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Abstract

Large-scale environmental sequencing efforts have transformed our understanding of the spatial controls over soil microbial

community composition and turnover. Yet, our knowledge of temporal controls is comparatively limited. This is a major

uncertainty in microbial ecology, as there is increasing evidence that microbial community composition is important for

predicting microbial community function in the future. Here, we use continental- and global-scale soil fungal community

surveys, focused within northern temperate latitudes, to estimate the relative contribution of time and space to soil fungal

community turnover. We detected large intra-annual temporal differences in soil fungal community similarity, where fungal

communities differed most among seasons, equivalent to the community turnover observed over thousands of kilometers in

space. inter-annual community turnover was comparatively smaller than intra-annual turnover. Certain environmental

covariates, particularly climate covariates, explained some spatial–temporal effects, though it is unlikely the same

mechanisms drive spatial vs. temporal turnover. However, these commonly measured environmental covariates could not

fully explain relationships between space, time and community composition. These baseline estimates of fungal community

turnover in time provide a starting point to estimate the potential duration of legacies in microbial community composition

and function.

Introduction

Soil fungi mediate a multitude of ecosystem functions

with major Earth system consequences, including primary

production, nutrient recycling, and carbon (C) sequestra-

tion in soils [1]. Fungal communities vary in both space

and time, due to changes in environmental conditions,

ecological interactions, and neutral ecological and evo-

lutionary processes [2, 3]. Quantifying the relative

importance of spatial and temporal controls over com-

munity turnover is critical to understanding which of these

processes drive community change, as fundamentally

different ecological mechanisms likely control microbial

turnover in space and time. For instance, while dispersal

and colonization traits may fundamentally constrain spe-

cies turnover in space [4, 5], dormancy and persistence

traits may be more linked to species turnover in time [6].

Furthermore, fungal species vary in their ability to take up

soil resources (e.g., C, nitrogen (N), and moisture) and in

their tolerance for soil chemistry (pH) [7–9], such that

variation in these environmental factors across space and

time may further shape fungal community composition in

soil. In biogeographic analyses, changes in soil microbial

community composition are largely attributed to space

[10–12]. However, the handful of studies that have

remeasured microbial communities through time often

find large temporal variability in microbial community

composition [13]. Given that most biogeographic analyses

of microbial community composition are based on sam-

ples taken over multiple years [12], it may be that that

some additional amount of unexplained variation can be

attributed to time (Fig. 1).
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Studies of soil fungal community turnover in time are

remarkably few, and local in spatial scale. These studies

generally observe significant turnover in soil fungal com-

munities in time [14, 15], where intra- and inter-annual

turnover is comparable in magnitude to within site spatial

turnover. However, it is well-known that soil microbial

communities can differ wildly at scales of a meter or less

[16], and therefore some have argued that at larger spatial

scales soil microbial turnover will be dominated by spatial,

rather than temporal dynamics [17, 18]. Testing this

assumption would require analyzing the relative importance

of spatial vs. temporal drivers of soil community turnover

across a large spatial scale.

To date, no large-scale spatial sampling of microbial

community composition has been temporally replicated, so

analyses of orthogonal observations of microbial commu-

nity composition in space and time are not yet possible. In

these studies, there is no location in space that has been

sampled at multiple instances in time, primarily due to

logistical constraints. It is fundamentally challenging to

revisit a large, spatially distributed set of sites multiple

times, and as a result, these surveys are often conducted

over multiple years. However, the variation in the time of

sampling is also an opportunity to quantify the relative

importance of space and time in structuring microbial

communities. If spatial and temporal distances are not

completely confounded, it may be possible to separate the

independent effects of space and time on community

similarity using microbial community surveys currently

available (Fig. 1).

Understanding temporal controls over microbial com-

munity composition is increasingly important in the context

of global change. There have been repeated demonstrations

of microbial functional resistance in the face of environ-

mental manipulation [19], such that predicting microbial

community function requires understanding not only

current, but historical environmental conditions (i.e.,

“legacy” effects) [20–23]. If observed legacy effects on

microbial community function are driven by resistance of

microbial community composition to environmental

change, then the duration of functional legacies will depend

on the rate of microbial community turnover in time. Cur-

rently, there is little constraint on our estimates of the

baseline temporal rate of microbial community turnover that

could help us understand the potential duration of microbial

functional legacies with any generality.

