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Abstract

Technological advances have made it possible to measure spatially resolved gene expression at 

high throughput. However, methods to analyze these data are not established. Here, we develop 

SpatialDE, a statistical test to identify genes with spatial patterns of expression variation from 

multiplexed imaging or spatial RNA sequencing data. SpatialDE also implements “automatic 

expression histology”, a spatial gene clustering approach that enables expression-based tissue 

histology.

Miniaturization and parallelization in genomics has enabled high-throughput transcriptome 

profiling from low quantities of starting material, including in single cells. Increased 

throughput has also fostered new experimental designs that directly assay the spatial context 

of gene expression variation. Spatially resolved gene expression is crucial for determining 

the functions and phenotypes of cells in multicellular organisms1. Spatial expression 

variation can reflect communication between adjacent cells, position-specific states, or cells 

that migrate to specific tissue locations to perform their functions.
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Several experimental methods to measure gene expression levels in a spatial context have 

been established, which differ in resolution, accuracy and throughput. These include the 

computational integration of single cell RNA-seq (scRNA-seq) data with a spatial reference 

dataset2,3, careful collection and recording of the spatial location of samples4, parallel 

profiling of mRNA using barcodes on a grid of known spatial locations4–6, and methods 

based on multiplexed in situ hybridization7,8 or sequencing1.

A first critical step in the analysis of these datasets is to identify genes that exhibit spatial 

variation across the tissue. However, existing approaches for identifying highly variable 

genes (HVG)9, as used for conventional scRNA-seq data, ignore spatial information and 

hence do not measure spatial variability (Fig. 1A). Alternatively, researchers have applied 

analysis of variance (ANOVA) to test for differential expression between groups of cells, 

either using a priori defined cell annotations, or based on sample clustering2,3,6,7, with 

some methods incorporating spatial information10. Critically, such methods can only detect 

variations that are captured by differences between discrete groups.

Here, we propose SpatialDE, a method for identifying and characterizing spatially variable 

genes (SV genes). Our method builds on Gaussian process regression, a class of models used 

in geostatistics. Briefly, for each gene, SpatialDE decomposes expression variability into 

spatial and non-spatial components (Fig. 1A-B), using two random effect terms: a spatial 

variance term that parametrizes gene expression covariance by pairwise distances of 

samples, and a noise term that models non-spatial variability. The ratio of the variance 

explained by these components quantifies the Fraction of Spatial Variance (FSV). 

Significant SV genes can be identified by comparing this full model to a model without the 

spatial variance component (Fig. 1B, Methods).

By interpreting the fitted model parameters, we can gain insights into the underlying spatial 

function, such as its length scale (Fig. 1B, the expected number of changes in a unit 

interval). SpatialDE can also be used to classify these functions, thereby identifying genes 

with linear or periodic expression patterns (Supp. Fig. 1, Methods). Finally, SpatialDE 

provides a spatial clustering method within the same Gaussian process framework, which 

identifies sets of genes that mark distinct spatial expression patterns (Fig. 1C). This provides 

a means to perform automatic expression histology (AEH), which relates tissue structure and 

cell type composition using the expression patterns of marker genes. Leveraging efficient 

inference methods previously developed for linear mixed models11, and taking advantage of 

the data structure from massively parallel molecular assays, SpatialDE is computationally 

very efficient (Methods, Supp. Fig. 2).

First, we applied our method to spatial transcriptomics data from mouse olfactory bulb6. 

Briefly, spatial transcriptomics gene expression levels were derived from thin tissue sections 

placed on an array with poly(dT) probes and spatially resolved DNA barcodes. These form a 

grid of circular “spots” with a diameter of 100 μm, measuring mRNA abundance of 10-100 

cells per spot using probes with barcodes that encode spatial locations.

The SpatialDE test identified 67 SV genes (FDR < 0.05, Supp. Table 1), with spatial 

dependencies explaining up to 70% of the gene expression variance (Fig. 2A). This set of 
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genes was also markedly disjoint from genes identified when using conventional HVG 

methods that ignore spatial dependencies (3,497 genes, 40 overlap, Methods). The SV genes 

identified exhibit clear spatial substructure, consistent with matched hematoxylin and eosin 

(HE) stained images of the same tissue (Fig. 2B-C). These included canonical marker genes 

highlighted in the primary analysis by Ståhl et al6, such as Penk, Doc2g, and Kctd12, but 

also additional genes that define the granule cell layer of the bulb. Genes in the latter set 

were classified as periodically variable, with period lengths corresponding to the distance 

between the centers of the hemispheres, including Kcnh3, Nrgn, or Mbp with 1.8 mm period 

length (Fig. 2C, further examples in Supp. Fig. 3). Other genes with periodic patterns, such 

as the vesicular glutamate transporter Slc17a7, were identified with shorter periods (1.1 

mm), and inspection revealed regularly dispersed regions, potentially identifying a pattern 

associated with higher neuron density12, suggesting that periodic expression in tissues is of 

biological interest.

