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Abstract

While sparse grids allow one to tackle problems in higher dimensionalities
than possible for standard grid-based discretizations, real-world applications
often come along with requirements or restrictions which enforce problem-
dependent adaptations of the standard sparse grid technique. Consider, for
example, interpolations where the function values at grid points are obtained
via time-consuming numerical simulations. Then, only very few grid points
can be spent; classical convergence might be out of reach. Another hurdle is
that real-world problems often do not meet the smoothness requirements of
the sparse grid method. Thus, the standard approach has to be fine-tuned
to the problem at hand, especially in higher-dimensional settings.
Therefore, a suitable choice of basis functions can be required, as well as

criteria for problem-adapted refinement. Fortunately, and in contrast to full
grids, the hierarchical basis formulation of the direct sparse grid approach
conveniently provides a reasonable criterion for spatially adaptive refinement
practically for free. This can serve as a starting point to develop suitable
modifications.
We show several problems stemming from different fields of application

and demonstrate modifications of the standard sparse grid approach. They
enable one to cope with the properties and requirements of the corresponding
problem and can serve as examples for similar challenges.
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1 Introduction

Sparse grids allow us to cope with the curse of dimensionality, at least to some extent.
The term “sparse grids” has been coined for the solution of partial differential equations
[28], and sparse grids have meanwhile been applied to various problems, see, for example,
the survey in [4]. More recent work includes stochastic and non-stochastic partial differ-
ential equations in various settings [25, 11, 27, 3], as well as applications in economics
[22, 18], regression [15, 12, 21], classification [14, 6, 21], fuzzy modeling [19], and more.
For sufficiently smooth functions, sparse grids enable one to reduce the number of

grid points by orders of magnitude from O((2n)d) for full grids to only O(2nnd−1), while
keeping a similar accuracy as in the full grid case. To obtain these bounds, only a certain
degree of smoothness is required (the mixed second derivatives have to be bounded), but
no other knowledge about the problem at hand. Note, that the constants in the Landau-
notation depend on the application.
To be able to deal with problems that do not meet the smoothness requirement, or

to further reduce the number of grid points for functions that exhibit a low effective
dimensionality or that contain regions of small and large variation, adaptivity can be
employed. To this end, the hierarchical basis directly provides a straightforward indicator
where to refine in general. Whereas this is typically very good to start with, the success
for real-world applications often depends on a suitable choice of the basis, the criterion
for adaptive refinement, and the selection of refinement parameters. Therefore, available
knowledge about the problem should be used wherever possible.
To illustrate this, we picked a few applications which nicely demonstrate several ap-

proaches for adaptive refinement, and we give hints what to look for and consider when
thinking about adapting to a problem at hand.

2 Sparse Grids

To briefly recall the most important properties and to clarify our notation, we describe
the basic principles of sparse grids in the following; see, e.g., [4, 21] for further details.
Sparse grids are based on a hierarchical (and thus inherently incremental and adaptive)
formulation of the one-dimensional basis which is then extended to the d-dimensional
setting via a tensor product approach.
We consider high-dimensional piecewise d-linear functions fN : [0, 1]d → R (which are

defined on an equidistant mesh and scaled to the unit-hypercube) as a weighted sum of
N basis functions,

fN (~x) =

N
∑

i=1

αiϕi(~x) . (1)

We therefore derive one-dimensional basis functions ϕl,i, depending on a level l and
an index i, out of the reference hat function ϕ(x) := max(1 − |x|, 0) via translation
and scaling as ϕl,i(x) := ϕ(2lx − i). The hierarchical basis for a certain level n with
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mesh-width hn = 2−n is then

Φn :=
{

ϕl,i(x) : i = 1, . . . , 2l, i odd, 1 ≤ l ≤ n
}

, (2)

omitting even-indexed basis functions on each level, see Fig. 1 (left) for n = 3. If we
denote ~l and ~i as multi-indices of levels and indices for a certain basis function, we
can then write d-dimensional basis functions ϕ~l,~i

as a product of the respective one-
dimensional ones,

ϕ~l,~i
(~x) :=

d
∏

k=1

ϕlk,ik(xk) ,

obtaining piecewise d-linear basis functions. They are centered at grid points ~x~l,~i =

(i12
l1 , . . . , id2

ld), and |~l|1 denotes the classical l1 norm for vectors, i.e. the sum of the
one-dimensional levels.
In higher-dimensional settings, we obtain hierarchical increments (function spaces)

W~l
for which the grid points are the Cartesian product of the one-dimensional ones

on the respective one-dimensional levels. We denote the corresponding basis Φ~l
, i.e.

span(Φ~l
) = W~l

. Figure 1 (middle) shows the grids of the two-dimensional hierarchical
increments W~l

up to level 3 in each dimension. Note that in each W~l
, all basis functions

have supports with piecewise disjoint interiors.