Here, we quantify individual contributions of geo-

graphical space and time to community composition, as well

as the role of environmental factors in each relationship. We

hypothesized that community turnover over several years

may be equal in magnitude to that observed over hundreds of

kilometers, as many important environmental factors (i.e.,

weather, climate, and soil resources) exhibit large variation

between years. Furthermore, we hypothesized that commu-

nity turnover may be faster within than between years, as the

variation in climate and soil resources due to intra-annual

seasonality is generally larger than inter-annual changes in

climate [24]. In addition, intra-annual changes in soil

resources for fungi (i.e., C, N, and water) may play a larger

role in controlling community composition than climate,

since fungi respond strongly to changes in resource avail-

ability [8]. To test these hypotheses, we first tested if known

spatial and temporal effect sizes can be captured in the

absence of repeated temporal sampling. Specifically, we

quantified spatial and temporal community turnover in pre-

viously published studies of local forest, soil fungal and soil

bacterial communities that had been sampled repeatedly in

both space and time. After demonstrating this property, we

analyzed variation in soil fungal community composition

over space and time in two large datasets: a continental-scale

and a global-scale sampling of temperate latitude forest soil

fungal communities. We focused on northern temperate

latitudes so that we can capture both intra- and inter-annual

temporal variation in soil fungal community turnover among

sites with a distinct growing season. We then asked: (1) what

is the relative importance of space vs. time (both within and

between years) in predicting community similarity in soil

microbial communities at large spatial scales?; (2) how are

rates of turnover in time and space related?; and (3) can

spatial–temporal community turnover be explained by var-

iation in environmental factors?

Methods

Analysis overview

In each data set, we analyzed pairwise community simi-

larity using the Bray–Curtis metric [25] as a function of
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Fig. 1 Multiple sites in space are sampled at different points in time.

Additional variation in spatial turnover can be attributed to underlying

temporal processes

Spatial vs. temporal controls over soil fungal community similarity at continental and global scales 2083



space and time. We analyze relative abundances of fungal

taxa, because both presence/absence and changes in rela-

tive abundance of taxa are important for understanding the

structure and function of ecological communities [26].

Because of potential intra-annual seasonal cycles in tem-

perate latitude soil fungal community similarity, we fit

community similarity to both intra-annual and inter-annual

temporal distances. Significant relationships of each pre-

dictor to fungal community composition were determined

using multiple regression analysis on distance matrices

(MRM). To calculate 95% confidence intervals of each

parameter estimate, we performed 10,000 bootstrap simu-

lations. Initial diagnostic plots were used to decide whether

or not to log transform Bray–Curtis metrics prior to ana-

lysis. Bray–Curtis scores were modeled as a linear function

of space, time, and appropriate covariates. For each data set

we fit three models; (1) a model that only included spatial

and temporal predictors, (2) a model that only included

environmental predictors, and (3) a model that included

both spatial–temporal and environmental predictors.

Comparing outputs of these sets of models allowed us to

understand how fungal communities vary in space and

time, as well as the degree to which these spatial–temporal

relationships can or cannot be explained by variation in

commonly measured environmental factors. Below we

describe how species matrices were defined for each

data set.

Is orthogonal spatial and temporal sampling
required to capture temporal patterns?

Most analyses of microbial community similarity through

time are based on repeated observations of communities

through time at multiple fixed points in space [13], allowing

quantification of both spatial and temporal effects simulta-

neously. While this type of sampling is ideal, it is rare to

have observations collected in this way. In most observa-

tional studies, there is no location that has been sampled at

multiple instances in time, and no single instance in time

sampled at multiple positions in space. However, if space

and time are not completely confounded, it should be pos-

sible to use this information to estimate the independent

effects of space and time on community similarity without

the need for repeated measures. We assess the validity of

this approach using four previously published data sets that

have observed community composition at the same location

multiple times (i.e., observations of space and time are

orthogonal). The first data set contains tropical tree com-

munity composition data from Barro Colorado Island,

Panama (BCI) sampled 8 times over 35 years [27–29]. The

second and third data sets contains soil bacterial and fungal

community composition from La Selva Research Station in

Costa Rica, sampled 4 times over 2 years [30]. The fourth

data set was contains soil fungal community composition

from the Harvard Forest National Ecological Observation

Network (NEON) site, sampled 4 times during the 2014

growing season. We first analyze all data to quantify “true”

spatial and temporal effects. We then subset these data sets

such that no location has been sampled at multiple time

points. We then refit models to determine if the detected

effects of both space and time in the data subsets reflect the

‘true’ effects detected in the full data sets. Histograms of

spatial and temporal distances within each study site are

presented in Supplementary Fig. 1.

