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ABSTRACT

In this paper, we propose a novel nonparametric approach to reconstruction of three-dimensional (3D) objects
from 2D blurred and noisy observations which is a problem of computational optical sectioning. This approach
is based on an approximate image formation model which takes into account depth varying nature of blur
described by a matrix of shift-invariant 2D point-spread functions (PSF ) of an optical system. The proposed
restoration scheme incorporates the matrix regularized inverse and matrix regularized Wiener inverse algorithms
in combination with a novel spatially adaptive denoising. This technique is based on special statistical rules
for selection of the adaptive size and shape neighbourhood used for the local polynomial approximation of the
2D image intensity. The simulations on a phantom 3D object show efficiency of the developed approach. The
objective result evaluation is presented in terms of quadratic-error criteria.

Keywords: 3D inverse, adaptive denoising, optical sectioning

1. INTRODUCTION

One can see well only the focused areas of a 3D object, observing it in a microscope or another optical device,
while others are seen as blurred. However, these out-of-focus structures are in the field of view and thus obscure
those which are in-focus. Different areas appear in focus by moving the object along the optical axis. The
problem arises as a reconstruction of a true 3D object from a set of 2D observations. A series of images acquired
for different positions of an observed object or focus of a camera is used widely in image processing and computer
vision. The typical areas are the computational optical sectioning,1, 2 estimation of depth from focus or defocus,3

all-in-focus or arbitrary-view image generation,4 etc.

In general, images suffer from degradation due to the out-of-focused areas contributing to the in-focus areas.
For instance, in a process of specimen observation in a microscope there is only one portion that appears in
focus. However, usually a specimen is not flat but 3D structure. Therefore, some portions are out of focus.
Nevertheless, these out-of-focus structures are in the field of view and thus obscure the in-focus plane. In order
to obtain a deblurred 3D image of a specimen, it is common to use a method called optical sectioning. The
microscope is focused at a given focal plane and the image is recorded. This image is an optical slice. Then,
the microscope is refocused and another image is recorded. This process is repeated until the whole specimen is
covered.2 The restoration of the same scene from multiple degraded observations is typical for macro-world also,
which is often classified as a multichannel image restoration problem. Usually, this problem exploits methods
of a single-image restoration to degraded multi-channel images to recover the original scene.4 The 3D optical
sectioning equipped with digital deblurring algorithms is a powerful modern tool for visualization of specimens
in biology, medicine, mineralogy, etc. Computational restoration methods applied to slice images are quite an
efficient and perspective tool.

The 3D PSF is the main factor describing how a point source of light is being distributed laterally and across
the focal planes. It plays a crucial role in image formation and its reconstruction. 3D inverse is a problem of
object restoration from its observations using a known PSF of optical system. It is an ill-posed problem.5 It
means that small perturbations in initial data (observed image and inaccuracy in the used PSF model) result in
large changes in the solution. For solving the deconvolution problem with a given PSF a number of approaches
were proposed since the mid 1970s under various idealizations of the PSF and noise model.

Send correspondence to Dmitriy Paliy. E-mail: dmitriy.paliy@tut.fi



In microscopy there are two approaches to reduce out-of-focus contributions: optical and computational. In
the optical approach a confocal microscope is used that reduces the contribution from the out-of-focus fluores-
cence. The recorded clearer focal plane images are an optical equivalent of a series of microtome slices allowing
a 3D reconstruction of a specimen.

In the computational approach, image processing is applied to process the set of 2D optical slices in order
to reduce the out-of-focus interferences. This method is based on information about the processes of image
formation. The most severe degradation is often caused by diffraction at objective and condenser lenses. This
degradation is modeled by the PSF of the microscope optical system.

Image deconvolution has become an established technique to improve both resolution and signal-to-noise ratio
of serially sectioned three-dimensional images.1 The reconstruction of 3D objects by means of optical sectioning
is very popular in fluorescence microscopy imaging. A number of techniques was proposed for optical sectioning
based on the iterative expectation-maximization approach.2, 6 Using the expectation-maximization formalism,
algorithms for maximum-likelihood image restoration were developed using a depth-variant model for the optical
sectioning microscopy. Theoretical analysis of properties for proposed techniques is an advantage. However, these
methods are efficient but computationally expensive. Another works which exploit iterative inverse schemes, can
be seen also in.7, 8

The iterative solution presented by a combination of the conjugate gradient method with the Tikhonov
regularization is proposed in.1 The conjugate gradient iteration scheme was used considering either Gaussian or
Poisson noise models. For the regularization, the standard Tikhonov method was modified. However, the generic
design of the algorithm allows for more regularization approaches. To determine the regularization parameter,
the generalized cross-validation method is used. Tests produced for both simulated and experimental fluorescence
wide-field data show reliable results.

