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Abstract—This paper describes SpatialHadoop; a full-fledged
MapReduce framework with native support for spatial data.
SpatialHadoop is a comprehensive extension to Hadoop that
injects spatial data awareness in each Hadoop layer, namely,
the language, storage, MapReduce, and operations layers. In the
language layer, SpatialHadoop adds a simple and expressive
high level language for spatial data types and operations. In
the storage layer, SpatialHadoop adapts traditional spatial index
structures, Grid, R-tree and R+-tree, to form a two-level spatial
index. SpatialHadoop enriches the MapReduce layer by two new
components, SpatialFileSplitter and SpatialRecordReader, for effi-
cient and scalable spatial data processing. In the operations layer,
SpatialHadoop is already equipped with a dozen of operations,
including range query, kNN, and spatial join. Other spatial
operations are also implemented following a similar approach.
Extensive experiments on real system prototype and real datasets
show that SpatialHadoop achieves orders of magnitude better
performance than Hadoop for spatial data processing.

I. INTRODUCTION

Since its release in 2007, Hadoop was adopted as a solution

for scalable processing of huge datasets in many applica-

tions, e.g., machine learning [1], graph processing [2], and

behavioral simulations [3]. Hadoop employs MapReduce [4],

a simplified programming paradigm for distributed processing,

to build an efficient large-scale data processing framework.

The abstraction of the MapReduce programming simplifies the

programming for developers, while the MapReduce framework

handles parallelism, fault tolerance, and other low level issues.

In the meantime, there is a recent explosion in the amounts

of spatial data produced by various devices such as smart

phones, satellites, and medical devices. For example, NASA

satellite data archives exceeded 500 TB and is still growing [5].

As a result, researchers and practitioners worldwide have

started to take advantage of the MapReduce environment in

supporting large-scale spatial data. Most notably, in industry,

ESRI has released ‘GIS Tools on Hadoop’ [6] that work with

their flagship ArcGIS product. Meanwhile, in academia, three

system prototypes were proposed: (1) Parallel-Secondo [7] as

a parallel spatial DBMS that uses Hadoop as a distributed

task scheduler, (2) MD-HBase [8] extends HBase [9], a non-

relational database for Hadoop, to support multidimensional

indexes, and (3) Hadoop-GIS [10] extends Hive [11], a data

warehouse infrastructure built on top of Hadoop with a uni-

form grid index for range queries and self-join.
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A main drawback in all these systems is that they still deal

with Hadoop as a black box, and hence they remain limited

by the limitations of existing Hadoop systems. For example,

Hadoop-GIS [10], while the most advanced system prototype

so far, suffer from the following limitations: (1) Hadoop itself

is ill equipped in supporting spatial data as it deals with

spatial data in the same way as non-spatial data. Relying

on Hadoop as a black box inherits the same limitations and

performance bottlenecks of Hadoop. Furthermore, Hadoop-

GIS adapts Hive [11], a layer on top of Hadoop, which gives

an extra overhead layer over Hadoop itself, (2) Hadoop-GIS

can only support uniform grid index, which is applicable

only in the rare case of uniform data distribution. (3) Being

on-top of Hadoop, MapReduce programs defined through

map and reduce cannot access the constructed spatial index.

Hence, users cannot define new spatial operations beyond the

already supported ones, range query and self-join. Parallel

Secondo [7], MD-HBase [8], and ESRI tools on Hadoop [6]

suffer from similar drawbacks.

In this paper, we introduce SpatialHadoop; a full-fledged

MapReduce framework with native support for spatial data;

available as open-source [12]. SpatialHadoop overcomes the

limitations of Hadoop-GIS and all previous approaches as:

(1) SpatialHadoop is built-in Hadoop base code (around

14,000 lines of code inside Hadoop) that pushes spatial

constructs and the awareness of spatial data inside the core

functionality of Hadoop. This is a key point behind the

power and efficiency of SpatialHadoop. (2) SpatialHadoop is

able to support a set of spatial index structures including R-

tree-like indexing, which is built-in Hadoop Distributed File

System (HDFS). This makes SpatialHadoop unique in terms

of supporting skewed data distributions in spatial data, and

(3) SpatialHadoop users can interact with Hadoop directly to

develop a myriad of spatial functions. For example, in this

paper, we show range queries, kNN queries, and spatial join.

In another work, we show a set of computational geometry

techniques that can only be realized using map and reduce

functions in SpatialHadoop [13]. This is in contrast to Hadoop-

GIS and other systems that cannot support such kind of

flexibility, and hence they are very limited in the functions they

can support. SpatialHadoop is available as open source [12]

and has been already downloaded more than 75,000 times.

It has been used by several research labs and industrial

companies around the world.

Figures 1(a) and 1(b) show how to express a spatial range



Objects = LOAD ’points’ AS (id:int, x:int, y:int);

Result = FILTER Objects BY x < x2 AND x > x1

AND y < y2 AND y > y1;

(a) Range query in Hadoop

Objects = LOAD ’points’ AS (id:int, Location:POINT);

Result = FILTER Objects BY

Overlaps (Location, Rectangle(x1, y1, x2, y2));

(b) Range query in SpatialHadoop
Fig. 1. Range query in Hadoop vs. SpatialHadoop

query in Hadoop and SpatialHadoop, respectively. The query

finds all points located within a rectangular area represented

by two corner points 〈x1, y1〉 and 〈x2, y2〉. The first query

statement loads an input file of points, while the second

statement selects records that overlap with the given range.

As Hadoop does not have any spatial indexes, it has to

scan the whole dataset to answer the range query, which

gives a very bad performance. In particular, it takes 200

seconds on a 20-node Hadoop cluster to process a workload

of 60 GB (about 70 M spatial objects). On the other side,

SpatialHadoop exploits its built-in spatial indexes to run the

same query in about two seconds, which is two orders of

magnitude improvement over Hadoop. In addition, the Hadoop

program, written in Pig Latin language [14], is less readable

due to the lack of spatial data support. SpatialHadoop uses

Pigeon [15] language which makes the program simpler and

more expressive as it uses spatial data types (POINT and

RECTANGLE) and spatial functions (Overlaps).

SpatialHadoop is composed of four main layers, namely,

language, storage, MapReduce, and operations layers, all

injected inside the code base of Hadoop. The language layer

provides Pigeon [15], a high level SQL-like language which

provides OGC-compliant [16] spatial data types and operations

making it easier to adopt by users. The storage layer employs

a two-level index structure of global and local indexing. The

global index partitions data across computation nodes while

the local index organizes data inside each node. This index

layout is used to provide three spatial indexes, namely, Grid

file, R-tree and R+-tree. To make these indexes accessible

to MapReduce programs, SpatialHadoop introduces two new

components in the MapReduce layer, namely, SpatialFileSplit-

ter and SpatialRecordReader, that exploit the global and local

index structures, respectively. Finally, the operations layer

encapsulates a dozen of spatial operations that take advantage

of the new components in the storage and MapReduce layers.