BCI analysis

The 50 ha BCI permanent tree plot, located in Gatun,

Panama, has been censused 8 times between 1982 and

2015, at approximately 5-year intervals, with every tree in

the plot identified and its spatial position recorded [27–29].

To determine if temporal signals in community similarity

can be inferred from non-orthogonal spatial–temporal

community data, we binned the plot into 300, 40 × 41.67 m

(~1667 m2) grid cells. Within each cell, the number of trees

by species was tallied to generate community matrices for

all eight time points. Bray–Curtis similarity among plots

was calculated using proportionally normalized community

matrices, and modeled as a linear function of spatial dis-

tance (using mean plot center based on the positions of all

trees within the plot) and temporal distance (using mean

date of sampling of all trees within a grid cell for a given

census period). We then repeated the analysis, sub-setting

the data randomly 100 times such that no particular plot had

been observed at more than one time point, generating non-

orthogonal space–time observations. We compared effects

of both space and time in each analysis and checked if the

95% confidence intervals of estimated parameter values

overlap.

La Selva bacteria and fungi analyses

Bacterial and fungal community analysis was conducted

on an operational taxonomic unit (OTU) tables from the

same tropical forest sequencing experiment [30, 31]. Soil

samples were collected from La Selva Biological Station

in Costa Rica, under 25-year-old monodominant stands of

four tree species: Hyeronima alchorneoides, Pentaclethra

macroloba, Virola koschnyi, and Vochysia guatemalensis

[32]. Samples of bacterial and fungal communities used in

this study were taken from four replicate blocks of each

stand using a 2.5 cm diameter soil corer to a depth of

10 cm [30]. Sites were sampled 4 times in March and

September of 2012 and 2013. Soil cores were sieved, and

subsamples were extracted using a MoBio PowerSoil Kit

(MoBio, Carlsbad, CA). The 16S bacterial rDNA region

2084 C. Averill et al.



and D1/D2 variable fungal region were amplified and then

2 × 300 paired end sequenced on an Illumina Miseq

sequencer using v3 chemistry. Sequences were clustered

into OTUs at 97% similarity using the UCLUST algo-

rithm. Singletons, and OTUs found in only a single sam-

ple, were discarded. While removing singletons is

common practice [33], removing OTUs found only within

a single sample is less common. However, in principle this

should decrease the statistical power of this data set, and

make this analysis more conservative, as there is less

information to distinguish among samples. Taxonomy was

assigned using the Ribosomal Database Project (RDP)

classifier, and nonbacterial OTUs discarded [34]. Samples

were then normalized with the DeSeq2 algorithm, which

leverages variation in sequencing depth among samples to

account for overdispersion and heteroscedasticity in

microbiome count data [35]. The original authors provided

the processed OTU tables and full sampling and bioin-

formatic details can be found in ref. [30]. We pro-

portionally normalized OTU tables to calculate

Bray–Curtis community similarity among soil samples

using the vegdist function within the vegan package for R

statistical software [36, 37]. Sampling dates were used to

calculate temporal distance in days. Spatial distances in

kilometers were calculated based on x–y coordinates of

sampling locations reported by authors. We then repeated

the analysis, sub-setting the data randomly 100 times such

that no particular plot had been observed at more than one

time point, generating nonorthogonal space–time obser-

vations. We compared effects of both space and time in

each analysis and checked if the 95% confidence intervals

of estimated parameter values overlapped.

Harvard Forest fungal analysis

Harvard Forest fungal sequence data were obtained from a

preliminary sampling effort by the National Ecological

Observation Network. Briefly, 2–6 soil samples were col-

lected from random positions within 11, 40 × 40 m plots 4

times through the 2014 growing season (May, June, July,

and August samplings). DNA was extracted using a MoBio

PowerSoil Kit (MoBio, Carlsbad, CA). The fungal rDNA

region internal transcribed spacer 1 (ITS1) was polymerase

chain reaction (PCR) amplified and then 2 × 250 paired end

sequenced on an Illumina Miseq sequencer with v2 chem-

istry. Reverse reads were discarded, and reads were quality

filtered using default parameter settings in the QIIME

pipeline [38]. Quality filtered reads were then dereplicated

to construct amplicon sequence variant tables [39]. Chi-

meras were removed using dada2 and singletons discarded

[40]. Similarity matrix construction, analysis, subsetting,

and bootstrapping were done as above for La Selva bacteria

and fungi.