Linear non-iterative methods for deconvolution of 3D images in computational optical sectioning microscopy
are proposed in.9 The authors consider also Gaussian and Poissonian noise formation models. An approach
using complex-valued wavelet transform to obtain extended depth-of-focus for multi-channel microscopy images
is proposed in.10 However, this method does not take into account the image acquisition model.

Knowledge about image formation is an important issue in the restoration techniques. The PSF of an optical
system as the main factor plays a crucial role. In this paper we assume that the PSF is known a priory. For
example, modeling and estimation of PSF are done in2, 13 for optical system of a microscope or in4 for a photo-
camera. The reconstruction of all-in-focus image from two arbitrarily focused images is proposed in.4 The true
scene is supposed to have the background and foreground regions only. The authors propose a method for PSF
estimation from degraded observed images and use the inverse filter to obtain an original scene. However, the
image formation model does not assume a presence of noise.

In this paper we focus on the noniterative method of reconstruction and generalize the spatially adaptive 2D
deblurring algorithm developed in11 to the 3D imaging. It incorporates the regularized inverse and regularized
Wiener filters. The noise model considered in this paper is Gaussian. The scale-adaptive denoising technique is
used to remove it effectively.

The simulations done for a complex phantom image show the efficiency of the proposed technique.

We begin paper by the problem setting in Section 2. Then, the proposed technique for inversion and denoising
steps is given in Section 3. Finally, in Section 4 we discuss implementation aspects and show simulation results.

2. PROBLEM STATEMENT

Mathematically a variety of image capturing principles can be described by the Fredholm integral of the first
kind in 3D space z(x) =

R
v(x, t)y(t)dt, where x, t ∈ R3, v(t) is a 3D PSF of a system, y(t) is a function of a

real 3D object and z(x) is an observed signal.8, 12 In general, PSF v is varying in all dimensions. A natural
simplification is the assumption that it is shift-invariant which leads to a process formation by a convolution
operation. When noise is involved, the observation model is

z(x) = (v ~ y)(x) + ε(x), (1)



a) b)

Figure 1. 3D object consisted of 5 spheres: a) strata of the object; b) observation of each stratum focusing preciselly at
stratum 1, stratum 2, and stratum 3.

where ”~ ” denotes a 3D convolution operation and ε(x) is a noise.

In the continuous frequency domain the model (1) takes the form:

Z(ω) = V (ω) · Y (ω) + ε(ω), (2)

where Z(ω) = F{z(x)}, ω ∈ R3, i.e. ω = (ω1, ω2, ω3), is a representation of the signal z in the Fourier domain
and F{·} denotes a Fourier transform (FT ), V (ω) = F{v(x)}, Y (ω) = F{y(x)}, ε(ω) = F{ε(x)}.
The assumption that the PSF is shift-invariant in all three dimensions usually does not correspond to reality.

A more natural assumption is that the PSF is shift-invariant in (x1, x2) plane and varying in the third dimension
x3.2, 6, 17 This approach leads to the optical sectioning formalism originated in digital microscopy and astronomy.

According to this technique the optical system is focused at some focal plane and an image is recorded, then
it is focused at another plane and another image is recorded, and so on. The focusing planes may differ from the
planes of interests. Precise focusing is not needed for reconstruction. However, the spatial resolution depends on
a number of recorded images.

Suppose that we wish to reconstruct a 3D image intensity function y(x), x ∈ R3, from its blurred and noisy
observation z(x). In the argument x = (x1, x2, x3) the first two variables x1 and x2 define the pixel’s coordinates
of 2D image obtained from y(x) with the fixed depth coordinate x3. The axe x3 is parallel to the optical axe of
the optical system and perpendicular to the 2D image plane.

We consider the discrete observation model in the following form:

zi(x̃) =
mX
j=1

(vi,j ~ yj)(x̃) + εi(x̃), i = 1, ..., n, (3)

where x̃ ∈ R2, x̃ = (x1, x2), i is a discrete variable used for the depth variable x3, and v = (vi,j) is an n ×m
matrix of the 2D PSFs. PSF vi,j corresponds to the observation of the object slice j from focusing at the
position i. εi is a white zero-mean Gaussian noise with variance σ2i , i = 1, ..., n.