Applying automatic expression histology identified five canonical expression patterns, 

clearly demarcating structures visible in the HE image (Fig. 2D, Supp. Fig. 4A). For 

comparison, we also considered conventional clustering based on the expression profile of 

each “spot”. However, this approach ignores spatial information and does not establish 

relationships between genes defining cell types as in AEH (Supp. Fig. 5).

As a second application, we considered tissue slices from breast cancer biopsies6, profiled 

using the same spatial transcriptomics protocol (Supp. Fig. 6). SpatialDE identified 115 SV 

genes (FDR < 0.05, compared to 3,503 detected by HVG; overlap 34 genes), including seven 

genes with known disease relevance that were highlighted in the primary analysis (Supp. 

Fig. 6B-C). Significantly SV genes were enriched for collagens, which distinguish tissue 

substructure13 (Reactome “Collagen formation”, P = 3.38 * 10-14, gProfiler14, Supp. Table 

1). Additionally, we identified the autophagy related gene TP53INP2, surrounding the 

structured tissue (Supp. Fig. 6C). The set of SV genes also included the cytokines CXCL9 

and CXCL13, which are expressed in a visually distinct region (Supp. Fig. 6A, black arrow), 

together with the IL12 receptor subunit gene IL12RB1, indicating a potential tumor-related 

local immune response. Notably, these genes (and N=29 others) were not identified as 

differentially expressed when applying unsupervised clustering in conjunction with an 

ANOVA test (Supp. Fig. 7). Furthermore, these genes do not have high rank based on non-

spatial HVG measures (including mean-CV2 relation9 or mean-dropout relation15, Supp. 

Fig. 8).

Automatic expression histology of the SV genes in the breast cancer biopsy (Supp. Fig. 4B) 

most clearly separated the adipocytic from the denser region of the tissue, but additionally 

identified a small region overlapping the tumor feature in the HE image. Among the 17 

genes assigned to this pattern were the cytokines and receptors CXCL9, CXCL13, IL12RB1, 

and IL21R (Supp. Table 1).

Overall, we found that variable genes detected by SpatialDE are complementary to existing 

methods. In particular, SpatialDE identifies genes with localized expression patterns, as 

indicated by small fitted length scales, which are missed by methods that ignore spatial 
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contexts (Supp. Fig. 7E). We confirmed the statistical calibration and the robustness of 

SpatialDE using randomized data (Supp. Fig. 9) and simulations (Supp. Fig. 10).

SpatialDE is not limited to sequencing technologies, and can be applied to any expression 

data with spatial and/or temporal annotation. To explore this, we applied SpatialDE to data 

generated using multiplexed single molecule FISH (smFISH), a method that quantifies gene 

expression with subcellular resolution for a large number of target genes in parallel. Briefly, 

probes are sequentially hybridized to RNA while carrying different temporal combinations 

of fluorophores, which act as barcodes and can quantify the expression of thousands of 

transcripts16 by imaging.

We applied SpatialDE to multiplexed smFISH data of cells from mouse hippocampus, 

generated using SeqFISH7. This study considered 249 genes chosen to investigate the cell 

type composition along dorsal and ventral axes of the hippocampus (Fig. 2E). SpatialDE 

identified 32 SV genes (Fig. 2E, FDR < 0.05, 58 genes were detected as HVG, with an 

overlap of 5 genes) and again SpatialDE identified genes with different types of spatial 

variation, including linear (N=5) and periodic patterns (N=8, examples in Supp. Fig. 11). 

The three highest ranking genes: Mog, Myl14, and Ndnf displayed a distinct region of lower 

expression (Figure 2F-G, black arrows). These genes were grouped into histological 

expression patterns by the AEH method (Figure 2H, Supp. Fig. 2C). Visual inspection of all 

249 genes supports the ranking of spatial variation from SpatialDE (Supp. Fig. 12).

SpatialDE can also be used to test for spatial expression variation in cell culture systems, 

where spatial variation is not typically expected a priori. As an example, we considered data 

from another multiplexed smFISH dataset generated using MERFISH with 140 probes on a 

human osteosarcoma cell line8 (Supp. Fig. 13A-B). In the primary analysis, surprisingly 

Moffitt et al.8 discovered spatially restricted cell populations with higher proliferation rates. 