Estimating temporal effect sizes from large-scale
soil fungal community data

Talbot et al. [11]—North American Soil Fungi

This dataset includes 550 observations of soil fungal com-

munity composition from North American pine forests

collected over 728 days with a standardized sampling

methodology [11]. DNA was extracted from 10-cm soil

cores using the same PowerMax Soil DNA Isolation kit.

The complete ITS region was amplified using the

ITS1f–ITS4 primer pair [41]. PCR-generated amplicons

were sequenced on the 454-pyrosequencing platform using

the GS-FLX+ technology and titanium chemistry as

implemented by Beckman Coulter Genomics (Danvers,

MA, USA). Raw sequences were processed and filtered

using the QIIME pipeline [38]. Authors trimmed reads,

excluded reads less than 350 bp and reads containing

homopolymers greater than 10 bp, denoised reads via

flowgram clustering, and filtered reads using the chimera

detection and removal algorithm implemented in

USEARCH [42]. OTUs were clustered at 97% sequence

similarity using the USEARCH algorithm. Taxonomy was

assigned using a custom curated fungal ITS database [43].

Complete sampling, molecular, and bioinformatic metho-

dology used to generate OTU tables can be found in Talbot

et al. [11]. The original authors provided the processed

OTU and taxonomy tables.

Tedersoo et al. [12]—Global Northern Temperate Soil Fungi

This data set, includes 131 globally distributed observations

of soil fungal community composition within northern

temperate latitudes, collected over 1266 days with a stan-

dardized sampling methodology using a 5 cm soil corer,

sampling to 5 cm depth [12]. DNA were extracted using the

PowerMax Soil DNA Isolation kit (MoBio, Carlsbad, CA

USA). Forward and degenerate reverse primers targeting the

ITS2 region were designed to match >99.5% of all fungi.

PCR-generated amplicons were sequenced on the 454-

pyrosequencing platform using the GS-FLX+ technology

and titanium chemistry as implemented by Beckman

Coulter. Raw sequences were processed and filtered using

mothur 1.32.2 [44]. Sequences, barcodes, and primers were

trimmed. Authors excluded reads less than 300 bp, and

reads containing homopolymers greater than 12 bp. The

conserved region of ITS was separated from flanking 5.8

and 28S regions using ITS extractor software [45]. OTUs

were clustered at 98% sequence similarity using and

UCHIME 4.2, which also performs chimera detection and

removal [46]. No “denoising” filtering was performed.

Taxonomy was assigned using the UNITE fungal taxonomy

database [47]. Complete sampling, molecular, and

Spatial vs. temporal controls over soil fungal community similarity at continental and global scales 2085



bioinformatic methodology used to generate OTU tables

can be found in Tedersoo et al. [12]. The original authors

provided the processed OTU and taxonomy tables.

Analysis of fungal community similarity

We used OTU tables provided by each author, and there-

fore, we analyze each data set separately as they clustered

OTUs based on different ribosomal DNA regions and dif-

ferent bioinformatic choices. Each OTU table was pro-

portionally normalized, such that the per OTU sequence

count within a sample was divided by the total number of

sequences detected in a given sample generating a propor-

tion on the interval [0,1]. This proportional normalization

has been demonstrated to be sufficiently accurate when

using the Bray–Curtis similarity metric [48]. Bray–Curtis

similarity was calculated with the vegdist function within

the vegan package for R statistical software [36, 37].

Bray–Curtis values generated from Talbot et al. [11] and

Tedersoo et al. [12]. OTU tables were natural log trans-

formed to meet the assumptions of linear regression. To

account for zeros in Bray–Curtis similarity, we added the

lowest value of community similarity observed within each

data set to every observation. Because both data sets differ

in the extent of spatial and temporal distances as well as

replication, we visualize both to aid direct comparison and

interpretation (Supplementary Fig. 2). We also present the

absolute number of samples taken in time (Supplementary

Fig. 3) and the spatial distribution of sampling (Supple-

mentary Fig. 4).

We used sampling dates to calculate both intra- and inter-

annual temporal distances in days. Spatial distances in

kilometers were calculated using reported latitude and

longitude, using the distm function within the geosphere

package for R to account for the curvature of the Earth [49].