It is required to restore the 3D image (the slices of the object, which is described by y(x̃) = (y1(x̃), ..., ym(x̃)))
from n blurred 2D projections z(x̃) = (z1(x̃), ..., zn(x̃)). Here, m is a number of physical slices of the object
taken into consideration.

Let Zi(eω) be the discrete 2D Fourier transform of zi(x̃), Zi(eω) = F{zi(x̃)}. Here eω ∈ {(ω1, ω2), ωi =
0, 1, ..., ni − 1, i = 1, 2} is the 2D normalized discrete frequency. Then, equation (3) in the frequency domain
can be written as follows: ⎛⎝Z1

...
Zn

⎞⎠ =

⎛⎝ V11 ... V1m
... ... ...
Vn1 ... Vnm

⎞⎠⎛⎝ Y1
...
Ym

⎞⎠+
⎛⎝ ε1

...
εn

⎞⎠ , (4)

where Vij(eω) = F{vij(x̃)}, Yj(eω) = F{yj(x̃)}, and εi(eω) = F{εi(x̃)}.
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from observation 1 from observations 1 and 2 from observations 1, 2, and 3

Figure 2. Example of reconstruction from noise-free observations of the object showed in Fig. 1. First row is the
observations of stratum 1, 2, and 3 consiquently from left to right focusing precisely at each stratum. Second row is the
examples of restoration of the stratum 1 from observation 1, observations 1 and 2, and from all 3 observations consiquently
from left to right.

Finally, the collected 3D observation Z = (Z1, ..., Zn)
T is a set of blurred 2D images. In order to find the

true object Y = (Y1, ..., Ym)
T we need to solve the system of linear equations (4).

We obtain for (4) the following vector-matrix representation defined in the 2D frequency domain:

Z(eω) = V(eω)Y(eω) + ε(eω). (5)

The equations (2) and (5) are similar but the difference is essential. The continuous model (2) is assumed to be
shift-invariant in all three dimensions including x3 particularly. On the contrary, the model (5) is shift-invariant
in the plane ex = (x1, x2) and can be shift-varying in x3.

The method feasibility depends on the properties of the n×m matrix V = (Vij). An ill-posedness of restora-
tion problem arises from small singular values of V(eω) which after inversion would cause noise amplification.
This is what makes the problem of restoration of Y(eω) from Z(eω) ill-posed. Different restoration techniques
cope with it in a different way.

Fig.1 illustrates the setting of the problem. The 3D object consists of 5 spheres. The object slices call strata2

lie in the planes perpendicular to the optical axe. It is assumed that the thickness of the strata is small and
variation of the PSF with respect to the coordinate x3 in one stratum is insignificant. The object in Fig.1 is
discretized to m = 3 strata. In observations of this object one can see clearly only the strata which are in the
focal planes while others are blurred (Fig.1b). The aim is to reconstruct the original strata Fig.1a from their
n = 3 observations Fig.1b.



Figure 3. The proposed restoration scheme includes RI step with adaptive LPA-ICI denoising in order to obtain a
reference signal for the RWI filter.

3. PROPOSED TECHNIQUE

We develop the technique which is a vector-matrix generalization of the regularized inverse (RI) and regularized
Wiener inverse (RWI) adaptive scale deblurring algorithms proposed in.11, 15 The intersection of confidence
intervals (ICI) rule14 is exploited for the adaptive scale filtering of the reconstructed 2D slices of the 3D object
function y(x̃). The algorithm consists of two stages. At the first stage the RI filter and adaptive local polynomial
approximation (LPA) with the ICI rule are used in order to obtain the estimate ŷRI(x̃) exploited at the second
stage as a reference signal. The second stage incorporates the RWI filter and LPA-ICI to obtain the final result
ŷRWI(x̃) (Fig. 3).

3.1. Regularized Inverse
The RI filter is obtained by minimization of the penalized quadratic residual function which for the problem (5)
is given in the form:

J = kZ(eω)−V(eω)Y(eω)k22 + r21 kY(eω)k22 = (6)

=
X
w̃

(Z(eω)−V(eω)Y(eω))H(Z(eω)−V(eω)Y(eω)) + r2RI
X
w̃

YH(eω)Y(eω),
where r2RI is a regularization parameter and ”

H” denotes the Hermitian transpose.