In this paper, we only show the implementation of three basic

spatial operations, namely, range query, kNN, and spatial join.

A real system prototype of SpatialHadoop (available as

open-source at [12]) is extensively evaluated. Experiments

run on real spatial datasets extracted from NASA MODIS

datasets [5] with a total size of 4.6 TB and 120 Billion

records. Both SpatialHadoop and Hadoop are deployed on an

internal university cluster as well as an Amazon EC2 cluster.

In both platforms, SpatialHadoop has orders of magnitude

better performance compared to Hadoop in all tested spatial

operations (range query, kNN, and spatial join).

This paper is organized as follows: Section II highlights re-

lated work. Section III gives the architecture of SpatialHadoop.

Details of the language, storage, MapReduce, and operations

layers are given in Sections IV-VII. Experiments are given in

Section VIII. Section IX concludes the paper.

II. RELATED WORK

Triggered by the needs to process large-scale spatial data,

there is an increasing recent interest in using Hadoop to

support spatial operations. Existing work can be classified as

either specific to a certain spatial operation or a system for

a suite of spatial operations. SpatialHadoop belongs to the

system category, yet, with many distinguished characteristics

as was discussed in section I.

Specific spatial operations. Existing work in this category

has mainly focused on addressing a specific spatial operation.

The idea is to develop map and reduce functions for the

required operation, which will be executed on-top of existing

Hadoop cluster. Examples of such work include: (1) R-tree

construction [17], where an R-tree is constructed in Hadoop

by partitioning records according to their Z-values, building

a separate R-tree for each partition, and combining those R-

trees under a common root. (2) Range query [18], [19], where

the input file is scanned, and each record is compared against

the query range. (3) kNN query [19], [20], where a brute force

approach calculates the distance to each point and selects the

closest k points [19], while another approach partitions points

using a Voronoi diagram and finds the answer in partitions

close to the query point [20]. (4) All NN (ANN) query [21],

where points are partitioned according to their Z-values to find

the answer similar to kNN queries. (5) Reverse NN (RNN)

query [20], where input data is partitioned by a Voronoi

diagram to exploit its properties to answer RNN queries.

(6) Spatial join [19], where the partition-based spatial-merge

join [22] is ported to MapReduce. The map function partitions

the data using a grid while the reduce function joins data in

each grid cell. (7) kNN join [23], [24], where the purpose is

to find for each point in a set R, its kNN points from set S.

Systems. Three approaches were proposed to build systems

for a suite of spatial operations: (1) Hadoop-GIS [10] extends

Hive [11], a data warehouse infrastructure built on top of

Hadoop, to support spatial data analysis techniques. It extends

Hive with uniform grid index which is used to speed up

range query and self join. Yet, Hadoop-GIS does not modify

anything in the underlying Hadoop system, and hence it

remains limited by the limitations of existing Hadoop systems.

Also, traditional MapReduce programs that access Hadoop

directly cannot make any use of Hadoop-GIS, and hence its

applicability is limited. (2)MD-HBase [8] extends HBase [9],

a non-relational database runs on top of Hadoop, to support

multidimensional indexes which allows for efficient retrieval

of points using range and kNN queries. MD-HBase shares

the same drawbacks as Hadoop-GIS, where the underlying

Hadoop system remains intact, and traditional MapReduce

programs will not benefit from it. (3) Parallel-Secondo [7]

is a parallel spatial DBMS that uses Hadoop as a distributed

task scheduler, while storage and query processing are done

by spatial DBMS instances running on cluster nodes. This is
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Fig. 2. SpatialHadoop system architecture

closer in architecture and performance to parallel DBMS than

Hadoop environments.

III. SPATIALHADOOP ARCHITECTURE

Fig. 2 gives the high level architecture of SpatialHadoop.

Similar to Hadoop, a SpatialHadoop cluster contains one

master node that breaks a map-reduce job into smaller tasks,

carried out by slave nodes. Three types of users interact with

SpatialHadoop: (1) Casual users who access SpatialHadoop

through a spatial language to process their datasets. (2) De-

velopers, who have deeper understanding of the system and

can implement new spatial operations, and (3) Administrators,

who can tune up the system by adjusting system parameters in

the configuration files. SpatialHadoop adopts a layered design

of four main layers as described below:

(1) The language layer (Section IV) provides Pigeon [15]

a simple high level SQL-like language that supports OGC-

compliant spatial data types (e.g., Point and Polygon) and

spatial operations (e.g., Overlap and Touches) to simplify

spatial data processing. (2) In the storage layer (Section V),

SpatialHadoop employs a two-level index structure of global

and local indexing. The global index partitions data across

computation nodes while the local indexes organize data

inside each node. SpatialHadoop uses the proposed structure

to implement three standard indexes, namely, Grid file, R-

tree and R+-tree. (3) SpatialHadoop adds two new components

to the MapReduce layer (Section VI) to allow MapReduce

programs to access the spatial index structures. The Spatial-

FileSplitter exploits the global index to prune file blocks that

do not contribute to answer, while the SpatialRecordReader

exploits local indexes to efficiently retrieve a partial answer

from each block. (4) The operations layer (Section VII)

encapsulates the implementation of various spatial operations

that take advantage of the spatial indexes and the new com-

ponents in the MapReduce layer. This paper describes the

details of three of them, namely, range query, kNN, and spatial

join. In another work, we implemented five computational

geometry operations efficiently in SpatialHadoop [13]. More

spatial operations can be added to the operations layer using a

similar approach of implementing of basic spatial operations.