Inter-annual temporal distances between samples were cal-

culated as days between sampling time points. Intra-annual

temporal distances were calculated by determining the

seasonal position of each observation. Each observation’s

seasonal start and end was determined using NASA MEa-

SUREs Vegetation Index and Phenology NDVI product

[50]. We then calculated how many days since the start of

the growing season had passed at the time of sampling. This

number was divided by the total season length to get a

seasonal position on the interval 0–1. We excluded sites

with multiple growing seasons. In addition to spatial and

temporal distances, we included environmental covariates in

analyses of fungal community similarity at the continental

and global scale. Mean annual temperature (MAT) and

mean annual precipitation (MAP) were assigned for each

site using the WorldClim global data product [51]. Net

primary production (NPP) was assigned for each site using

the Atlas and the Biosphere global data product [52]. We

calculated distance matrices for the following predictors:

soil %C, soil C:N, % soil moisture at time of sampling, soil

pH, NPP, MAT, MAP, and the annual coefficient of var-

iation of MAT and MAP based on monthly means

(MAT_CV and MAP_CV, respectively). To determine the

relationships between environmental factors and space or

time, we regressed temporal distances against environ-

mental predictor distances in each data set (soil %C, soil C:

N, % soil moisture at time of sampling, soil pH, NPP, MAT,

MAP, and the annual coefficient of variation of MAT and

MAP based on monthly means (MAT_CV and MAP_CV,

respectively)). Some environmental covariates are corre-

lated in our analyses (Supplementary Figs. 6 and 7), and this

will affect parameter uncertainty estimates for those pre-

dictors [53]. However, because these covariates are not

strongly correlated with spatial or temporal distances

(Supplementary Figs. 8 and 9), this should not bias our

estimates of spatial or temporal effect sizes.

Multiple linear regression models were used to construct

each of our three model types: (1) a model that only

included spatial and temporal predictors, (2) a model that

only included environmental predictors, and (3) a model

that included both spatial–temporal and environmental

predictors. Intra-annual distance was calculated based on

the difference in each observation’s seasonal position. Inter-

annual distance was based on the total temporal distance in

days between two observations. Models were fit using the

MRM function within the ecodist package for R statistical

software [36, 54]. Nonsignificant (p > 0.05) predictors were

excluded from final models and bootstrap parameter esti-

mate simulations in model types (2) and (3), save for space

and time, which are the focus of this analysis.

To better conceptualize the relative importance of spatial

and temporal predictors, we calculated how much spatial

distance would be required to capture the temporal turnover

observed over a 100 day growing season using the para-

meter estimates from models fit without environmental

covariates. Similarly, we calculated how much time would

be required to capture the amount of community turnover

observed over 100 km of space.

To test if temporal effects could emerge spuriously due

to data structure, analysis approach, or any other con-

founding factor within our fungal data sets, we performed a

Monte Carlo simulation. We repeated our MRM analysis of

global northern temperate soil fungi 1000 times, rando-

mizing intra and inter-annual temporal distances. We ana-

lyzed the distribution of temporal effect sizes detected in the

1000 simulations and counted how many of these simula-

tions detected a significant effect of time at p < 0.05. We

checked if the distribution of detected effect sizes was

approximately normal, if less than 5% of simulations detect

a significant effect at p < 0.05, and if significant effects

detected are equally likely to be positive or negative.

2086 C. Averill et al.



All code to replicate data manipulation, analysis and

figure generation in available at github.com/colinaverill/

Averill_ISMEJ_2019. In addition, we include a custom R

function, “space_time_analysis.r”, which allows a user to

estimate their ability to detect temporal and other effect

sizes as they relate to community similarity as done in this

manuscript. This function takes a user’s particular data set,

and returns parameter estimates as well as 95% parameter

confidence intervals. This will allow a user to determine if

temporal effects are present in their data set. In the event the

temporal parameter confidence interval overlaps zero

(temporal effect not significant), the user can determine if

some predetermined biologically effect size also falls within

the parameter 95% confidence interval. If this is the case, it

likely indicates low statistical power, and the user should

not conclude that the temporal effect is not present.

Further use of this function is elaborated within the

project repository readme file.

Results

Can true spatial and temporal effects be detected
via analysis of nonorthogonal observations in space
and time?

Analysis of the BCI tropical tree data set and La Selva soil

bacterial and fungal data sets, and the Harvard Forest fungal

data set revealed significant negative relationships between

Bray–Curtis community similarity and both space and time,

for both the full and subsetted data sets (Supplementary

Fig. 5). Spatial and temporal parameter estimates were not

significantly different between full and subsetted analyses

based on comparison on 95% confidence intervals (Sup-

plementary Table 1).