.
x1,1

.

.

x2,1 x2,3

x3,1 x3,3 x3,5 x3,7

ϕ1,1

ϕ2,1 ϕ2,3

ϕ3,1 ϕ3,3 ϕ3,5 ϕ3,7

l =1

l =3

l =2

Figure 1: One-dimensional basis functions up to level 3 (left), and tableau of hierarchical
increments W~l

up to level 3 in both dimensions (middle). Leaving out the
grayed-out W~l

, we obtain the sparse grid of level 3 (right).

The hierarchical representation now allows one to select only those subspaces that
contribute most to the overall solution. This can be done by an a priori selection (see
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[4] for details). We then obtain a sparse grid space such as

V (1)
n :=

⊕

|~l|1≤n+d−1

W~l
,

which in this case is optimized with respect to both the L2-norm and the maximum-
norm. In the example in Fig. 1, we can neglect the gray W~l

for n = 3, which leads
to the regular (non adaptive) sparse grid in Fig. 1 (right). To this end, the function
f under consideration has to be sufficiently smooth, i.e., the mixed second derivatives
∣

∣

∣D
~2f

∣

∣

∣ :=
∣

∣

∣

∂2d

∂x2

1
···∂x2

d

f
∣

∣

∣ have to be bounded.

3 Adaptivity

A straightforward possibility to adapt to a problem at hand is to refine by adding new
subspaces, weakening the diagonal cut-off in the subspace scheme. Adding a new sub-
space W~l

in an incremental way requires that all backward neighbors, i.e., all subspaces

W~l′
with ~l′ ≤ ~l (componentwise comparison of multi-indices), have already been included

in the current set of subspaces. As this refinement treads all grid points with respect
to a single dimension in a uniform way, this is referred to as dimensionally adaptive
refinement. Note that this corresponds to the adaptive refinement in the context of the
combination technique [16].
To determine where to refine, one can consider all subspaces that can be added next

(for which all the backward neighbors exist) and add the one which reduces the error
most (based on a suitable error measure). Unfortunately, this is infeasible in many
applications, such as settings where function values are costly to obtain or where PDEs
have to be solved: too many grid points which will quite likely never be used have to
be examined. A frequently used alternative is to consider all current subspaces that can
still be refined. The one which contributes most to the error is identified and refined by
creating all the missing direct forward neighbors (incrementing the level in one of the
dimensions each). This approach typically reduces the computational effort significantly.
When working in the direct, hierarchical sparse grid basis, the same approaches can be

applied. But, in contrast to the combination technique, single grid points can be easily
refined, and spatial (local) adaptivity can be employed. New basis functions just extend
the current basis, and no side-effects such as hanging nodes have to be considered. In the
d-dimensional hierarchical structure, a grid point has 2d children and up to d parents.
The 2d children of a grid point ~x~l,~i are {~x~̃

l,
~̃
i
: l̃k = lk + 1, ĩk = ik ± 1, l̃t = lt, ĩt = it, t 6=

k, k = 1, . . . , d}. Refinable grid points (or leaves) in the hierarchical structure are all
those grid points for which at least one child does not exist yet. New direct candidates
are all grid points for which all the parents are contained in the current grid, similar to
the subspaces in the dimensionally adaptive refinement.
Considering the refinement of single grid points, it is even more obvious that it is

infeasible to look at all new candidates: already in the one-dimensional case there are as
many grid points on the next level as there are in the current grid—and they all have to
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D. Pflüger, Spatially Adaptive Refinement 5

be considered. Solving a PDE, e.g., this would require to solve the PDE N times for N
new candidates to select the one with the lowest error. Therefore, the standard strategy
is to consider all refinable grid points of the current grid (for which all information
has already been obtained), and refine the most promising one(s) by adding all missing
children.
Note that for conventional algorithms working on sparse grids, all hierarchical ances-

tors of each grid point have to exist. To keep a grid consistent, all missing parents of
new grid points have to be created recursively. This can result in significantly more than
2d grid points to be created per refinement, see Fig. 2 for an example.