IV. LANGUAGE LAYER

As map-reduce-like paradigms require huge coding ef-

forts [14], [25], a set of declarative SQL-like languages have

been proposed, e.g., HiveQL [11], Pig Latin [14], SCOPE [25],

and YSmart [26]. SpatialHadoop does not provide a com-

pletely new language. Instead, it provides an extension to Pig

Latin language [14], called Pigeon [15], which adds spatial

data types, functions, and operations that conform to the Open

Geospatial Consortium (OGC) standard [16]. In particular, we

add the following:

1. Data types. Pigeon overrides the bytearray data type

to support standard spatial data types, such as, Point,

LineString, and Polygon. The following code snippet

loads the ‘lakes’ file with a column of type polygon.

lakes = LOAD ’lakes’ AS (id:int, area:polygon);

2. Spatial functions. Pigeon utilizes user-defined functions

(UDFs) to provide spatial functions including aggregate func-

tions (e.g., Union), predicates (e.g., Overlaps), and others

(e.g., Buffer). The following code snippet shows how to

use the Distance function to get the distance between each

house and a service center with location sc_loc.

houses_with_distance = FOREACH houses

GENERATE id, Distance(house_loc, sc_loc);

3. kNN query. We enrich Pig Latin by a new KNN statement

to support kNN queries to a given point. For example:

nearest_houses = KNN houses WITH_K=100

USING Distance(house_loc, query_loc);

In addition, we override the functionality of the following

two Pig Latin statements:

1. FILTER. To support a range query, we override the Pig

Latin FILTER statement to accept a spatial predicate and

call the corresponding procedure for range queries. Here is

an example of a range query:

houses_in_range = FILTER houses BY

Overlaps(house_loc, query_range);

2. JOIN. To support spatial joins, we override the Pig

Latin JOIN statement to take two spatial files as input. The

processing of the JOIN statement is then forwarded to the

corresponding spatial join procedure. Here is an example of a

spatial join of lakes overlapping states:

lakes_states = JOIN lakes BY lakes_boundary

states BY states_boundary PREDICATE = Overlaps

V. STORAGE LAYER: INDEXING

Since input files in Hadoop are non-indexed heap files, the

performance is limited as the input has to be scanned. To

overcome this limitation, SpatialHadoop employs spatial index

structures within Hadoop Distributed File System (HDFS)

as a means of efficient retrieval of spatial data. Indexing in

SpatialHadoop is the key point in its superior performance

over Hadoop.

Traditional spatial indexes, e.g., Grid file and R-tree, are

not directly applicable in Hadoop due to two challenges:
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Fig. 3. Spatial indexing in SpatialHadoop

(1) Index structures are optimized for procedural program-

ming, where the program executes sequential statements,

while SpatialHadoop employs functional (MapReduce) pro-

gramming, where the program is composed of map and reduce

functions executed by slave nodes. The parallel algorithms

for R-trees [27] are still procedural where developers control

execution of multiple threads. (2) A file in HDFS can be only

written sequentially while traditional indexes are constructed

incrementally. The bulk loading techniques for Grid file [28]

and R-tree [29], [30] are still not applicable to the large

datasets used in SpatialHadoop as they require the whole

dataset to fit in memory.

As a result, existing techniques for spatial indexing in

Hadoop fall in three broad categories: (1) Build only: A

MapReduce approach is proposed to construct an R-tree [17],

[31] but the R-tree has to be queried outside MapReduce

using traditional techniques. (2) Custom on-the-fly indexing:

With each query execution, a non-standard index is created

and discarded after query completion, e.g., a Voronoi-based

index for kNN queries [20], [23] and space-filling-curve-based

indexes for range queries [21], [24]. (3) Indexing in HDFS:

Up to our knowledge, only [18] builds an HDFS-based index

structure for a set of trajectories. Yet, the index structure can

only support range queries on trajectory data, which is a very

limited functionality for what we need in SpatialHadoop.

Spatial indexing in SpatialHadoop falls under the third

category as it is built inside HDFS. Yet, unlike all existing

approaches, indexing in SpatialHadoop adapts HDFS to ac-

commodate general purpose standard spatial index structures,

namely, Grid file [32], R-tree [33] and R+-tree [34], and use

them to support many spatial queries written in MapReduce. In

the rest of this section, we give an overview of spatial indexing

in SpatialHadoop (Section V-A). Then, we describe a generic

method for building any spatial index in SpatialHadoop (Sec-

tion V-B). Then, we show how the generic method is applied

to build, Grid File, R-tree and R+-tree in Sections V-C to V-E.

A. Overview of Indexing in SpatialHadoop

To overcome the challenges of building index structures in

Hadoop, we employ a two-layers indexing approach of global

and local indexes as shown in Fig. 3. Each index contains one

global index, stored in the Master node, that partitions data

across a set of partitions, stored in slave nodes. Each partition

has a local index that organizes its own data. Such organization

overcomes the above two challenges because: (1) It lends itself

to MapReduce programming, where the local indexes can be

processed in parallel in a MapReduce job, and (2) The small

size of local indexes allows each one to be bulk loaded in

memory and written to a file in an append-only manner. The

following SpatialHadoop shell command can be executed by

users to index an input file src file using an index-type

and generate an output file dst file, where the index type

can be either grid, rtree, or r+tree:

index <src file> <dst file> sindex:<index-type>

B. Index Building

Regardless of the underlying spatial index structure, an

index building in SpatialHadoop is composed of three main

phases, namely, partitioning, local indexing, and global in-

dexing. Details of each phase may depend on the type of the

spatial index.

1) Phase I: Partitioning: This phase spatially partitions

the input file into n partitions that satisfy three main goals:

(1) Block fit; each partition should fit in one HDFS block

of size 64 MB, (2) Spatial locality; spatially nearby objects

are assigned to the same partition, and (3) Load balancing;

all partitions should be roughly of the same size. To achieve

these goals, we go through the following three steps:

Step 1: Number of partitions. Regardless of the spatial index

type, we compute the number of partitions, n, per the equation

n =

⌈

S(1+α)
B

⌉

, where S is the input files size, B is the HDFS

block capacity (64 MB), and α is an overhead ratio, set to

0.2 by default, which accounts for the overhead of replicating

records and storing local indexes. Overall, this equation adjust

the average partition size to be less than B.

Step 2: Partitions boundaries. In this step we decide on the

spatial area covered by each single partition defined by a rect-

angle. To accommodate data with even or skewed distribution,

partition boundaries are calculated differently according to the

underlying index being constructed. The output of this step is a

set of n rectangles representing boundaries of the n partitions,

which collectively cover the whole space domain.

Step 3: Physical partitioning. Given the partition bound-

aries computed in Step 2, we initiate a MapReduce job that

physically partitions the input file. The challenge here is to

decide what to do with objects with spatial extents (e.g.,

polygons) that may overlap more than one partition. Some

index structures assign a record to the best matching partition,

while others replicate a record to all overlapping partitions.

Replicated records are handled later by the query processor to

ensure a correct answer. At the end, for each record r assigned

to a partition p, the map function writes an intermediate pair

〈p, r〉. Such pairs are then grouped by p and sent to the reduce

function for the next phase, i.e., local indexing phase.

2) Phase II: Local Indexing: The purpose of this phase is

to build the requested index structure (e.g., Grid or R-tree) as

a local index on the data contents of each physical partition.