Effects of space and time on soil fungal community
similarity

Models fit to space and time only, without environmental

covariates, explained 3.4% of overall variation in global

northern temperate fungal community similarity and 28% of

overall variation in North American soil fungal community

similarity, respectively (Fig. 2). We found significant rela-

tionships between soil fungal community similarity and

space in both the global northern temperate data set (p <

0.01, Fig. 3a) and the North American fungal data set (p <

0.01, Fig. 3d). In addition, we found a significant relation-

ship between fungal community similarity and intra-annual

time in the North American fungal data set (p < 0.01,

Fig. 3e). Models demonstrate that soil fungal communities

that are closer together in space or time are more similar

than those that are farther apart. Using the parameter esti-

mates from our space and time only models, we calculated

that 1 season of intra-annual soil fungal community turn-

over is equivalent to that observed over ~4000 ± 1100 km of

spatial distance in the North American soil fungal model, fit

to spatial and temporal predictors alone. Similarly, 100 km

of spatial turnover in soil fungal community similarity is

equivalent to that observed over 6.8 ± 1.9 intra-annual days

in the North American soil fungal analysis, assuming a

growing season length of 265 days, the mean growing

season duration the North American data set.

The role of environmental covariates in shaping soil
fungal community similarity

Relationships between fungal community composition and

space and time were partly related to how climate and soil

resources varied across both space and time. When we fit

models to environmental factors only (i.e., without spatio-

temporal predictors), we found significant relationships

between soil fungal community similarity and soil pH,

MAT, and the coefficients of variation for MAP across both

datasets (Supplementary Table 1). In addition, soil %C,

NPP, MAP, and the coefficient of variation for MAT were

significantly related to fungal community composition in

the North American soil fungal dataset (p < 0.01). Soil C:N

and soil moisture were significantly related to community

composition in the global northern temperate data set (p <

0.01). These environmental factor-only models, fit without

spatial and temporal distances, could explain 44% of overall

variation in North American soil fungal community simi-

larity and 48% of overall variation in global northern tem-

perate fungal community similarity.

Folding these environmental covariates into spatio-

temporal models, we found that all environmental covari-

ates found significant in environment-only models were

retained (p < 0.01). Models that included space, time, and

all environmental covariates could explain 49% of overall

variation in global northern temperate fungal community

similarity (Fig. 3a–d) and 46% of overall variation in North

American fungal community similarity (p < 0.01, Fig. 2).

However, space was no longer significant in predicting

fungal community composition in these models of the

global northern temperate dataset, but inter-annual time

became significant. In models of North American soil fungi,

spatial distance, and intra-annual time were retained as a

significant predictors of fungal community composition in

the space+time+environment model, though effect sizes

were lower compared to the model fit with only

spatial–temporal covariates. After controlling for environ-

mental covariates, the spatial effect was reduced by 57% in

the North American fungal dataset. In both datasets, spatial

Spatial vs. temporal controls over soil fungal community similarity at continental and global scales 2087



distance between samples was related to changes in MAT

and MAP more so than changes in soil resources and soil

chemistry (Supplementary Figs. 8 and 9), suggesting that

the relationship between fungal community composition

and space may be due largely to changes in climate over the

sampling sites.

By contrast, sampling time appeared to be an important

factor related to fungal community composition in and of

itself. In both datasets, temporal predictors were significant

in the space+time+environmental factor models, though

temporal parameter estimates changed compared to the

model fit with only spatial and temporal covariates. Inter-

annual time was significantly related to fungal community

composition in the space+time+environment model within

the global northern temperate data set (p < 0.01), in contrast

to models fit to sampling space and time alone. In models of

North American soil fungi, after controlling for environ-

mental covariates, the correlation between fungal commu-

nity composition and intra-annual time decreased by 55%,

while the correlation between fungal community composi-

tion an inter-annual time remained insignificant. To probe

whether soil or climate covariates drove the change in

temporal parameter estimates, we fit another set of models.

Models fit with models with space, time and climate cov-

ariates (MAT, MAP, MAT_CV, and MAP_CV) alone

showed that climate could explain most of the decline in the

intra-annual effect, and these climate predictors showed

stronger correlations with temporal distances than soil fac-

tors (Supplementary Figs. 8 and 9).

Monte-Carlo simulation results

Monte-Carlo simulation of the global northern temperate

soil fungi dataset detected a significant (p < 0.05) effects

of both intra- and inter-annual time on community simi-

larity in 5.5% and 4.1% of simulations, respectively,

which were equally likely to be positive or negative.