Figure 2: Starting with a regular grid of level 2 (left), we refine one grid point (em-
phasized) by creating all children in the hierarchical tree of basis functions
(middle), and we repeat this once more. To keep the grid consistent, two
missing parents have to be created (right).

The hierarchical basis, in contrast to the nodal basis, inherently provides a simple,
though effective criterion of where to refine to minimize the L2-norm of the error. Con-

sider a sparse grid interpolant fN ∈ V
(1)
n , fN (~x) =

∑

|~l|1≤n+d−1

∑

ϕ~l,~i
∈Φ~l

α~l,~iϕ~l,~i
(~x), with

surplusses (hierarchical coefficients) α~l,~i. Recall, that the smoothness requirement which

we impose at f is that
∣

∣

∣
D

~2f
∣

∣

∣
has to be bounded. The surplusses can then be expressed

via their integral representation as

α~l,~i =





d
∏

j=1

−hj
2





∫

Ωd

ϕ~l,~i
(~x)D

~2f d~x ,

see [4] for details.
Two important lessons can be learned: First, both the product of the mesh-widths hj

and the size and shape of the basis function ϕ~l,~i
depend only on ~l and not on the index

of the grid point. For each grid point on the same level (with constant |~l|1), the absolute

value of the surplus depends mainly on |D
~2f | within the support of the corresponding

basis function. The more f varies on the support, the higher in general the absolute value
of the surplus. Thus, the absolute value of the hierarchical coefficient can directly be
used as a criterion for adaptive refinement, assuming a similar level sum for all refinement
candidates. The fact that the hierarchical basis provides a cheap, simple criterion for

c© Springer 2012. Published in J. Garcke and M. Griebel (ed.), Sparse Grids and
Applications of Lecture Notes in Computational Science and Engineering, p. 243262.
Springer, Berlin Heidelberg, October 2012
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refinement and does not necessitate to derive error estimators depending on the problem
at hand, is one of the main advantages of the hierarchical approach. Note that, of course,
there is no guarantee that this works in every setting, and that each and every criterion
of where to refine can be fooled.
Second, D

~2f can be assumed to be locally constant in the case of convergence. Then
the contribution of a basis function decreases by 1/4 when increasing the level by one
in one dimension. The surplus can thus be used to check for convergence with re-
spect to the discretization level or to detect unwanted noise in the function values
[21]. For the interpolation of the normalized product of one-dimensional parabolas
f(~x) := 4d

∏d
k=1(1 − xk)xk, this decay of the surplusses can be observed right from

the second level. This is the reason why this function is frequently used to test and
illustrate sparse grid interpolation.

4 Problem-Awareness

Refining grid points in the hierarchical basis, an incremental method is obtained which
is equipped with a simple criterion and adapts locally to the problem at hand. But
experience shows that in real-world settings a mere surplus-based refinement might not
be sufficient to solve a problem with sufficient accuracy, and convergence might even
be out of reach. The reasons for this are manifold and typically caused by the fact
that the number of grid points is limited. For example, a problem with low effective
dimensionality is posed in a too high-dimensional setting and the number of grid points
grows too fast. Or the number of grid points that can be spent is restricted because it
is very expensive to obtain or store function evaluations: each grid point might require
an expensive simulation, or the memory requirements for storing a whole 3d simulation
result at each grid point might be too high. There, the number of grid points that can
be spent is severely limited. Furthermore, the problem itself could impose additional
requirements to the sparse grid function.
In all these cases, the standard adaptive sparse grid approach has to be adapted to

the problem at hand. In the following, we show some problems and strategies to give
a start even if no additional knowledge about the problem is available. Ingredients
are a suitable choice of the one-dimensional basis functions, threshold-based refinement,
coarsening, weighted adaptivity, and trading off broad against steep refinement. But
first, let us comment on the treatment of the boundary of the sparse grid domain Ω.
So far, we have only considered functions that are zero on the domain’s boundary

δΩ. To allow for non-zero values on the boundary, usually additional grid points located
directly on δΩ are introduced. The most common approach is to spend two more degrees
of freedom in the one-dimensional hierarchical scheme for the grid on level 1 (which up
to now only used ϕ1,1), namely the basis functions with level 0 and indices 0 and 1. This
leads in the d-dimensional case to 3d unknowns for the initial grid and introduces an
exponential dependency on the dimensionality that is significant for practical computa-
tions. For a problem in 100 dimensions, we could not even start computing the solution
even if there was only one relevant dimension.