This is realized as a reduce function that takes the records

assigned to each partition and stores them in a spatial index,

written in a local index file. Each local index has to fit in one

HDFS block (i.e., 64 MB) for two reasons: (1) This allows

spatial operations written as MapReduce programs to access

local indexes where each local index is processed in one map



(a) Grid Partitioning (b) R-tree Partitioning
Fig. 4. The Partitioning Phase

task. (2) It ensures that the local index is treated by Hadoop

load balancer as one unit when it relocates blocks across

machines. According to the partitioning done in the first phase,

it is expected that each partition fits in one HDFS block. In

case a partition is too large to fit in one block, we break it

into smaller chunks of 64 MB each, which can be written as

single blocks. To ensure that local indexes remain aligned to

blocks after concatenation, each file is appended with dummy

data (zeros) to make it exactly 64 MB.

3) Phase III: Global Indexing: The purpose of this phase is

to build the requested index structure (e.g., Grid or R-tree) as a

global index that indexes all partitions. Once the MapReduce

partition job is done, we initiate an HDFS concat command

which concatenates all local index files into one file that

represents the final indexed file. Then, the master node builds

an in-memory global index which indexes all file blocks using

their rectangular boundaries as the index key. The global index

is constructed using bulk loading and is kept in the main

memory of the master node all the time. In case the master

node fails and restarts, the global index is lazily reconstructed

from the rectangular boundaries of the file blocks, only when

required.

C. Grid file

This section describes how the general index building algo-

rithm outlined in Section V-B is used to build a grid index.

The grid file [32] is a simple flat index that partitions the

data according to a grid such that records overlapping each

grid cell are stored in one file block as a single partition.

For simplicity, we use a uniform grid assuming that data

is uniformly distributed. In the partitioning phase, after the

number of partitions n is calculated, partition boundaries are

computed by creating a uniform grid of size ⌈√n⌉ × ⌈√n⌉
in the space domain and taking the boundaries of grid cells

as partition boundaries as depicted in Fig. 4(a). This might

produce more than n partitions, but it ensures that the average

partition size remains less than the HDFS block size. When

physically partitioning the data, a record r with a spatial extent,

is replicated to every grid cell it overlaps. In the local indexing

phase, the records of each grid cell are just written to a heap

file without building any local indexes because the grid index

is a one-level flat index where contents of each grid cell

are stored in no particular order. Finally, the global indexing

phase concatenates all these files and builds the global index,

which is a two dimensional directory table pointing to the

corresponding blocks in the concatenated file.

D. R-tree

This section describes how the general index building

algorithm outlined in Section V-B is used to partition spatial

data over computing nodes based on R-tree indexing, as in

Fig. 4(b), followed by an R-tree local index in each partition.

In the partitioning phase to compute partition boundaries, we

bulk load a random sample from the input file to an in-memory

R-tree using the Sort-Tile-Recursive (STR) algorithm [30].

The size of the random sample is set to a default ratio of 1%

of the input file, with a maximum size of 100MB to ensure

it fits in memory. Both the ratio and maximum limit can be

set in configuration files. If the file contains shapes rather than

points, the center point of the shape’s MBR is used in the bulk

loading process. To read the sample efficiently when input file

is very large, we run a MapReduce job that scans all records

and outputs each one with a probability of 1%. This job also

keeps track of the total size of sampled points, S, in bytes. If

S is less than 100MB, the sample is used to construct the R-

tree. Otherwise, a second sample operation is executed on the

output of the first one with a ratio of 100MB

S
, which produces

a sub-sample with an expected size of 100MB.

Once the sample is read, the master node runs the STR

algorithm with the parameter d (R-tree degree) set to ⌈√n⌉
to ensure the second level of the tree contains at least n

nodes. Once the tree is constructed, we take the boundaries

of the nodes in the second level and use them in the physical

partitioning step. We choose the STR algorithm as it creates

a balanced tree with roughly the same number of points

in each leaf node. Fig. 4(b) shows an example of R-tree

partitioning with 36 blocks (d = 6). Similar to a traditional R-

tree, the physical partitioning step does not replicate records,

but it assigns a record r to the partition that needs the least

enlargement to cover r and resolves ties by selecting the

partition with smallest area.

In the local indexing phase, records of each partition are

bulk loaded into an R-tree using the STR algorithm [30],

which is then dumped to a file. The block in a local index

file is annotated with its minimum bounding rectangle (MBR)

of its contents, which is calculated while building the local

index. As records are overlapping, the partitions might end

up being overlapped, similar to traditional R-tree nodes. The

global indexing phase concatenates all local index files and

creates the global index by bulk loading all blocks into an

R-tree using their MBRs as the index key.

E. R+-tree

This section describes how the general index building al-

gorithm outlined in Section V-B is used to partition spatial

data over computing nodes based on R+-tree with an R+-

tree local index in each partition. R+-tree [34] is a variation

of the R-tree where nodes at each level are kept disjoint

while records overlapping multiple nodes are replicated to

each node to ensure efficient query answering. The algorithm

for building an R+-tree in SpatialHadoop is very similar to

that of the R-tree except for three changes. (1) In the R+-tree

physical partitioning step, each record is replicated to each

partition it overlaps with. (2) In the local indexing phase, the

records of each partition are inserted into an R+-tree which

is then dumped to a local index file. (3) Unlike the case of



Fig. 5. R+-tree index for road segments in the whole world extracted from OpenStreetMap (Best viewed in color)

R-tree, the global index is constructed based on the partition

boundaries computed in the partitioning phase rather than the

MBR of its contents as boundaries should remain disjoint.

These three changes ensure that the constructed index satisfies

the properties of the R+-tree.

Fig. 5 gives a prime example behind the need for R+-tree

(and R-tree) indexing in SpatialHadoop, which also shows the

key behind SpatialHadoop performance. The figure shows the

partitioning of an R+-tree index constructed on a 400 GB file

that includes all the road networks (depicted in blue lines)

extracted from OpenStreetMap [35]. The black rectangles in

the figure indicate partition boundaries of the global index.

While some road segments cross multiple partitions, partition

boundaries remain disjoint due to the properties of the R+-

tree. As each partition is sufficient for only 64 MB worth of

data, we can see that dense areas (e.g., Europe) are contained

in very small partitions, while sparse areas (e.g., oceans) are

contained in very large partitions. One way to look at this

figure is that this is the way that SpatialHadoop divides a

dataset of 400 GB into small chunks, each of 64 MB which

is the key point behind the order of magnitude performance

that SpatialHadoop got over traditional Hadoop.

VI. MAPREDUCE LAYER

Similar to Hadoop, the MapReduce layer in SpatialHadoop

is the query processing layer that runs MapReduce programs.

