that 15 or fewer

samples would be needed at 4 out of 8 sites to measure SWC to

within 62% volumetric with 95% confidence, and at most 40

samples would be needed to meet this accuracy requirement at

any of the sites. We largely attribute this difference to accounting

for spatial correlation in our estimates of sample size, but other

factors may also play a role including that many previous studies

have focused on agricultural and grassland sites, which tend to

require smaller sample sizes (Figure 13). In addition, at site with a

mean SWC of ,20%, our relative error threshold (10% of the

mean) is more stringent than the 2% absolute error that has often

been used in previous SWC studies. We are not aware of previous

studies that have estimated the sample size required to measure Ts

to a given accuracy, but our data suggests these estimates will only

be reliable if they account for spatial correlation.

Based on our finding, 20 samples would be more than sufficient

to meet the accuracy requirement for Ts at most sites, although

Alaskan sites typically required many more samples to meet the

same requirement. As a result, measuring Ts across space in a

temperate or sub-tropical ecosystem one might reasonably assume

that 20 samples would be sufficient (assuming appropriate sample

spacing), while working at high latitude (.50uN) one would likely

need an order of magnitude more samples to have confidence in

meeting the same accuracy requirement. Sites where a large

number of samples were required were more closely associated

with high latitudes, westerly longitudes, and cold mean Ts at the

time of sampling (,6uC).

There are plausible reasons why sites with both low mean Ts

and high latitude would result in the need for large sample sizes.

First, sites with low mean Ts statistically result in high CV values

because the equation divides by the mean Ts (see Eq. 4), which in

turn results in large sample sizes (see Eq. 5). Second, the low angle

of the sun at high latitude sites, which results in large differences in

shading (i.e., radiation inputs) of locations north or south of an

obstacle (e.g., tree trunk, tussock, or rock) will spend a large amount

of time shaded by the obstacle and when unshaded, the sun will be

at a low angle (i.e., low radiation inputs), and collectively cause

Figure 16. Efficacy of different sampling strategies at measuring Ts and SWC to within 10% of the spatial mean with 90%
confidence at scales of ,1 ha. Values represent the percent of sites where the corresponding sampling strategy would achieve the accuracy
requirement. The x-axis is based on Equation 6c and the y-axis is based on Equation 7c. Legend in Figure 14.
doi:10.1371/journal.pone.0083216.g016
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large spatial variability in Ts. The converse is true at lower latitude

sites where shading by an obstacle will be much less than at high

latitude sites creating less spatial variation in Ts and in turn results

in fewer samples necessary to meet the accuracy requirement.

Indeed, the positive relationship that we observed between Ts sill

values and latitude lends additional support to the first hypothesis,

suggesting that high latitudes, as well as low mean Ts values, both

result in large sample sizes. In contrast, we are not aware of a

plausible reason why westerly longitudes should be expected to

increase the number of samples required, instead it seems likely

that relationship between longitude and the number of samples is

an artifact of US geography, since all high latitude sites in the US

are located in Alaska, which is located further west than most of

the temperate and sub-tropical US. Thus, it appears that the low

mean Ts and high latitudes, not westerly longitudes, of the Alaskan

sites resulted in the large sample sizes for Ts required at those sites.

Unlike Ts, the sample sizes required to accurately measure

spatial SWC were only weakly related to site characteristics

making it difficult to estimate a sample size based solely these

variables. However, it is notable that a sample size of 100 was

sufficient at most sites (72%), while sites that needed.100 samples

all had mean SWC of ,16%, and sites that needed .250 samples

had mean SWC of #11%. Similar to Ts, the reduction in the

required sample size at high mean SWC is presumably partly due

to the fact that low mean SWC results in large CVs because this is

calculated by dividing by the mean SWC (see Eq. 4), which in turn

causes large sample sizes to be needed to accurately estimate the

spatial mean (see Eq. 5).

The large sample size that was required to accurately estimate

the spatial mean SWC across ,1 ha at most sites is beyond the

scope of many research projects. However, the recent develop-

ment of sensors that aim to measure SWC at scales of hundreds

and thousands of m2 may hold promise for estimating mean SWC

at this scale with just 1 or a handful of sensors [79,80] and may

represent a more cost-effective way of meeting the accuracy

requirement than deploying tens or hundreds of sensors that each

measure SWC in a small volume of soil.