c© Springer 2012. Published in J. Garcke and M. Griebel (ed.), Sparse Grids and
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Therefore, the grid points on the boundary should be omitted wherever possible.
Instead, the basis functions adjacent to the boundary have to be modified. A good
choice is

ϕl,i(x) :=































1 if l = 1 ∧ i = 1 ,
{

2− 2l · x if x ∈
[

0, 1
2l−1

]

0 else

}

if l > 1 ∧ i = 1 ,
{

2l · x+ 1− i if x ∈
[

1− 1
2l−1

, 1
]

0 else

}

if l > 1 ∧ i = 2l − 1 ,

ϕ
(

x · 2l − i
)

else

for the one-dimensional basis functions, extrapolating linearly towards the boundary
[21, 20, 6], see Fig. 3 (left). This allows to start with only O(d) basis functions (one
center point and one pair of points for probing in each coordinate direction); a suitable
refinement will then create grid points where it is really necessary. This approach can
be similarly applied to other types of basis functions, such as piecewise polynomial ones,
B-splines or (pre-)wavelets, see [21] for details.

.
x1,1

.

.

x2,1 x2,3

x3,1 x3,3 x3,5 x3,7

ϕ1,1

ϕ2,1 ϕ2,3

ϕ3,1
ϕ3,3 ϕ3,5

ϕ3,7

l =1

l =3

l =2

l1=1 l1=2 l1=3 l1

l2=1

l2=2

l2=3

l2

f{0} f{1}(x1)

f{1,2}(x1,x2)f{2}(x2)

Figure 3: The classical one-dimensional hierarchical hat basis functions with boundary
basis functions on level 0, dashed (left) and the modified basis functions (right)

There is an additional advantage of starting with a constant basis function on the
first level. This allows for anchored ANOVA-style decompositions, representing a d-
dimensional function f as

f(x1 . . . xd) = f{0} +
∑

i

f{i}(xi) +
∑

i<j

f{i,j}(xi, xj) + . . .+ f{1,...,d}(x1 . . . xd) ,

anchored at the grid point ~x~1,~1 on the first level. Figure 3 (right) illustrates the decom-
position in terms of subspaces in two dimensions. If it can be identified which ANOVA

c© Springer 2012. Published in J. Garcke and M. Griebel (ed.), Sparse Grids and
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components are important for a certain problem, then refinement can be restricted to
create only grid points belonging to the respective subspaces. The identification could
be analytically, or even empirically by sampling the function on a sparse grid with
sufficiently high level, identifying the ANOVA components based on the sizes of their
surplusses, and then coarsening the grid by omitting all grid points belonging to unim-
portant ANOVA components.

5 Examples and Strategies

As several of our examples focus on the approximation of high-dimensional functions
based on noise-prone data sets, we start with a description of sparse-grid-based data
mining. The other examples do not require an extra introduction. Please note, that
our aim is not to cover the examples in detail and to full extent, but rather to describe
approaches to and strategies for adaptive refinement which have shown to be of relevance
in plenty of settings.
Two prominent and related tasks in data mining are classification and regression,

both of which aim to generalize from known data to predict a target property for new,
previously unknown data. Thus, we start with a set S of m data points ~xj ∈ R

d of which
we know some target value yj ∈ K in the d-dimensional feature space,

S =
{

(~xj , yj) ∈ R
d ×K

}

j=1,...,m
.

To be able to learn and generalize, we assume that we obtained S by a random and noise-
prone sampling of an unknown function f which we aim to reconstruct. This function
will then allow us to predict a target value at new locations ~x. As we are dealing with
finite data, we can scale in the following to the domain [0, 1]d.

For the task of binary classification, think of a bank discriminating potential customers
into creditworthy and non-creditworthy, or a production facility predicting the faultiness
of products based on standard measurements. Thus, we use two distinct target values,
K = {−1,+1}. Nevertheless, we learn a continuous function f and then check whether
the function value is negative or not. This way, the absolute function value provides a
measure of confidence in our prediction.
For the task of regression, arbitrary real values are allowed, K = R. An example,

which we will use later on, is the prediction of a certain physical property of galaxies
which is costly and difficult to obtain. Thus, learning f from the observations that have
already been obtained with a lot of effort allows us to predict this property for new
galaxies.