However, contrary to Hadoop where the input files are non-

indexed heap files, SpatialHadoop supports spatially indexed

input files. Fig. 6 depicts part of the MapReduce plan in

both Hadoop and SpatialHadoop, where the modifications in

SpatialHadoop are highlighted. In Hadoop (Fig. 6(a)), the input

file goes through a FileSplitter that divides it into n splits,

where n is set by the the MapReduce program, based on the

number of available slave nodes. Then, each split goes through

a RecordReader that extracts records as key-value pairs which

are passed to the map function. SpatialHadoop (Fig. 6(b))

enriches traditional Hadoop systems by two main components:

(1) SpatialFileSplitter (Section VI-A); an extended splitter that

exploits the global index(es) on input file(s) to early prune

file blocks not contributing to answer, and (2) SpatialRecor-
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Fig. 6. Map phase in Hadoop and SpatialHadoop

dReader (Section VI-B), which reads a split originating from

spatially indexed input file(s) and exploits the local indexes to

efficiently process it.

A. SpatialFileSplitter

Unlike the traditional file splitter, which takes one input

file, the SpatialFileSplitter can take one or two input files

where the blocks in each file are globally indexed. In addition,

the SpatialFileSplitter takes a filter function, provided by the

developer to filter file blocks that do not contribute to answer.

A single file input represents unary operations, e.g., range

and k-nearest-neighbor queries, while two input files represent

binary operations, e.g., spatial join.

In case of one input file, the SpatialFileSplitter applies the

filter function on the global index of the input file to select

file blocks, based on their MBRs, that should be processed

by the job. For example, a range query job provides a filter

function that prunes file blocks with MBRs completely outside

the query range. For each selected file block in the query range,

the SpatialFileSplitter creates a file split, to be processed later

by the SpatialRecordReader. In case of two input files, e.g., a

spatial join operation, the behavior of the SpatialFileSplitter is

quite similar with two subtle differences: (1) The filter function

is applied to two global indexes; each corresponds to one

input file. For example, a spatial join operation selects pairs



of blocks with overlapping MBRs. (2) The output of the Spa-

tialFileSplitter is a combined split that contains a pair of file

ranges (i.e., file offsets and lengths) corresponding to the two

selected blocks from the filter function. This combined split

is passed to the SpatialRecordReader for further processing.

B. SpatialRecordReader

The SpatialRecordReader takes either a split or combined

split, produced from the SpatialFileSplitter, and parses it to

generate key-value pairs to be passed to the map function.

If the split is produced from a single file, the SpatialRecor-

dReader parses the block to extract the local index that acts

as an access method to all records in the block. Instead

of passing records to the map function one-by-one as in

traditional Hadoop record readers, the record reader sends all

the records to the map function indexed by the local index.

This has two main benefits: (1) it allows the map function

to process all records together, which is shown to make it

more powerful and flexible [20], and (2) the local index is

harnessed when processing the block, making it more efficient

than scanning over all records. To adhere with the key-value

record format, we generate a key-value pair 〈mbr, lindex〉,
where the key is the MBR of the assigned block and the value

is a pointer to the loaded local index. The traditional record

reader is still supported and can be used to iterate over records

in case the local index is not needed.

In case the split is produced from two spatially indexed

input files, the SpatialRecordReader parses the two blocks

stored in the combined split and extracts the two local

indexes in both blocks. It then builds one key-value pair

〈〈mbr1,mbr2〉, 〈lindex1, lindex2〉〉, which is sent to the map

function for processing. The key is a pair of MBRs, each

corresponds to one block, while the value is a pair of pointers,

each points to a local index extracted from a block.

VII. OPERATIONS LAYER

The combination of the spatial indexing in the storage

layer (Section V) with the new spatial functionality in the

MapReduce layer (Section VI) gives the core of SpatialHadoop

that enables the possibility of efficient realization of a myriad

of spatial operations. In this section, we only focus on three

basic spatial operations: range query (Section VII-A), kNN

(Section VII-B), and spatial join (Section VII-C), as three

case studies of how to use SpatialHadoop. SpatialHadoop

contains also computation geometry operations [13] and more

operations, e.g., kNN join, and RNN, can also be realized in

SpatialHadoop following a similar approach.

A. Range Query

A range query takes a set of spatial records R and a query

area A as input, and returns the set of records in R that

overlaps with A. In Hadoop, the input set is provided as a

heap file, hence, all records have to be scanned to output

matching records. SpatialHadoop achieves orders of magnitude

speedup by exploiting the spatial index. There are two range

query techniques implemented in SpatialHadoop depending on

whether the index replicates entries or not.

No replication. In case of R-tree, where each record is stored

in exactly one partition, the range query algorithm runs in

two steps. (1) The global filter step, which selects file blocks

that need to be processed. This step exploits the global index

through feeding the SpatialFileSplitter with a range filter to

select those blocks overlapping with the query area A. Blocks

that are completely inside the query area are copied to the

output without any further processing as all its records are

within the query range. Blocks that are partially overlapping

are sent for further processing in the second step. (2) The

local filter step operates on the granularity of a file block and

exploits the local index to return records overlapping with the

query area. The SpatialRecordReader reads a block that needs

to be processed, extracts its local index, and sends it to the

map function, which exploits the local index with a traditional

range query algorithm to return matching records.

Replication. In case of Grid and R+-tree where some records

are replicated across partitions, the range query algorithm

differs from the one described above in two main points: (1) In

the global filter step, blocks that are completely contained

in the query area A have to be further processed as they

might have duplicate records that need to be removed. (2) The

output of the local filter goes through an additional duplicate

avoidance [36] step to ensure that duplicates are removed from

the final answer. For each candidate record produced by the

local filter step, we compute its intersection with the query

area. A record is added to the final result only if the top-left

corner of the intersection is inside the partition boundaries.

Since partitions are disjoint, it is guaranteed that only one

partition contains that point. The output of the duplicate

avoidance step gives the final answer of the range query, hence,

no reduce function is needed.

B. k Nearest Neighbor (kNN)

A kNN query takes a set of spatial points P , a query point

Q, and an integer k as input, and returns the k closest points

in P to Q. In Hadoop, a kNN algorithm scans all points in

the input file, calculates their distances to Q, and produces

the top-k ones [19]. With SpatialHadoop, we exploit simple

pruning techniques that achieve orders of magnitude better

performance than that of Hadoop. A kNN query algorithm

in SpatialHadoop is composed of the three steps: (1) Initial

answer, where we come up with an initial answer of the k

closest points to Q within the same file block (i.e., partition)

as Q. We first locate the partition that includes Q by feeding

the SpatialFileSplitter with a filter function that selects only

the overlapping partition. Then, the selected partition goes

through the SpatialRecordReader to exploit its local index with

a traditional kNN algorithm to produce the initial k answers.