Consistent with these findings, our method identified a substantial proportion of the genes 

assayed as spatially variable (N=91, 65% of all genes, FDR<0.05, 29 genes HVG with 

overlap of 24 genes), including six of the seven genes highlighted as differentially expressed 

between proliferating and resting subpopulations (e.g. THBS1 and CENPF1, Supp Fig. 

13C). This indicates that high confluence in cell culture can lead to spatial dependency in 

gene expression17. Negative control probes in these data were not detected as spatially 

variable, further confirming the statistical calibration of SpatialDE (Supp Fig. 13D).

Our results demonstrate that SpatialDE identifies spatially variable genes and allows 

biologically relevant features to be detected in tissue samples without a priori histological 

annotation. The increased availability of high-throughput experiments, including spatially 

resolved RNA-seq, means that there will be a growing need for methods that account for this 

new dimension of expression variation, such as SpatialDE.

We applied our method to data from multiple protocols, considering both tissues and cell 

cultures. SpatialDE can also be applied to temporal data from time-course experiments to 

identify genes with dynamic expression (Supp. Fig. 14). Methods already exist for this 

application18, but are typically computationally more demanding. In principle, SpatialDE 
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can also be applied to 3-dimensional data, e.g. from aligned serial sections of 2-dimensional 

data, or from in situ sequencing1.

SpatialDE is related to and generalizes previous approaches for detecting temporal19 and 

periodic gene expression patterns20 in time series. While biologically important, the 

identification of periodic patterns has technical limitations, in particular in edge cases, where 

noise can mask statistical significance for visually similar patterns (Supp. Fig. 15).

Future extensions of SpatialDE could be tailored towards specific platforms, for example to 

more explicitly model technical sources of variation. Other areas of future work are the 

incorporation of information about the tissue makeup or local differences in cell density. 

Finally, there exist spatial clustering methods that are focused on clustering cell positions 

rather than genes10, which could be combined with the AEH presented here.

Online methods

Methods, including statements of data availability and any associated accession codes and 

references, are available in the online version of the paper. Full details of the derivation and 

implementation of SpatialDE are provided in Supp. Note 1.

SpatialDE model

Spatial DE models the gene expression profiles y = (y1, … , yN) for a given gene across 

spatial coordinates X = (x1, … , xN) using a multivariate normal model of the form

P(y | μ, σs
2, δ, Σ) = N(y | μ · 1, σs

2 · (Σ + δ · I)) . (1)

The fixed effect μg · 1accounts for mean expression level and Σ denotes a spatial covariance 

matrix defined based on the input coordinates of pairs of cells. SpatialDE uses the so called 

squared exponential covariance function to define Σ:

Σi, j = k(xi, x j) = exp −
xi − x j

2

2 · l
2

, (2)

whereby the covariance between pairs of cells i and j is modelled to decay exponentially 

with the squared distance between them. The hyperparameter l, also known as the 

characteristic length scale, determines how rapidly the covariance decays as a function of 

distance21.

The second covariance term δ · I accounts for independent non-spatial variation in gene 

expression, where the ratio FSV = 1 / (1 + δ) can be interpreted as the fraction of expression 

variance attributable to spatial effects. Model parameters are fit by maximizing the marginal 

log likelihood,

Svensson et al. Page 5

Nat Methods. Author manuscript; available in PMC 2019 January 29.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts



LL = −
1
2

· N · log(2 · π) −
1
2

· log( |σs
2 · [Σ + δ · I] | ) −

1
2

· (y − μ · 1)T(σs
2 · [ Σ + δ · I])

−1
(y

− μ · 1) .

(3)

This optimization problem with closed form solutions for the parameters μ and σs, for given 

parameters values δ. Gradient-based optimization is used to determine δ, and the 

hyperparameter l is determined via grid search. Naïve methods for evaluating the marginal 

likelihood in Eq. (1) scale cubically in the number of cells, thus prohibiting applications to 

larger datasets. We adapt algebraic reformulations that have been proposed in statistical 

genetics11,22, coupled with efficient pre-computations of all terms possible, to improve 

scalability of the model (Supp. Fig. 2).

Statistical significance

To estimate statistical significance, the model likelihood of the fitted SpatialDE model is 

compared to the likelihood of a model that corresponds to the null hypothesis of no spatial 

covariance,

P(y μ , σ
2) = N( μ · 1, σ

2 · I) . (4)

P-values are then estimated analytically based on the χ2 distribution transformation with one 

degree of freedom. Unless stated otherwise, we use the Q-value method23 to adjust for 

multiple testing, thereby controlling the false discovery rate (FDR).