We restrict ourselves to reconstructions fN of f in some sparse grid space V
(1)
n . To

obtain a unique fN and to be able to deal with noise, we solve the regularized least
squares problem

fN
!
= argmin

fN∈VN





1

m

m
∑

j=1

(yj − fN (~xj))
2 + λ

N
∑

k=1

α2
k



 , (3)

c© Springer 2012. Published in J. Garcke and M. Griebel (ed.), Sparse Grids and
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see [21, 14] and the references cited therein for further details. On the one hand, we
ensure closeness to our training data, minimizing the mean square error (MSE) on it.
On the other hand, we incorporate the smoothness assumption in data mining, which
states that close data points are very likely to have a similar function value, by en-
forcing some degree of smoothness of fN and preventing oscillations. Note that work-
ing in the hierarchical basis allows us to use an unconventional regularization func-
tional: in the piecewise linear hierarchical setting without grid points on the bound-
ary,

∑N
k=1 α

2
k corresponds to the squared Sobolev norm ‖f‖H1

mix

for normalized basis

functions ϕ̃~l,~i
(~x) :=

√

2−|~l|1−dϕ~l,~i
(~x) and is thus well-suited for our choice of basis func-

tions [21], i.e.,

‖f‖2
H1

mix

:= ‖
∂d

∂x1, . . . , ∂xd
f‖2L2 =

N
∑

k=1

α2
k .

The trade-off between error and smoothness can be influenced by a good choice of the
regularization operator λ; for a given data set this can be achieved via cross-validation
[2], for example. Note that we follow a general approach: other classification methods
can be formulated the same way choosing different error and smoothness terms [9].
Minimizing (3), we obtain a system of linear equations

(

1

m
BBT + λI

)

~α =
1

m
B~y , (4)

the solution of which is the coefficient vector ~α of fN . The identity matrix I stems from
the smoothness term; the N ×m and m×N matrices B and BT , bij = ϕi(~xj), and the
vector ~y of the target values yi from the error term.
The main advantage of the mesh-based sparse grid approach is that the resulting

algorithms scale only linearly in the number of training data points—in contrast to most
classical, data-centered approaches which scale typically at least quadratically or even
worse. Thus, almost arbitrary amounts of data can be dealt with.

5.0.1 Straightforward Adaptive Refinement

The first example demonstrates that mere dimensional adaptivity, refining and adding
whole subspaces, can be insufficient: in contrast to what is known from the solution
of PDEs, spending too many grid points in wrong regions can lead to a higher overall
error, as this allows the function to adapt too well to the noise in the training data
(overfitting). The example is a two-dimensional artificial classification task, taken from
[23]. It consists of two data sets, one for training and one for testing, and has been
constructed to comprise 8% of error. It shows typical characteristics of real-world data
sets, as it is neither linearly separable nor very complicated. Figure 4 shows the two
data sets as well as the best separation manifold obtained by an adaptive sparse grid.
Already eight refinement steps are enough to obtain an excellent accuracy of 91.5% on
the test data—out of a maximum of 92%.
It can be seen that the separation boundary is resolved better in the central, critical

region than in regions where very little information (data points) about the underlying

c© Springer 2012. Published in J. Garcke and M. Griebel (ed.), Sparse Grids and
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Figure 4: Ripley data set: 250 data points for training (left), 1000 to test on (middle),
and the classification areas together with the corresponding sparse grid (right).

function is given. This is due to the adaptive refinement. Interestingly, after only eight
refinements, overfitting starts to take over and the accuracy deteriorates. For this data
set a mere dimension-adaptive refinement leads to a lower accuracy: whereas more grid
points towards the center of the feature space are necessary to improve, spending the
same discretization level on the whole horizontal main axis of the grid leads to local
overfitting towards the boundary and to higher errors.

5.0.2 Criterion for Adaptive Refinement and Dimensional Adaptivity

The second example is a classical, artificial 10-dimensional data set, the Friedman1 data
set, obtained by a random sampling of an analytical function, enriched by normally
distributed noise [10]:

f(x1, . . . , x10) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ǫ . (5)

All ten variables x1, . . . , x10 are in [0, 1], thus we do not have to normalize this data set.
The function value depends only on the first five variables, the other five variables serve
as noise. The additional noise term ǫ is normally distributed, N (0, 1). We generate data
sets uniformly distributed in Ω with 90,000 data points for training and 10,000 each for
validation and testing.
As we are dealing with large data sets, the choice of the regularization parameter λ

is uncritical, and the focus can be directly put on minimizing the MSE to reduce the
number of grid points further. We therefore modify our criterion for adaptive refinement
to target the contribution of a basis function to the squared error. At each point ~xi of
the training data, the local error can be computed as

ei = yi − fN (~xi) = yi −
N
∑

j=1

ϕj(~xi)αj . (6)