(2) Correctness check, where we check if the initial answer

can be considered final. We draw a test circle C centered

at Q with a radius equal to the distance from Q to its kth

furthest neighbor, obtained from the initial answer. If C does

not overlap any partition other than Q, we terminate and the



Q
p1

p2

p3

p4

p5

p6

p8

p7

p9

p10

p11

p12

p13
p14

p15
p16

p17

(a) Correct initial answer

Q

p1

p2

p3

p4

p5

p6

p8

p7

p9

p10

p11

p12

p13
p14

p15
p16

p17

(b) Refined Answer
Fig. 7. kNN query (k = 3) in SpatialHadoop

initial answer is considered final. Otherwise, we proceed to the

third step. (3) Answer Refinement, where we run a range query

to get all points inside the MBR of the test circle C, obtained

from previous step. Then, a scan over the range query result

is executed to produce the closest k points as the final answer.

Fig. 7 gives two examples of a kNN query for point Q (in a

shaded partition) with k=3. In Fig. 7a, the dotted test circle C,

composed from the initial answer {p1, p2, p3}, overlaps only
the shaded partition. Hence, the initial answer is considered

final. In Fig. 7b, the circle C intersects other blocks. Hence,

a range query is issued with the MBR of C, and a refined

answer is produced as {p1, p2, p7}, where p7 is closer to Q

than p3.

C. Spatial Join

A spatial join takes two sets of spatial recordsR and S and a

spatial join predicate θ (e.g., overlaps) as input, and returns

the set of all pairs 〈r, s〉 where r ∈ R, s ∈ S, and θ is true for

〈r, s〉. In Hadoop, the SJMR algorithm [37] is proposed as the

MapReduce version of the partition-based spatial-merge join

(PBSM) [22]; a classic spatial join algorithm for distributed

systems. SJMR employs a map function that partitions input

records according to a uniform grid, and then a reduce function

that joins records in each partition. Though SJMR is designed

for Hadoop, it can still run, as is, on SpatialHadoop, yet

with a better performance since the input files are already

partitioned. To better utilize the spatial indexes, we equip

SpatialHadoop with a novel spatial join algorithm, termed

distributed join which is composed of three main steps, namely

global join, local join, and duplicate avoidance. In some cases,

an additional preprocessing step can be added to speed up the

distributed join algorithm.

Step 1: Global join. Given two input files of spatial records

R and S, this step produces all pairs of file blocks with

overlapping MBRs. Apparently, only an overlapping pair of

blocks can contribute to the final answer of the spatial join

since records in two non-overlapping blocks are definitely dis-

joint. To produce the overlapping pairs, the SpatialFileSplitter

module is fed with the overlapping filter function to exploit

two spatially indexed input files. Then, a traditional spatial join

algorithm is applied over the two global indexes to produce

the overlapping pairs of partitions. The SpatialFileSplitter will

finally create a combined split for each pair of overlapping

blocks.

Step 2: Local join. Given a combined split produced from

the previous step, this step joins the records in the two blocks

Roads

Rivers

Overlapping

Partitions

Fig. 8. Distributed join between roads and rivers

in this split to produce pairs of overlapping records. To do so,

the SpatialRecordReader reads the combined split, extracts the

records and local indexes from its two blocks, and sends all

of them to the map function for processing. The map function

exploits the two local indexes to speed up the process of

joining the two sets of records in the combined split. The

result of the local join may contain duplicate results due to

having records overlapping with multiple blocks.

Step 3: Duplicate avoidance. Similar to the case of range

queries, this step runs only for indexes with replication (i.e.,

Grid and R+-tree) and employs the reference-point duplicate

avoidance technique [36]. For each detected overlapping pair

of records, the intersection of their MBRs is first computed.

Then, the overlapping pair is reported as a final answer only if

the top-left corner (i.e., reference point) of the intersection falls

in the overlap of the MBRs with the two processed blocks.

Example. Fig. 8 gives an example of a spatial join between

a file of Roads and a file of Rivers. As both files are par-

titioned using the same 4 × 4 grid structure, there is no need

for a preprocessing step. The global join step is responsible

on matching the overlapped partitions together. The local join

step joins the contents of each matched partitions. Finally, the

duplicate avoidance step ensures that each matched record is

produced only once.

Fig. 9. Partitions.

Preprocessing step. The two input files to

the spatial join could be partitioned inde-

pendently upon their loading into Spatial-

Hadoop. For example, Figure 9 gives an

example of joining two grid files with 3

× 3 (solid lines) and 4 × 4 (dotted lines)

grids. In this case, our distributed spatial

join algorithm has two options to proceed: (1) Work exactly

as described above without any preprocessing, where joining

the two grid files produces 36 overlapping pairs of grid cells

that are processed in 36 map tasks, or (2) Repartitioning the

smaller file (the one with 9 cells) into 16 partitions to match

the same partitioning of the larger one. Hence, the number

of overlapping pairs of grid cells is decreased from 36 to

16. There is a clear trade-off between these two options. The

repartitioning step is costly, yet it reduces the time required

for joining as there are less overlapping grid cells. To decide

whether to run the preprocessing step or not, SpatialHadoop

estimates the cost in both cases and chooses the one with

least estimated cost. For simplicity, we use the number of

map tasks as an estimator for the cost. When the two files

are joined directly, the number of map tasks mj is the total



number of overlapping blocks in the two files. When adding

the preprocessing step, the number of map tasks mp is the

sum of the number of blocks in both files. This is because

the preprocessing step reads and partitions every block in the

smaller file, then joins with every block in the larger file. Only

if mp < mj , the preprocessing step is carried out, otherwise,

the files are joined directly.

VIII. EXPERIMENTS

This section provides an extensive experimental study for

the performance of SpatialHadoop compared to standard

Hadoop. We decided to compare with standard Hadoop and

not other parallel spatial DBMSs for two reasons. First, as our

contributions are all about spatial data support in Hadoop, the

experiments are designed to show the effect of these additions

or the overhead imposed by the new features compared to a tra-

ditional Hadoop. Second, the different architectures of spatial

DBMSs have great influence on their respective performance,

which are out of the scope of this paper. Interested readers

can refer to a previous study [38] which has been established

to compare different large scale data analysis architectures.

Meanwhile, we could not compare with MD-HBase [8] or

Hadoop-GIS [10] as they support much limited functionality

than what we have in SpatialHadoop. Also, they rely on the

existence of HBase or Hive layers, respectively, which we do

not currently have in SpatialHadoop. SpatialHadoop (source

code is available at: [12]) is implemented inside Hadoop 1.2.1

on Java 1.6. All experiments are conducted on an Amazon

EC2 [39] cluster of up to 100 nodes. The default cluster size

is 20 nodes of ‘small’ instances.