The minimum of J is achieved when ∂J/∂YH = 0. Calculation of this derivative gives the estimate:

bYRI(eω)=(VH(eω)V(eω) + r2RIIm×m)
−1VH(eω)Z(eω), (7)

where Im×m is the m×m identity matrix.

Following the technique developed in11, 15 we introduce the filtered RI estimate as follows:bYRI
h (eω) = Gh(eω) bYRI(eω), (8)

where Gh is a low-pass filter generated by LPA. This filter is the same for all components of the vector bYRI(eω).
Here, h is an important scale-parameter of the filter which is selected adaptively by the ICI rule. In spacial

domain ŷRIh,j(x̃) = F−1
n
Ŷ RI
h,j (eω)o , j = 1, ...,m. The idea and use of the LPA-ICI is described later.

Using formulas (5), (7), (8), and Parseval’s theorem the variance at every point of the estimate ŷRIh,j(x̃),
j = 1, ...,m, is computed as

σ2ŷRIh,j(x̃)
= var{ŷRIh,j(x̃)} =

1

n1n2

X
w̃

(QRI(eω)σ2QH
RI(eω))j,j , j = 1, ...,m. (9)

Here, QRI(eω) is a transfer matrix of (8)
QRI(eω) = Gh(eω)(V(eω)HV(eω) + r2RIIm×m)

−1VH(eω)



and σ2 = diag(σ21, ..., σ
2
n) is a diagonal matrix of the variances of observations z(x̃) = (z1(x̃), ..., zn(x̃)).

The variance of noise for every observation can be different. The variances
³
σ2
ŷRIh,j(x̃)

´
are used in the ICI

rule for the adaptive selection of the scale h.

3.2. Regularized Wiener Inverse
Looking for an optimal linear estimate ŷj(x̃) = (qWI

j,i ~ zi)(x̃), i = 1, ..., n, j = 1, ...,m, of a smoothed signal
yh,j(x̃) = (gh ~ yj)(x̃) we come to the Wiener inverse filter QWI =

¡F{qWI
j,i }

¢
by minimizing criterion function

J = E

½°°°Yh(eω)− bY(eω)°°°2
2

¾
= E

n
kGh(eω)Y(eω)−QWI(eω)Z(eω)k22o .

Solution of ∂J/∂QH
WI = 0 gives us the transfer matrix for the Wiener filter:

QWI = GhYY
HVH(VYYHVH + n1n2σ

2)−1. (10)

Inserting the regularization parameter r2RWI into (10) we obtain the regularized Wiener inverse (RWI) filter:

QRWI = GhYY
HVH(VYYHVH + n1n2r

2
RWIσ

2)−1. (11)

The filtered RWI estimate similarly to the (8) has the following form:bYRWI
h (eω) =QRWI(eω)Z(eω). (12)

In spacial domain ŷRWI
h,j (x̃) = F−1

n
Ŷ RWI
h,j (eω)o , j = 1, ...,m. The variances for the estimate (12) are:

σ2ŷRWI
h,j (x̃) = var{ŷRWI

h,j (x̃)} = 1

n1n2

X
w̃

(QRWI(eω)σ2QH
RWI(eω))j,j , j = 1, ...,m, (13)

and they are used in the following LPA− ICI post-processing.

3.3. LPA-ICI Denoising
The LPA-ICI algorithm is a scale-adaptive denoising technique developed in.11, 14—16 The LPA is a tool for
linear filter design. In particular, the smoothing filter Gh in (8) and (12) is obtained by LPA. This filter is used
with varying scales (window sizes) h.

The ICI rule is the algorithm for the window size selection for every point ex. The idea of this approach
is as follows. The algorithm searches for a largest local vicinity of the point of estimation where the LPA
assumption fits well to the data. The estimates byh,j(x̃), j = 1, ..,m, are calculated for a grid of window sizes
(scales) h ∈ H = {h1, h2, ..., hJ}, where h1 < h2 < ... < hJ . The adaptive scale is defined as the largest h+ of
those windows in the set H which estimate does not differ significantly from the estimators corresponding to the
smaller window sizes. This general idea is implemented as follows. We consider a sequence of confidence intervals
Dk =

hbyhk,j (x̃)− Γσŷhk,j(x̃),byhk,j (x̃) + Γσŷhk,j(x̃)i , k = 1, .., J, where Γ > 0 is a parameter and σŷhk,j(x̃) is a
standard deviation of estimate. The ICI rule can be stated as follows: consider the intersection of the confidence
intervals Ik =

Tk
i=1Di and let k+ be the largest of the indices k for which Ik is non-empty. Then the optimal

scale h+ is defined as h+ = hk+ and, as result, the optimal scale estimate is byh+,j (x̃). The standard deviations
σŷhk,j(x̃) of estimates are computed according to Eq. (9) and (13).