The contribution of a certain basis function ϕj to fN (~xi) and thus to ei depends both
on its function value ϕj(~xi) and its coefficient αj . To preserve a feasible computational

c© Springer 2012. Published in J. Garcke and M. Griebel (ed.), Sparse Grids and
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complexity, we presume
|ϕj(~xi)αje

2
i | (7)

as a simplified measure for ϕj ’s share in the squared local error e2i . Accumulating them
for all ~xi results in the total contribution

cj :=

m
∑

i=1

∣

∣ϕj(~xi)αje
2
i

∣

∣ (8)

of basis function ϕj . Note that already the mere surplus-based criterion works very well.
Slight additional improvements can be made in terms of the number of grid points that

are required, by selecting a suitable refinement strategy, identifying and restricting to the
relevant ANOVA terms, and choosing the right basis functions (piecewise polynomials
or B-splines); see [21]. Using a good choice, we obtain excellent results, outperforming
other techniques [12] and just being matched by the dimensionally adaptive combination
technique [13], see Tab. 1.

sparse grids

data set regular adaptive opticom opticom-dim-adapt SVM MARS

Friedman1 0.990 0.976 1.340 1.035 1.148 1.205

Table 1: MSE for the Friedman1 data set for different approaches.

Of course, we are dealing with an idealistic setting here: the points to train on are
uniformly distributed on the whole domain, and we have plenty of information about
the underlying function due to the number of training data. Regular and adaptive
sparse grids match each other, apart from the number of grid points (and thus the
computational effort that has to be spent).
Furthermore, this example nicely shows that spatially adaptive refinement provides

dimensional adaptivity for free. Let Pi,j : [0, 1]
d → [0, 1]2, (x1, . . . , xd) 7→ (xi, xj) denote

the projections of grid points onto the coordinate planes. It can be clearly seen in Fig. 5
that most grid points are spent in the joint dimensions x1 and x2 as they correlate most.
In contrast, no grid points but those on the second level are wasted in the irrelevant
dimensions x5, . . . , x10: the grid points on the second level are required to probe in these
dimensions.

5.0.3 Strategies for Adaptive Refinement

Our third example demonstrates different strategies for refinement. It is a real-world
data set from astrophysics, targeting the estimation of the redshift of galaxies. The
cosmological redshift of a galaxy is related to its distance from earth, see [21] for details.
Whereas spectroscopic measurements provide accurate data but are difficult to obtain,
estimates based on photometric data are cheap but usually less accurate, leading to a

c© Springer 2012. Published in J. Garcke and M. Griebel (ed.), Sparse Grids and
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Figure 5: Grid projections for the first and last four dimensions each. Most correlation
can be observed for x1 and x2, whereas no additional grid points are spent in
the irrelevant dimensions.

higher amount of uncertainty in the data collected. This raises the question whether
it is possible to estimate the redshift of galaxies using photometric measurements, and
how well one can generalize from known data (both photometric and spectroscopic).
The Sloan Digital Sky Survey data base in its release 5 [1] provides data for more

than 430,000 galaxies, out of which we take 60,000 for testing. This time, the data is
not uniformly distributed, but rather on the joint diagonal of the (normalized) domain.
Therefore, the use of a suitable strategy of how many grid points are to be refined per
refinement step is of importance.
This results in different numbers of grid points per refinement step, see Fig. 6. Refining

a certain ratio of (refinable) grid points leads to an exponential increase in the grid size.
On the other hand, refining a low, fixed number of grid points per step results in almost
a linear increase in the number of grid points. Note that we employ the same surplus
criterion for adaptive refinement as before.
The different strategies effect the behavior of the error. To examine this, we train

for different choices on a subset of 60,000 data points. Figure 7 shows the MSE on the
test data. It can be seen that the choice of the amount of grid points to refine per
step significantly impacts the performance. Refining too many grid points at once, the
problem cannot be explored well enough before overfitting starts. The four strategies
which are refining a certain percentage of grid points at once exhibit the highest minimal
error rates. On the other hand, refining too few grid points per step results in an
adaptivity which is too greedy. The best results are achieved refining constantly 100 or
200 grid points per refinement step.
The choice of a good trade-off between greedy and broad refinement depends, of course,

on the data to train on. Working on huge amounts of data this can be determined, as
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Figure 6: The growth of the number of grid points for different strategies of how many
grid points are to be refined per refinement step.
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Figure 7: MSE on the test data for different strategies of how many grid points are to be
refined per refinement step. It can be seen that obtaining a low error depends
on a suitable choice.
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Method σrms