Datasets. We use the following real and synthetic datasets

to test various performance aspects for SpatialHadoop:

(1) TIGER: A real dataset which represents spatial features

in the US, such as streets and rivers [40]. It contains 70M

line segments with a total size of 60 GB. (2) OSM: A real

dataset extracted from OpenStreetMap [35] which represents

map data from the whole world. It contains 164M polygons

with a total size of 60 GB. (3) NASA: Remote sensing data

which represents vegetation indices for the whole world over

14 years. It contains 120 Billion points with a total size of

4.6 TB. (4) SYNTH: A synthetic dataset generated in an

area of 1M × 1M units, where each record is a rectangle of

maximum size d× d; d is set to 100 by default. The location

and size of each record are both generated based on a uniform

distribution. We generate up to 2 Billion rectangles of total size

128 GB. To allow researchers to repeat the experiments, we

make the first two datasets available on SpatialHadoop web-

site. The third dataset is already made available by NASA [5].

The generator is shipped as part of SpatialHadoop and can be

used as described in its documentation.

In our experiments, we compare the performance of the

range query, kNN, and distributed join algorithms in Spatial-

Hadoop proposed in Section VII to their traditional imple-

mentation in Hadoop [19], [37]. For range query and kNN,

we use system throughput as the performance metric, which

indicates the number of MapReduce jobs finished per minute.

To calculate the throughput, a batch of 20 queries is submitted

to the system to ensure full utilization and the throughput is

calculated by dividing 20 over the total time to answer all

the queries. For spatial join, we use the processing time of

one query as the performance metric as one query is usually

enough to keep all machines busy. The experimental results

for range queries, kNN queries, and spatial join are reported

in Sections VIII-A, VIII-B, and VIII-C, respectively, while

Section VIII-D studies the performance of index creation.

A. Range Query

Figures 10 and 11 give the performance of range query pro-

cessing on Hadoop [19] and SpatialHadoop for both SYNTH

and real datasets, respectively. Queries are centered at random

points sampled from the input file. The generated query

workload has a natural skew where dense areas are queried

with higher probability to simulate realistic workloads. Unless

mentioned otherwise, we set the file size to 16 GB, query area

size to 0.01% of the space, block size to 64 MB, and edge

length of generated rectangles to 100 units.

In Fig. 10(a), we increase the file size from 1 GB to

128 GB, while measuring the throughput of Hadoop, Spa-

tialHadoop with Grid, R-tree and R+-tree indexes. For all

file sizes, SpatialHadoop has consistently one or two orders

of magnitude higher throughput due to pruning employed

by the SpatialFileSplitter and the global index. As Hadoop

needs to scan the whole file, its throughput decreases with

the increase in file size. On the other hand, the throughput

of SpatialHadoop remains stable as it processes only a fixed

area of the input file. As data is uniformly distributed, R+-

tree becomes similar to the grid file with the addition of

a local index in each block. R-tree is significantly better

as it skips processing of partitions completely contained in

the query range while R+-tree suffers from the overhead of

replication and duplicate avoidance technique. In Fig. 10(b),

the query area increases from 0.0001% to 1% of the total

area. In all cases, SpatialHadoop gives more than an order of

magnitude better throughput than Hadoop. The throughput of

both systems decreases with the increase of the query area,

where: (a) we need to process more file blocks, and (b) The

size of the output file becomes larger. R-tree is more resilient

to increased query areas as it skips processing of blocks totally

contained in query area as well as duplicate avoidance.

Fig. 10(c) gives the effect of increasing the block size

from 64 MB to 512 MB, while measuring the throughput of

Hadoop and SpatialHadoop for two sizes of the query area,

1% and 0.01%. For clarity, we show only the grid index as

other indexes produce similar trends. When increasing block

size, Hadoop performance slightly increases as it requires less

number of blocks to process while SpatialHadoop performance

decreases as the number of processed blocks remain the same

while block sizes increase. Fig. 10(d) gives the overhead of

the duplicate avoidance technique used in grid and R+-tree

indexing. The edges length of spatial data is increased from

1 to 10K within a space area of 1M×1M, which increases

replication in the indexed file. As shown in figure, the overhead
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Fig. 10. Range query experiments with SYNTH dataset
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Fig. 11. Range query experiments with real datasets
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Fig. 12. kNN algorithms with SYNTH dataset

of the duplicate avoidance technique ends up to be minimal

and SpatialHadoop manages to keep its performance within

orders of magnitude higher throughput.

Fig. 11(a) gives the performance of range query on the

TIGER dataset when increasing the query area. SpatialHadoop

shows two orders of magnitude throughput increase over

traditional Hadoop. Unlike the SYNTH dataset where grid

and R-tree indexes behave similarly, the TIGER dataset is

more suited with an R-tree index due to the natural skewness

in the data. Fig. 11(b) shows how SpatialHadoop scales out

with cluster size changing from 5 to 20 nodes when executing

range queries with a selection area of 1%. Both Hadoop

and SpatialHadoop scale smoothly with cluster size, while

SpatialHadoop is consistently more efficient. Fig. 11(c) shows

how block size affects the performance of range queries on

the TIGER real dataset. The results here conforms with those

of synthetic dataset in Fig. 10(c) where Hadoop performance

is enhanced while SpatialHadoop degrades a little bit. The

difference here is higher due to the high skewness of the

TIGER dataset. Fig. 11(d) shows the running time for range

queries on subsets of NASA dataset of sizes 1.2TB, 2TB and

the whole dataset of size 4.6TB. The datasets are indexed using

R-tree on an EC2 cluster of 100 large nodes, each with a quad

core processor and 8GB of memory. This experiment shows

the high scalability of SpatialHadoop in terms of data size and

number of machines where it takes only a couple of minutes

with the largest selection area on the 4.6TB dataset.

B. K-Nearest-Neighbor Queries (kNN)

Figures 12 and 13 give the performance of kNN query pro-

cessing on Hadoop [19] and SpatialHadoop for both SYNTH

and TIGER datasets, respectively. In both experiments, query

locations are set at random points sampled from the input file.

Unless otherwise mentioned, we set the file size to 16 GB, k

to 1000, and block size to 64 MB. We omit the results of the

R+-tree as it becomes similar to R-tree when indexing points

because there is no replication.