Model selection

Following significance testing, the spatial covariance patterns identified can be further 

investigated by comparisons of models with alternative covariance functions. In addition to 

the squared exponential covariance (Eq. (2)), SpatialDE implements covariance functions 

that assume linear trends as well as periodic patterns of gene expression variation (Supp. 

Fig. 1), which are compared using the Bayesian information criterion:

BIC = log(N) · M − 2 · LL .

Here M denotes the number of hyperparameters of a given model, N the number of samples, 

and LL (Eq. (3)) is the log marginal likelihood of the data. For guidance on how to interpret 

these inferences and alternative functional forms, see Supp. Note 1.

Automatic expression histology

To group spatially variable genes with similar spatial expression patterns, SpatialDE 

implements a clustering model based on the same spatial GP prior as used to test for 
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spatially variable genes (Eq. (1)). Let Y = (y1, . . . , yG) be the expression matrix of G 

spatially variable genes in each spatial location (now each yg is a vector of N observations), 

μ = {μ1, . . , μK} is the matrix of K underlying patterns, so the vector μk represents pattern k. 

Further, let Z be a binary indicator matrix that assigns gene g to pattern k if zg,k = 1. Then 

the full model across all genes can be written as:

P(Y , μ, Z, σ
e
2, Σ) = P(Y | μ, Z, σ

e
2) · P(μ |Σ) · P(Z),

P(Y | μ, Z, σ
e
2) = ∏

k = 1

K

∏
g = 1

G

N(y
g

| μ
k
, σ

e
2)

(z
g, k

)
,

P(μ |Σ) = ∏
k = 1

K

N(μ
k

| 0, Σ),

P(Z) = ∏
k = 1

K

∏
g = 1

G
1
K

z
g, k

.

The parameter σ
e
2 is the noise level for the model, and Σ is the spatial covariance matrix 

defined based on spatial coordinates (see Eq. (2)). This model can be regarded as an 

extension of the classical Gaussian mixture model24, with the addition of a spatial prior on 

cluster centroids. Approximate posterior distributions for μ and z are estimated using 

variational inference24, while the noise level σ
e
2 is estimated by maximising the variational 

lower bound. The length scale l for the covariance Σ is specified by the user, as is the 

number of fitted patterns, K. The choice of l can be informed by the fitted length scales in 

the SpatialDE significance test. See Supp. Note 1 for details on inference and derivation of 

variational updates.

After inference, the posterior expectations μ and Z of the parameters can be used to visualise 

any histological pattern through plotting μ
k
 over the x coordinates. The most likely 

assignment of genes to an individual pattern is determined by the largest value in the vector 

z
g
, which corresponds to the posterior probabilities of a gene belonging to each pattern.

Highly variable gene selection

For each dataset, highly variable genes were identified using the ScanPy implementation25 

of the Seurat method of highly variable gene filtering3 using default parameters.

Relationship to prior work

SpatialDE is related to existing Gaussian-processes based gene expression models. First 

used in geostatistics26, GP models have been applied to test for differential gene expression 

over time27, including the analysis of bifurcation events28, and to define general tests for 

temporal variability28–32.

We have here adapted GP models to spatial transcriptome data, although the model can also 

be applied to univariate data (Supp. Fig. 14) or higher-dimensional inputs. The main 

technical innovations presented here are three-fold. First, the model presented is faster than 
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existing methods by leveraging computational tricks previously proposed in the context of 

statistical genetics (Supp. Fig. 2, Section above). Second, we combine spatial GPs with 

model selection using BIC33. Third, we propose an efficient and versatile spatial clustering 

within the same statistical framework.

Data sets and processing

Spatial Transcriptomics data—The count tables from Stahl et al6 were downloaded 

from the website http://www.spatialtranscriptomicsresearch.org/datasets/

doi-10-1126science-aaf2403, linked from the publication. For the breast cancer data, we 

used the file annotated as ”Layer 2” with the corresponding HE image. For the mouse 

olfactory bulb, we used the file named ”Replicate 11” with corresponding HE image. Images 

included in figures were cropped, down-scaled and converted to grayscale to conserve file 

sizes. When performing automatic expression histology, the number of patterns was set to 5 

for both data sets, the characteristic length scale was set to 105 μm for the breast cancer data, 

and to 150 μm for the olfactory bulb data.