CWW [8] 0.0666
Bruzual-Charlot [8] 0.0552
Interpolated spectra [8] 0.0451
1rst-nearest neighbors [8] 0.0365
ClassX [24] 0.0340
Polynomial fit [8] 0.0318
SVMs [26] 0.027
Kd-tree [8] 0.0254
Adaptive sparse grids 0.0220

Table 2: Comparison of the root mean square error for photometric redshift estimation,
obtained from several studies on different versions of the SDSS data set.

in the example above, for a smaller validation subset. If we train on the whole data set,
other methods can be outperformed, see Tab. 2 for the root mean square error (RMSE).
This is mainly due to the fact that conventional, data-centered methods have to restrict
themselves to smaller subsets of the data. Note that the whole data set can really be
dealt with in reasonable time if the whole power of current commodity computers is
exploited; see [17] for the efficient parallelization on a hybrid system with both multi
cores and GPUs.

5.0.4 Choice of Basis Functions

The next example requires a special choice of basis functions. The task is to determine
the price of an early exercise option on d stocks Si. The holder has to determine at any
early exercise time whether to exercise the option or not. He or she will exercise if the
current payoff is higher than what can be expected if further holding onto the option,
so if

P (~S(ti), ti) ≥ E

[

V (~S(ti+1), ti+1) | ~S(ti), ti
]

, .

Typically, nested Monte Carlo (MC) simulations are performed to simulate the op-
tion and to determine the expectation value for each simulation and each time step.
Fortunately, the computationally expensive nesting can be avoided by a least squares
Monte Carlo simulation [7], obtaining the expectation values for all simulations at each
time-step by solving a regression problem; see [21] for details.
This setting is challenging for sparse grids as the data, obtained by MC simulations, is

noisy, clustered, and only little information is available towards the domain’s boundary,
see Fig. 8 for a two-dimensional example. This does not fit well with the local support
of the basis functions, leading to wiggles at the boundary. Furthermore, it is desirable
in the context of option pricing to obtain functions which are continuously differentiable
and which have zero curvature (second derivatives) at the boundary.
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Figure 8: Data set obtained by MC simulations for a two-dimensional basket option.

This task can successfully be solved using modified basis functions which adapt to the
problem very well. Here, B-splines of a certain degree p are employed, see Fig. 9 (left).
They are then modified towards the boundary (right) to avoid to spend unnecessary
degrees of freedom where little or no information is available. Additionally, the boundary
modification ensures zero curvature at the boundary. Furthermore, using B-splines of
degree p guarantees p− 1 times continuously differentiable functions. The disadvantage
of this choice is that basis functions within the same level overlap. Thus, sparse grid
algorithms such as function evaluations become much more expensive.
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Figure 9: B-spline construction (left) and modified B-splines of degree p = 3 (right).

Figure 10 shows the regressed function for a basket of two stocks using a sparse grid
of level 6 and B-spline basis functions of degree 3 and 7. Whereas for p = 3 still some
artifacts can be observed, the function for p = 7 is nearly symmetric (the parameters
for both stocks S1 and S2 are the same) and expresses the training data very well. Note
that it shows a reasonable behavior even in regions where there are no training data
points at all, due to the less local support of the basis functions. For high degrees, only
few typical sparse grid artifacts can be observed. In contrast, often narrow bumps or
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dips occur for small degrees, which are caused by long basis functions.
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Figure 10: Regressed function for B-splines of degree 3 (left) and 7 (right).

If the dynamics of the underlying stocks do not exhibit too high variance, then ex-
cellent numerical results can be obtained for up to 8-dimensional options; see [21] for
exact results and comparisons. Note that the choice of the basis fulfills additionally the
application’s requirements to have zero curvature at the boundary and several times
continuously differential functions.

5.0.5 Weighted/Guided Refinement

Finally, we point out how one might guide refinement, depending on the requirements of
the application. We take an example from plasma physics, where sparse grids come into
play to speed up parameter scans. Several parameters of a gyrokinetic model are to be
optimized; consider the minimization of the overall energy to run a fusion plant where
the energy depends on the choice of parameters, as an example. As a side-constraint,
we require the particle transport in the fusion plant to be zero,

Γ(ωion
n , ωelec.

t , ωion
t , tempelec., . . .) = 0 .