Fig. 12(a) measures system throughput when increasing the

input size from 1 GB to 16 GB. SpatialHadoop has one to two

orders of magnitude higher throughput. Hadoop performance

decreases dramatically as it needs to process the whole file

while SpatialHadoop maintains its performance as it processes

one block regardless of the file size. Unlike the case of

range queries, the R-tree with local index shows a significant

speedup as it allows the kNN to be calculated efficiently within

each block, while the grid index has to scan each block. As k

is varied from 1 to 1000 in Fig. 12(b), SpatialHadoop keeps

its speedup at two orders of magnitude as k is small compared

to number of records per block.

In Fig. 12(c), as the block size increases from 64 MB to

256 MB, the performance of SpatialHadoop stays at two orders

of magnitude higher than Hadoop. Since Hadoop scans the

whole file, it becomes a little bit faster with larger block sizes

as the number of blocks gets lower. Fig. 12(d) shows how the

throughput is affected by the location of the query point Q
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Fig. 13. Performance of kNN with TIGER dataset

relative to the boundary lines of the global index partitions.

Rather than generated totally at random, the query points are

placed on the diagonal of a random partition where its distance

to the center of the partition is controlled by a closeness factor

0 ≤ c ≤ 1; 0 means that Q is in the partition center while

1 means that Q is a corner point. When c is close to zero,

the query answer is likely to be found in one partition. When

c is close to 1, it is likely that we need to refine the initial

answer, which significantly decreases throughput, yet it is still

of two orders of magnitude higher than Hadoop, which is not

affected by the value of c.

Fig. 13(a) gives the effect of increasing k from 1 to 1000

on TIGER dataset. While all algorithms seem to be unaffected

by k as discussed earlier, SpatialHadoop gives an order of

magnitude performance with grid index and two orders of

magnitude performance with an R-tree index. Fig. 13(b) gives

the effect of increasing the block size from 64 MB to 512 MB.

While the performance with grid index tends to decrease with

increased block sizes, the R-tree remains stable for higher

block sizes. The performance of Hadoop increases with higher

block sizes due to the decrease in total number of map tasks.

C. Spatial Join

Fig. 14 gives the results of the spatial join experiments,

where we compare our distributed join algorithm for Spatial-

Hadoop with two implementations of the SMJR algorithm [37]

on Hadoop and SpatialHadoop. Fig. 14(a) gives the total

processing time for joining edges and linearwater files

from TIGER dataset of sizes 60GB and 20GB, respectively.

Both R-tree and R+-tree give the best results as they deal well

with skewed data with the R+-tree significantly better due to

the non-overlapping partitions. Both Grid index and SJMR

give poor performance as they use a uniform grid.

Fig. 14(b) gives the response time of joining two generated

files of the same size (1 to 16GB). To keep the figures concise,

we show only the performance of the distributed join algorithm

operating on R-tree indexed files as other indexes give similar

trends. In all cases, our distributed join algorithm shows a

significant speedup over SJMR in Hadoop. Moreover, SJMR

runs faster on SpatialHadoop compared to Hadoop as the

partition step becomes more efficient when the input file is

already partitioned. In Fig. 14(c), the response times of the

different spatial join algorithms are depicted when the two

input files are of different sizes. In this case, a preprocessing

step may be needed which is indicated by a black bar. For

small file sizes, the distributed join carries out the join step

directly as the repartition step is costly compared to the join

step. In all cases, distributed join significantly outperforms

other algorithms with double to triple performance, while

SJMR on Hadoop gives the worst performance as it needs

to partition both input files.

Fig. 14(d) highlights the tradeoff in the preprocessing step.

We rerun the same join experiments of two different file

sizes with and without a preprocessing step. We also run

a third instance (DJ-Smart) that decides whether to run a

preprocessing step or not based on the number of map tasks in

each case as discussed in Section VII-C. DJ-Smart manages to

take the right decision in most cases. It only misses the right

decision in two cases where it performs the preprocessing step

when the direct join is faster. Even for these two cases, the

difference in processing time is very small and does not cause

major degradation in performance. The figure also shows that

for some cases, such as 1×8, the preprocessing step manages

to speedup the join step but it incurs a big overhead rendering

it to be unuseful for this case.

D. Index Creation

Fig. 15 gives the time spent for building the spatial index

in SpatialHadoop. This is a one time job done when loading

a file and the index can be used many times in subsequent

queries. Fig. 15(a) shows a good scalability for indexing

schemes when indexing a generated file with a size varying

from 1 GB to 128 GB. For example, it builds an R-tree

index for a 128 GB file with more than 2 Billion records in

about one hour on 20 machines. The grid index is faster as it

basically partitions the data using a uniform grid while the R-

tree takes more time for reading the random sample from the

file, bulk loading it into an R-tree and building local indexes.

Fig. 15(b) shows a similar behavior when indexing real data

from OpenStreetMap. Fig. 15(c) shows a near linear scale up

for all indexing schemes when the cluster size increases from

5 to 20 machines.

To take SpatialHadoop to an extreme, we test it with NASA

datasets of up to 4.6TB and 120 Billion records on a 100-

node cluster of Amazon ‘large’ instances. Fig. 15(d) shows

the indexing time for an R-tree index. As shown, it takes less

than 15 hours do build a highly efficient R-tree index for a

4.6 TB dataset which renders SpatialHadoop very scalable in

terms of data size and number of machines. Note that building

the index is a one time process for the whole data, after which

the index lives for long. The figure also shows that the time

spent in reading the sample and constructing the in-memory

R-tree using STR (Section V-D) is very small compared to the

total time of indexing.

IX. CONCLUSION

This paper introduces SpatialHadoop, a full-fledged MapRe-

duce framework with native support for spatial data available

as free open-source. SpatialHadoop is a comprehensive ex-

tension to Hadoop that injects spatial data awareness in each

Hadoop layer, namely, the language, storage, MapReduce,

and operations layers. In the language layer, SpatialHadoop

adds a simple and expressive high level language with built-in
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support for spatial data types and operations. In the storage

layer, SpatialHadoop adapts traditional spatial index struc-

tures, Grid, R-tree, and R+-tree, to form a two-level spatial

index for MapReduce environments. In the MapReduce layer,

SpatialHadoop enriches Hadoop with two new components,

SpatialFileSplitter and SpatialRecordReader, for efficient and

scalable spatial data processing. In the operations layer,

SpatialHadoop is already equipped with three basic spatial

operations, range query, kNN, and spatial join, as case studies

for implementing spatial operations. Other spatial operations

can also be added following a similar approach. Extensive

experiments, based on a real system prototype and large-scale

real datasets of up to 4.6TB, show that SpatialHadoop achieves

orders of magnitude higher throughput than Hadoop for range

and k-nearest-neighbor queries and triple performance for

spatial joins.
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