Sample spacing
The number of samples required to meet our accuracy

requirement assumes that the samples are spaced at least at the

distance of the range in order to avoid correlation and

pseudoreplication [1]. The mean range for both Ts and SWC

was ,27 m. Similar range values have been observed for Ts and

SWC in other studies that sampled at a similar scale

[8,18,20,59,71,81], demonstrating that range values of tens of

meters are the norm for temperature and moisture at this scale.

Unlike the sill values, the range values for Ts and SWC were not

correlated, indicating that they are controlled by different site

properties. The ANOVAs supported this conclusion, showing that

range values for Ts were related to canopy structure and soil type,

whereas for SWC they were related to longitude and canopy

height. However, the ANOVA models left 60% and 82% of the

variability in range values unexplained for Ts and SWC,

respectively, indicating that we did not measure the most

important factor(s) that control the spatial structure of variability.

As a result it is difficult to determine what controls the spatial

structure of variability at our sites, but potential factors may

include microtopography, canopy gap spacing, and variation in

soil texture.

Since we cannot reliably predict the semivariogram range for Ts

or SWC based on the site characteristics that we measured, a

researcher wishing to measure Ts and/or SWC at scales of ,1 ha

could use Equations 6a–c to estimate if a given sampling spacing

would likely be sufficient (i.e., larger than the range value). For

instance, a sample spacing of 5 m would likely be deemed

insufficient since only ,12% of sites had a smaller Ts or SWC

range, whereas a sample spacing of 40 m may be considered more

appropriate since ,2/3 of sites had a smaller Ts or SWC range

than this. This sample spacing could then be coupled with the

estimated number of samples required based on latitude and mean

Ts (for spatial measurements of temperature) and/or mean SWC

(for spatial measurements of moisture) to develop a site-specific

sampling strategy.

Sampling strategies
Figures 14–16 can guide a sampling design. These figures

clearly demonstrate the potential benefit of increasing sample

number and/or sample spacing at the spatial scale we sampled. In

particular, there are many different ways of achieving a sampling

strategy that is likely to meet our accuracy requirement at a given

proportion of sites (Figures 14, 15, 16). This demonstrates a

particularly pertinent finding that increasing sample spacing is as

important as increasing sample number to achieve a given

sampling efficacy. This is significant because doubling the samples

size often creates much more work and/or expense than simply

doubling sample spacing.

Several existing networks that monitor Ts and SWC (e.g., USDA

Soil Climate Analysis Network (SCAN) and the US NOAA

Climate Reference Network (USCRN)) use sampling designs that

would likely require supplemental sampling effort in order to

accurately estimate the spatial (,1 ha) mean of these properties at

most sites (rf. Figures 14, 15, 16). To illustrate this point, USCRN

deploys 3 Ts and SWC sensors 5.2 m apart in a range of depths at

.100 sites throughout the US (M Palecki, pers. comm.), while

SCAN deploys 1 Ts and SWC sensor at several depths at sites

throughout the US [33]. Both the number of sensors and their

spatial distribution would be inadequate to estimate these

quantities within 10% of the mean with 90% confidence. To

highlight the utility of our data, an effective way to increase the

local scale (,1 ha) spatial accuracy in this case would be to

increase sample spacing and add more SWC sensors (rather than

Ts sensors).

Using the results found here, we have constructed a simplified

matrix to inform researchers on the efficacy of different sampling

designs (Figures 14, 15, 16), given the caveat that they do not

account for information provided by samples spaced at distances

less than the range; 2) recognize that one Ts sample (i.e., 0 m

sample spacing) is sufficient at several sites; and 3) recognize that in

practice a sampling design operates at multiple spatial scales, e.g., 9

samples spaced 5 m apart and arranged in a 363 grid also

includes 4 samples spaced 10 m apart (Figure 14). Similarly, 9

samples spaced 5 m apart along a transect also includes 5 samples

spaced 10 m apart, 3 samples spaced 20 m apart, and 2 samples

spaced 40 m apart (Figure 17). Nonetheless, these figures provide

an empirically-derived quantitative starting point for developing

robust soil sampling strategies.