The optimization can be costly if an iterative method requires to evaluate the function
Γ multiple times to approximate gradients, each function evaluation requiring a whole
simulation run. The idea is thus to compute a surrogate of Γ, a multi-dimensional sparse
grid interpolant, which can then replace the simulation code during optimization. The
construction of the surrogate can be done well in advance in an offline stage and thus
consume a higher computational effort than a single run of the optimization algorithm.
For illustration purposes, we restrict ourselves in the following to the two-dimensional
setting.
The function itself is rather smooth, with one continuous kink starting in the middle of

the domain and extending to the boundary in one direction, see Fig. 11 (left). Measuring
the MSE and maximum error on 100,000 uniformly distributed points in the scaled
domain, we can observe that there is almost no difference between full grids and regular
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sparse grids, Fig. 11 (right). Here, we have been employing sparse grids with grid points
on the boundary.
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Figure 11: The underlying function (left), and both the MSE on the test data and the
maximum error measured for full grids, regular sparse grids and the standard
refinement (right).

If we additionally employ surplus-based adaptive refinement, we obtain a significant
improvement, and the error is converging faster (same figure for the first 500 grid points).
This is already better, but not good enough. The grid in Fig. 12 (left) shows that
adaptivity spends most grid points towards the kink. Reminding that the optimization
problem aims for Γ = 0, it is apparent that it is not the best strategy to aim for a low
error in the whole domain. Restricting our data set to |Γ| ≤ ǫ, ǫ = 0.001, it can be
observed that the region of interest is in another part of the domain, see Fig. 12 (right).
The refinement should thus be guided to express the region around Γ = 0.
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Figure 12: The sparse grid with standard refinement (left), and the region of interest
around Γ = 0 (right).

This can be achieved by weighting the criterion for adaptive refinement. Rather than
a mere surplus-based refinement, we take

|α~l,~i| exp
(

−cf(~x~l,~i)
)
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into consideration. This puts less emphasis on grid points with a function value far
away from Γ = 0. Figure 13 shows that the resulting grid is guided to the region of
interest. Furthermore, measuring the error only in the region |Γ| ≤ ǫ, several orders
of magnitude in convergence can be gained compared to the previous, straightforward
approach. Needing only around 5000 grid points, the machine accuracy is reached. Note
that the function is only coarsely interpolated far away from Γ = 0, but definitely well
enough so that optimization algorithms can get quickly to the region of interest.
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Figure 13: The MSE on the test data, extended by the weighted adaptivity (left), and
the corresponding sparse grid (right).

We have successfully applied a similar guided refinement in computational finance to
compute the PDE solution of the Black-Scholes equation in option pricing. There, the
main focus lies on a a good solution at a certain point in the d-dimensional space. Thus,
the surplusses are multiplied with a Gaussian weight depending on the distance to the
point of interest. As a diffusive part leads to increased smoothness in time, additionally a
coarsening step is employed after each time step, removing all grid points with a surplus
lower than a certain threshold, see [5] for further details.

6 Conclusions

Whereas sparse grids already enable to deal with higher-dimensional settings than pos-
sible for classical mesh-based methods, adaptive refinement is often crucial. It allows to
tackle problems that do not meet the smoothness requirements of the sparse grid ap-
proach and problems that require to spend as few grid points as possible. This requires
to adapt the standard approach to the problem at hand.
We have shown criteria and strategies for adaptive refinement that have proved to

be useful in several occasions. They have been illustrated for different problems, both
real-world and artificial ones.
Whereas the hierarchical surplus of a grid point can be used as a cheap, free and

effective criterion for adaptive refinement, often more considerations have to be spent to
reduce the number of grid points even further, e.g.:
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• The choice of basis functions has to be adapted in high dimensionalities or where
the problem imposes requirements at the sparse grid function itself. Especially the
boundary treatment plays an important role.

• The number or percentage of grid points that are to be refined at once determines
whether a greedy or a broad refinement occurs. This is especially critical in settings
where noise requires not to spend too many grid points in the wrong place.

• If knowledge about the problem is available, weighted (or guided) refinement can
significantly improve the results. This allows to encourage refinement in regions of
interest. Similarly, refinement can be restricted to important ANOVA components,
and coarsening can be employed to get rid of superfluous grid points.

Finally it has to be noted that counter examples can be found for each and every
criterion for adaptive refinement. While there is no one-size-fits-all strategy, the simple
surplus-based approach frequently gives a good start and can then be adapted to the
task at hand. In any case, knowledge about the problem should be incorporated into
the criteria and strategies for adaptivity wherever possible.
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