Detected effect sizes were normally distributed with a

mean of zero (Supplementary Fig. 10). This suggests that

detected intra- and inter-annual temporal effects on soil

fungal community similarity are not an artifact of data

structure.

Fig. 2 Total model fit of space-

time only and space–time plus

environment models. 1:1 lines

are plotted in black and a

smoothing spline is plotted in

green. Within the global

northern temperate soil fungal

data set, space and time alone

could explain 3% of variation

(a), and the addition of

environmental covariates

increased explanatory power to

49% (b). Within the North

American soil fungal data set,

space and time alone could

explain 28% of variation (c), and

the addition of environmental

covariates increased explanatory

power to 46% (d)
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Discussion

There is increasing evidence that the identity, abundances,

and interactions of soil microbial community members

translate to variation in microbial community function with

ecosystem-scale consequences [55, 56]. Furthermore, these

community level processes are resistant to some degree of

environmental change [20, 57]. Forecasting the duration of

microbial functional legacies requires understanding the rate

of microbial community composition turnover in time,

which may erode microbial functional legacies. Here, we

present the first baseline estimates of soil fungal community

turnover rates at large spatial and temporal scales. These

numbers can be estimated without repeated temporal mea-

sures of soil microbial community composition (Supple-

mentary Fig. 5, Supplementary Table 1). We found support

for our hypothesis that temporal changes in fungal com-

munity similarity are large (comparable to the turnover

observed across thousands kilometers of space), and that

inter-annual rates of soil microbial community turnover are

comparatively slower than intra-annual rates (Figs. 3 and 4,

Table 1). Changes in fungal community composition with

space and time appear to be partly due to changes in certain

environmental conditions (i.e., MAT and MAP variation

with space), despite the fact that correlations between space,

time, and other environmental predictor distances were

generally weak (Supplementary Figs. 8 and 9). We also

found evidence that some of the variation in fungal com-

munity turnover with time cannot be explained by changes

in the environment. In fact, controlling for environmental

covariates in some cases increased our ability to detect

temporal effects. These findings suggest that either addi-

tional environmental drivers are important for explaining

variation in soil fungal community similarity in both space

and time, or that more ecological processes (e.g., dormancy,

persistence, and ecological drift) are at play.

We observed intra-annual temporal turnover in soil

fungal community composition in the North American soil

fungal data set, suggesting that seasonality plays an

important role in structuring soil fungal communities.

Intra-annual turnover was not detected in the global survey

of Northern temperate fungi, and this may reflect the greater

Fig. 3 Effects of space and time on soil fungal community similarity,

without accounting for environmental covariates. Ordinary least

squares best-fit lines are plotted in black, a smoothing spline is plotted

in green. Mean parameter estimates from the full model output are

reported along with the 95% bootstrap confidence interval. We

detected negative effects (p < 0.001) of space in both the North

American (a) and Global Northern Temperate (b) datasets. We

detected a negative effect intra-annual time (p < 0.001) in the North

American data set

Spatial vs. temporal controls over soil fungal community similarity at continental and global scales 2089



diversity of plant types in the global survey. The North

American study focused on plant hosts within the Pinaceae

family, while the global northern temperate data set spanned

multiple biome types and both hardwood and coniferous

plant communities. If Pinaceae dominated ecosystems

support a more consistent set of soil fungi, then it may be

easier to detect intra-annual turnover among a set of sam-

ples where plant communities are more constrained. Given

that seasonality is frequently observed in soil fungal com-

munities at the local scale [14], we expect greater sampling

effort to reveal stronger intra-annual dynamics at the global

scale. By contrast, inter-annual temporal community turn-

over was observed in the global data set, but not the North

American fungal data set. This difference in intra- vs. inter-

annual temporal effects may reflect a difference in statistical

power among the studies. The global northern temperate

data set [12] represents twice the sampling duration of the

North American soil fungal data set [11], which only

included two inter-annual cycles. If North American fungal

communities were monitored for a longer duration, we

expect a similar effect of inter-annual temporal distance to

emerge. Previous analyses of microbial community com-

position in time have come to a similar conclusion: a lack of

temporal effects may merely reflect low sampling effort in

many microbial surveys [13].

Consistent with our hypotheses, much of the spatial

variation in fungal community composition could be

accounted for by shifts in climate. This is distinct from

previous continental-scale surveys of soil bacteria that find

little effect of climate [10, 18]. Both fungal data sets

revealed decay in community similarity in space, yet this

was completely explained in the global dataset by the

inclusion of environmental covariates. When environmental

covariates were added to the model, we could no longer

Fig. 4 Effects of space and time on soil fungal community similarity,

controlling for environmental covariates. Ordinary least squares best-

fit lines are plotted in black, a smoothing spline is plotted in green.