Theoretical analysis produced in18 for 1D case shows that this adaptive scale gives the best possible point-
wise mean-squared error. In practice this means that adaptively, for every pixel, ICI allows the maximum degree
of smoothing, stopping before oversmoothing begins.19

The parameter Γ is a key element of the algorithm as it says when the difference between the estimates is
large or small. Too large value of this parameter leads to signal oversmoothing and too small value leads to
undersmoothing. The reasonable value to preserve a signal and remove noise as mush as possible is somewhere
between.

Selection of Γ can be obtained from some heuristic and theoretical considerations (e.g.11, 14, 15, 20). In this
paper we treat Γ as a fixed design parameter.
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Figure 4. The phantom 3D MRI object used in simulations: a) A subvolume of the true object; b) A corresponding
subvolume of blurred and noisy observations.

4. EXPERIMENTS

4.1. PSF simulation
The knowledge about a PSF and its properties is very important in reconstruction techniques. There is a variety
of commercial products to simulate or to measure a real PSF . We assume that the PSF is given a priori and
has a Gaussian form: v(x) = 1√

2πσx1
exp

³
− x21
2σ2x1

´
· 1√

2πσx2
exp

³
− x22
2σ2x2

´
· 1√

2πσx3
exp

³
− x23
2σ2x3

´
. It is assumed that

standard deviations of the Gaussian PSF in planes perpendicular to optical axe are equal σx1 = σx2 = σxy and
depend on x3. With respect to x3 function v(x) has a constant standard deviation σx3 = σz. So, PSFs used in
(3) are:

vi,j(x1, x2) =
1

2πσ2xy(x3(i)− x3(j))
exp

µ
− x21 + x22
2σ2xy(x3(i)− x3(j))

¶
· 1√
2πσz

exp

µ
−(x3(i)− x3(j))

2

2σ2z

¶
, (14)

where i = 1, ..., n, j = 1, ...,m.

The value of σz is important because it is directly related to the conditioning of the matrix (vi,j), i.e. with
the ability to solve the system of equations (4). Physically, it shows how strong a contribution of the jth stratum
to the observation at ith focal plane is. When σz → 0 the observation zi(ex) consists only of the stratum at focus
yj(ex) (i = j) and there is no need to make an inversion. On the other hand, when σz → ∞ the observations
consist of all strata which are blurred and equally visible. In this case, reconstruction is impossible even in a
noise-free case. In all experiments σz is fixed to the value 15.

In simulations σxy depends on the distance between focal plane i and stratum j as follows:

σxy = k |x3(i)− x3(j)| , (15)

where k > 0 is a coefficient. This model means that the stratum blur is larger for the strata located further from
the plane of focusing.

The PSF s are normalized in such a way that
Pm

j=1

P
x vi,j(ex) = 1.

In practice σz and σxy are usually variable because of imperfection of optics and other physical phenomena.
In this paper, according to (15), we assume that σxy is a constant for a fixed |x3(i)− x3(j)| .



Test A Test B Test C
RMSE PSNR RMSE PSNR RMSE PSNR

RI 0.1180 18.73 0.1376 17.38 0.1032 19.94
RI with LPA− ICI 0.1038 19.85 0.1267 18.18 0.0861 21.50
RWI 0.1035 19.87 0.1272 18.15 0.0864 21.46
RWI with LPA− ICI 0.1010 20.05 0.1238 18.44 0.0849 21.64

Table 1. Average RMSE and PSNR (dB) values given in columns named ’Test A’, ’Test B’, and ’Test C’, obtained for
the proposed technique for Tests A, B, and C, respectively.

4.2. Noise Level
We use a blurred signal-to-noise ratio (BSNR) for evaluation of the level of the noise in experiments:

BSNRi = 10 log10

⎛⎜⎝
°°°Pj(vi,j ~ yj)(x̃)− 1

#

P
x̃

³P
j(vi,j ~ yj)(x̃)

´°°°2
2

n1n2σ2i

⎞⎟⎠ ,

where i = 1, ..., n and j = 1, ...,m.