SeqFISH data—We downloaded the expression table from the supplementary material of 

Shah et al7 and extracted cell counts from the region annotated with number 43 in the 249 

gene experiment (Table S8 in the original publication). The shape of the data suggested this 

corresponded to a region in the lower left part of the corresponding supplementary figure, 

informing the schematic shown in Fig. 2F (only used for the purpose of illustration). In the 

automatic histology analysis, the number of patterns was set to 5, and the characteristic 

length scale was set to 50 μm.

MERFISH data—From the website http://zhuang.harvard.edu/merfish we downloaded the 

file ”data for release.zip” which contain data from Moffitt et al8 We used the files in the 

folder called ”Replicate 6”, as these had the largest number of cells and highest confluency.

Frog development RNA-seq data—We downloaded the TPM expression table for 

Clutch A from GEO accession GSE65785 which was referenced in the original 

publication18.

Expression count normalisation

The SpatialDE model is based on the assumption of normally distributed residual noise and 

independent observations across cells. To meet these requirements with spatial expression 

count data we have identified two normalisation steps (Supp. Note 1). First, we use a 

variance stabilizing transformation for negative binomial distributed data to satisfy the first 

condition known as Anscombe’s transformation. Second, we noticed that generally the 

expression level of a given gene correlates with the total count in a cell / spatial location. To 

ensure that SpatialDE captures the spatial covariance for each gene beyond this effect, log 

total count values are regressed out from the Anscombe-transformed expression values 

before fitting the spatial models.
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Editor’s Summary

SpatialDE identifies genes with significant spatial expression patterns from multiplexed 

imaging or spatial RNA sequencing data, and can cluster genes with similar spatial 

patterns as a form of expression-based tissue histology.
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Figure 1. Overview of SpatialDE for the identification of spatially variable genes.
(A) In spatial gene expression studies, expression levels are measured as a function of spatial 

coordinates of cells or samples. SpatialDE defines spatial dependence for a given gene using 

a non-parametric regression model, testing whether gene expression levels at different 

locations co-vary in a manner that depends on their relative location, and thus are spatially 

variable. (B) SpatialDE partitions expression variation into a spatial component (using 

functional dependencies f(x1, x2)), characterized by spatial covariance, and independent 

observation noise (ψ). Representative simulated expression patterns are plotted below the 

corresponding covariance matrices for the null model (None) and the alternative model 

(Spatial covariance) with different lengthscales. (C) Automatic expression histology uses 
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spatial clustering to model the expression levels of spatially variable genes using a set of 

unobserved tissue structure patterns. Both the underlying patterns and the gene-pattern 

assignments are learned from data.
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Figure 2. Application of SpatialDE to spatial transcriptomics and SeqFISH data.
(A) Fraction of variance explained by spatial variation (FSV) versus significance of spatial 

variation (SpatialDE negative log P-value) for all genes in the mouse olfactory bulb data. 

Dashed line corresponds to FDR=0.05 significance level (N=67 SV genes, Q-value 

adjusted). Genes are classified as periodically variable (N=19) or with a general spatial 

dependency (N=48). Classical histological marker genes highlighted in Stahl et al are in red 

text. Point size indicates uncertainty of FSV estimates; CI, confidence intervals. The X 

symbol shows the result of applying SpatialDE to the estimated total RNA content per spot. 
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(B) Hematoxylin and eosin image for mouse olfactory bulb data from Stahl et al. (C) 

Visualization of selected SV genes. Orange bar shows fitted period length for genes with 

periodic dependencies; blue bar shows fitted length scale for genes with general spatial 

trends. 2D plots depict expression level for genes across the tissue section coded in color. 

Asterisks denote statistical significance of spatial variation (* FDR < 0.05, ** FDR < 0.01, 

*** FDR < 0.001). Insets in lower left show the posterior probability for gene assignments 

as general spatial, periodic spatial, or linear trend. (D) Example histological expression 

patterns identified by automatic expression histology analysis, with expression levels 

encoded in color. The number of genes assigned to each pattern are noted. (E) Proportion of 

spatial variance versus significance of spatial variation (SpatialDE negative log P-value) for 

all 249 genes in the SeqFISH data from a region of mouse hippocampus from Shah et al7, as 

in A, showing genes with linear dependency in green. (F) Voronoi tessellation representative 

of tissue structure. (G) Expression of selected SV genes (out of 32, FDR < 0.05, Q-value 

adjusted) with linear (htr3a), periodic (foxj1), and general spatial trends. Black arrows 

indicate distinct region of low expression of Mog, Myl14 and Ndnf. (H) Three examples of 

histological expression patterns identified by AEH.
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