Mean parameter estimates from the full model output are reported

along with the 95% bootstrap confidence interval. Global Northern

Temperate data were fit as a function of space, intra-annual and inter-

annual time, C:N, % soil moisture, pH, MAT, MAT coefficient of

variation, and MAP coefficient of variation. North American data were

fit as a function of space, intra-annual and inter-annual time, %C, %

soil moisture, pH, MAT, MAP, NPP, MAT coefficient of variation.

Plotted Bray–Curtis community similarity values with space (b, f)

intra-annual time (c, g), and inter-annual time (d, h) have been

adjusted to control for other covariates in the model and emphasize the

variation associated with each predictor in isolation. We detected

negative effects (p < 0.001) of space in the North American (f), but not

the global northern temperate soil fungal data set (b). We detected a

negative effect intra-annual time (p < 0.001) in both studies. We

detected a negative effect of inter-annual time (p < 0.001) in the

Tedersoo et al. [12] data set (e), but found no effect of time in

the Talbot et al. [11] data set (f)
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detect a significant effect of space, compared to a model fit

to spatial–temporal predictors alone (Fig. 3). This was not

true of the North American soil fungal data set, despite the

inclusion of the same set of environmental covariates. It

may be that larger spatial variation in environmental cov-

ariates in the global soil fungal sampling swamped other

spatial ecological signatures at finer scales such that they

could not be detected, and finer spatial scale sampling in the

global dataset would reveal these effects. Past studies of soil

fungal community similarity in space at finer scales have

revealed patterns consistent with purely ecological factors

driving persistent variation in soil fungi in space [58]. This

concept is consistent with the fact that the mean spatial

distance among sites is over twice as large in the global

northern temperate data set as in the North American

dataset.

By contrast, our Monte-Carlo analysis of temporal

effects in the global northern temperate dataset indicated

that the temporal effects detected in this analysis are unli-

kely due to some other aspect of data structure driving

spurious correlations. Some of the temporal variation could

be explained by the environmental covariates included in

our models, which reduced the magnitude of some temporal

parameter estimates in our models (Fig. 3 vs. 4). However,

not all of the temporal variation observed could be

explained by accounting for these environmental covariates.

This suggests two possibilities, which are not mutually

exclusive. First, there are likely important environmental

drivers that vary within and between years, which are not

accounted for in current large-scale soil microbial surveys.

This could include seasonal variation in plant belowground

C allocation [59], soil nutrient availability [60], and other

environmental and ecological factors that vary in time.

Second, ecological processes related to dormancy and per-

sistence traits, as well as neutral ecological and evolutionary

processes, can generate temporal effects in fungal commu-

nity similarity, even if all environmental factors are

accounted for. For instance, tradeoffs in ectomycorrhizal

colonization vs. competitive ability can drive structure and

turnover of ectomycorrhizal communities in space, inde-

pendent of other environmental controls [5]. Similar purely

ecological drivers in time (i.e., predator–prey cycles, var-

iation in dormancy or persistence traits, and ecological drift)

could explain why temporal effects persist even if all

environmental factors were accounted for.

This study represents the first effort to directly compare

the spatial vs. temporal controls over soil fungal community

similarity at continental and global scales. These estimates

provide a baseline of how long microbial functional legacies

may last in the face of ongoing global environmental

change, to the extent they are driven by differences in soil

fungal community composition. The rate of multi-

dimensional environmental change both within and betweenT
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years—including changes in seasonality, climate, and other

anthropogenic forcings—likely varies over our sampling

space, and will likely affect the rate of temporal community

turnover in a way that we could not capture in this study.

We fully acknowledge there are multiple temporal drivers

of soil microbial community composition not addressed by

our study, especially local-scale heterogeneity in the rate of

climate change [24], and likely contribute to uncertainty in

our estimates (Fig. 1). Nevertheless, the importance of

temporal controls over soil microbial similarity have been

either implicitly under-estimated or ignored in the literature

at present (but see [13, 14]). Here, we show that temporal

controls over the scale of a year are equivalent in magnitude

to hundreds to thousands of kilometers of space, yet inter-

annual rates of turnover are comparatively slow, pointing to

potentially long-lasting microbial community legacies.
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