In estimation and filtering we assume that the level of the noise is unknown and estimated (see algorithms
in21, 22).

4.3. Results
In this section we present simulation results illustrating a performance of the developed technique.

One of the models used in the experiments is shown in Fig.1. A 3D object consists of 5 nonoverlapping
spheres. A simplified discrete model of this object is given by 3 strata shown in Fig.1a. Observations are
produced by focusing the optical system on each stratum Fig.1b. These three 2D observation-images are used
for reconstruction of the images in the three strata. The reconstruction results are given in Fig.2. It is assumed
that the observations are noiseless and the pure inverse procedure is used. It means that no denoising is applied
and only the RI algorithm is used with rRI = 0.

The left image in the second row of Fig.2 shows reconstruction of the stratum 1 from the observations obtained
from a single observation-image corresponding to focusing precisely at the stratum 1 (focal plane 1). Naturally,
this reconstruction is identical to the observation-image shown in the first row of this figure (left). Thus, the
stratum 1 is in focus while the strata 2 and 3 are blurred.

The middle image of the second row shows the reconstruction of the same stratum 1 done from the observations
of strata 1 and 2. It is seen that the interference of planes 2 and 3 is lower in this reconstruction. The right
image of the second row demonstrates the perfect reconstruction of the stratum 1. This result is obtained using
for reconstruction all three observation-images 1, 2, and 3. The experiment confirms that the algorithm gives
perfect reconstruction when sufficient number of observations is available and there is no noise.

A second group of experiments concerns noisy data and demonstrates how a redundancy of observations
allows to filter data and reduce a strong interference of different images.

As a complex phantom we use a 3D body modeling an MRI datascan of a human cranium. This numerical
model is available within MATLAB. The image file mri.tif presents 27 slices of 128×128 cross-section images
of a cranium. We use this model in order to imitate observation data for the considered 3D inverse imaging.
Intensity values are in the range from 0 to 1, yj(x̃) ∈ [0, 1]. It consists of 27 object slices enumerated from 1 to
27, x3(j) = j, j = 1, ..., 27. A corresponding subvolume of the true object is visualized in Fig.4a. A subvolume
of 27 noisy and blurred observations is shown in Fig.4b as they are recorded by focusing one after another at
each object slice.



We set the additive noise variances σ2i in such a way that BSNR ' 40 dB, which is significant level of the
noise for this sort of problems. It is strongly visible on the reconstructed by RI technique strata (e.g. Fig.5c).
The adaptive LPA− ICI technique is exploited to remove it.

The directional LPA convolution kernels of the zero-order are applied for the filters in (8) and (12). We use
8 sectorial directional kernels with the window lengths defined by the set H1 = {1, 3, 5, 9, 17} and the window
width defined by the set H2 = {1, 1, 1, 2, 2}.
The developed algorithm can be used with and without the LPA− ICI filtering. Regularization parameters

for the RI and RWI algorithms without LPA− ICI are fixed as follows: rRI = 0.00001 and rRWI = 0.006. For
the RI and RWI algorithms with the LPA−ICI filtering we use smaller values of the rugularization parameters
equal to rRI/6 and rRWI/6.

In all cases the parameter Γ is fixed to be Γ = 1 and Γ = 2 for RI and RWI algorithms, respectively.

The criteria used to evaluate the algorithm performance are the square root mean squares error (RMSE)

RMSEj =

s
1

n1n2

X
x̃

(yj(x̃)− ŷj(x̃))
2,

and peak signal-to-noise ratio (PSNR)

PSNRj = 10 log10

⎛⎜⎝ maxx̃(yj(x̃))2

1

n1n2

P
x̃ (yj(x̃)− ŷj(x̃))

2

⎞⎟⎠ ,
where j numbers the reconstructed image in the strata.

The 2D strata yj(x̃) of the trueMRI object are shown in Fig.5a for j = 1+4k, where4 = 3 and k = 0, ..., 8,
ordered from the left to right and top to bottom. The 2D blurred noisy observations zi(x̃) of these strata are
illustrated in Fig.5b, by focusing precisely at positions j, i.e. i = j.