In addition to the limitations associated with Figures 14, 15, 16,

researchers interested in using our findings to guide their sampling

strategy should also bear in mind the conditions under which our

data were generated. For example: 1) the sites were typically

dominated by a single vegetation type, therefore our findings may

not adequately capture variability at locations that cross major

vegetation ecotones; 2) data were collected during growing season,

so may not represent other seasons; 3) since our sampling typically

occurred on a single day, which may have represented anomalous

conditions (e.g., usually hot, cold, wet, or dry), we expect that the

general patterns we observed across multiple sites are more
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reliable than data from an individual site; 4) our data are

representative of the scale that we sampled (,1 ha) and may not

be applicable at substantially smaller or larger scales; and 5) our

data are based on surface soil measurements, which typically

exhibits larger spatial variability than deeper soils [63,82].

Emergent continental scale properties
Soil forming processes, parental material, time, climate,

weathering type and rates, and biological activity have been

recognized in soil classification schemes [83,84]. But because soil

genesis is difficult to measure directly, the current US soil

taxonomy, rf. [84] relies on soil properties (pedology) that only

implies genesis. This classification system provides an underlying

framework of physical mechanisms that contribute towards the

spatial correlation that we attempt to quantify. Here, we have

shown new evidence of emergent continental scale soil properties,

i.e., how ecosystem scale spatial variability is patterned across the

US. Granted, this variability can be either interpreted directly as

functions of soil temperature and moisture, or by proxy for other

soil properties. We also fully recognize that there are a variety of

local scale controls on this variability, i.e., canopy structure, canopy

height, etc. (that mostly control the temperature and/or water

microclimate), but this does not preclude the existence of

continental scale patterns that we identified, as these influences

manifest themselves at smaller spatial resolutions.

Continental scale patterns included: 1) SWC range values

increased with longitude (i.e., increased from west to east), 2) sill

values for Ts and SWC were negatively related to longitude (i.e.,

decreasing from west to east), 3) nugget values for SWC were

positively related to longitude (i.e., increasing from west to east),

and 4) range values for Ts increased from inceptisols (younger soils)

to spodosols (intermediate age) to ultisols (older soils), suggesting

that the spatial structure of variability is in part related to soil

development. Such patterns could not have been identified from

previous studies since they involved too few sites (#6), and a meta-

analysis approach was not possible due to large methodological

inconsistencies among the studies (i.e., different sampling scales,

measurement methods, sampling depths, etc).

Conclusions

We characterized the spatial variability of soil properties at 60

US sites to inform NEON’s sensor-based soil sampling strategy. In

addition, we developed quantitative guidelines that can be used to

inform soil sampling decisions throughout the US and elsewhere.

While our data can be used as a guide, the most reliable way to

generate a robust sampling design would be to conduct a site

specific assessment of variability in soil properties on several

occasions during the relevant season and at the relevant scale, as

others have previously suggested [4,5]. Indeed, as Klironomos et al.

[5] highlighted, although a preliminary study of spatial variation

may seem like a large amount of extra work, it significantly

contributes towards avoiding a sampling strategy that does not

provide data that are both necessary and sufficient to meet the

design constraints. However, since soil researchers have only rarely

followed these recommendations, we also present our findings as a

useful tool to help guide future soil sampling designs.

Supporting Information

Figure S1 Data collected across (a) space can be used to

construct a (b) semivariogram, which describes the

relationship between semivariance (i.e., half the vari-

ance) and distance. A typical sampling layout used in this study

is shown in (a). In addition to collecting data at each point shown

on the graph, data were also collected at 20.3 m and 20.3 m

from each point along the axis of each transect. The three

components that describe the shape of the (b) semivariogram are

the sill, nugget, and range. The sill represents the maximum

semivariance that is encountered at a site and is equivalent to half

the variance in the data set used to create the semivariogram. The

nugget represents the variance that exists at spatial scales smaller

than the minimum sampling distance, as well as sampling error.

The range represents the distance beyond which samples are

effectively independent at the scale sampled.

(TIF)
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