In experiments we run the following tests in order to reconstruct the true object strata shown in Fig.5a:

Test A: Let the observations zi(x̃) consist of 9 strata yj(x̃), j = 1 + 4k, where 4 = 3 and k = 0, ..., 8, of
the MRI object by focusing precisely at the positions j, i.e. i = j. Applying the proposed technique, we
reconstruct this object at positions j. The results of the RI reconstruction only are shown in Fig.5c. The
slices are reconstructed and the object is clearly visible but the noise is significant. The average RMSE
and PSNR values over these 9 images are given in Table 1 in the ’Test A’ column and row ’RI’.

The adaptive LPA− ICI denoising technique significantly improves the quality of reconstruction visually
and numerically. It can be seen in Fig.5d where the images after the RWI reconstruction with the LPA−
ICI filtering are shown. The level of noise is less and smaller details are better preserved. The average
results over 9 images of numerical evaluations are given in Table 1 in the ’Test A’ column and ’RWI with
LPA− ICI’ row. It illustrates a successive performance improvement caused by the LPA− ICI filtering
as well as using the RWI instead of the simpler RI algorithm.

Test B: In practice, a real object (a scene of observation) consists of infinite number of physical strata and
observer can register only a part of them. Thus, let us assume that the positions i of observations zi(x̃)
are shifted with respect to the positions of the targeted strata. The coordinates of the observations are
given as i = 14 + 4k, where 4 = 3 and k = 0, ..., 8. These observations are used for reconstruction of
the targeted strata yj(x̃), j = 1 +4k, shown in Fig.5a. It means that the strata yj(x̃) at the positions
j = 1, 4, .., 10 are always out of focus. The result of restoration by RWI with the LPA− ICI denoising is
shown in Fig.5e and average numerical criteria values are given in Table 1 column ’Test B’. It is seen that
one part of the object, which is covered by observation, is well reconstructed (Fig.5e bottom-right image)
while other has a lot of image artefacts (Fig.5e top-left image).



Test C: In the last test we show the influence of a larger number of observations on the quality of restoration.
In this test we assume that the true object consists of 9 strata the same as in the Test A. However, the
number of observations is larger. The coordinates of the observations are i = 1 + 4k, where 4 = 1.5
and k = 0, ..., 17. The true strata yj(x̃) at the positions j = 1 +4k, where 4 = 3 and k = 0, ..., 8, are
reconstructed by the proposed technique. The result of reconstruction by RWI with LPA− ICI is shown
in Fig.5f. The quality by both visual and numerical evaluations is significantly better then in the previous
tests. It is seen that the images consist much less artefacts then obtained in Test A.

The average results for RMSEi and PSNRi values over 9 reconstructed images are presented in Table 1.
The rows RI and RWI are given for the algorithms without LPA−ICI filtering. The rows RI with LPA−ICI
and RWI with LPA−ICI are given for the algorithms where LPA−ICI filtering is used. It is clearly seen that
RWI with LPA−ICI always performs better then others and improvement over RI is approximately 1.2-1.4dB.
The numerical improvement of the RWI and RWI with LPA−ICI versus RI algorithms is negligible. However,
visually the RWI with the LPA− ICI filtering always results in the improved imaging.

Overall, the RWI algorithm always gives the best results. The images are well-denoised and the edges are
better preserved. However, some minor artefacts, produced by neighboring strata, can be noticed.

A MATLAB implementation of the developed algorithms is available at http://www.cs.tut.fi/~lasip/.

5. CONCLUSIONS

Computational sectioning imaging is known to be efficient for three dimensional inverse imaging. However, the
ill-conditioning of the PSF results in a high sensitivity of the inverse with respect to even small noises and
disturbance. In this paper we propose a novel technique with a good potential for high-resolution 3D image
reconstruction and efficient noise suppression. The technique is a multi-channel generalization of the algorithms
for 2D inverse imaging developed in.11 Efficient deconvolution algorithms in combination with a point-wise
adaptive denoising make this approach powerful tool for the visualization of 3D objects in microscopy, astronomy,
or in everyday digital photo-images.
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a) b)

c) d)

e) f)

Figure 5. The reconstruction of the true MRI object: a) True object strata (j=1,4,...,26); b) Observations made by
focusing at the positions of the true strata given in (a); c) RI reconstruction of (a) using observations (b); d) RWI
reconsruction with LPA− ICI denoising of (a) using observations (b) (Test A); e) RWI reconsruction with LPA− ICI
denoising of the strata (a) when the observations are made at shifted positions (Test B); f) RWI reconsruction with
LPA − ICI denoising of the object strata (a) when observations are made by focusing at a larger number of positions
then given in (b) (Test C).


