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Spatially and functionally distinct subclasses of
breast cancer-associated fibroblasts revealed by
single cell RNA sequencing
Michael Bartoschek 1, Nikolay Oskolkov2, Matteo Bocci 1, John Lövrot 3, Christer Larsson1,

Mikael Sommarin4, Chris D. Madsen 1, David Lindgren1, Gyula Pekar5, Göran Karlsson4, Markus Ringnér 2,

Jonas Bergh3, Åsa Björklund 6 & Kristian Pietras 1

Cancer-associated fibroblasts (CAFs) are a major constituent of the tumor microenviron-

ment, although their origin and roles in shaping disease initiation, progression and treatment

response remain unclear due to significant heterogeneity. Here, following a negative selection

strategy combined with single-cell RNA sequencing of 768 transcriptomes of mesenchymal

cells from a genetically engineered mouse model of breast cancer, we define three distinct

subpopulations of CAFs. Validation at the transcriptional and protein level in several

experimental models of cancer and human tumors reveal spatial separation of the CAF

subclasses attributable to different origins, including the peri-vascular niche, the mammary

fat pad and the transformed epithelium. Gene profiles for each CAF subtype correlate to

distinctive functional programs and hold independent prognostic capability in clinical cohorts

by association to metastatic disease. In conclusion, the improved resolution of the widely

defined CAF population opens the possibility for biomarker-driven development of drugs for

precision targeting of CAFs.
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T
he traditional tumor cell-centric view of cancer has been
revised during the past decades with the increasing
appreciation of the importance of the tumor micro-

environment for the malignant phenotype. The elucidation of
reciprocal interactions of cancer cells with their local milieu has
inspired the development of conceptually novel targeted ther-
apeutics with the aim to thwart paracrine signaling between dif-
ferent cell types of the tumor mass. The cancer-associated
fibroblast (CAF) comprises the most prevalent constituent cell
type in the tumor microenvironment in many cancers, including
breast, pancreas, and hepatic carcinomas1,2 and has been docu-
mented to endorse many, if not all, hallmarks of cancer3. Cell
morphology is still the most reliable way to distinguish CAFs
within the tumor parenchyme, as commonly used cellular mar-
kers, such as α-smooth muscle actin (SMA), fibroblast-specific
protein 1 (FSP-1/S100A4), or fibroblast activation protein (FAP)
are neither all-encompassing nor completely specific. The lack of
congruency in marker expression raises the possibility that CAFs
comprise a diverse group of cells made up of several subtypes4.
Support for this notion comes from recent studies of e.g., pan-
creatic ductal adenocarcinoma5, breast carcinoma6–8, colon car-
cinoma9, and lung adenocarcinoma10, in which functionally
distinct subclasses of CAFs were identified by various means
based on expression of a limited set of markers. In addition, CAFs
have been suggested to originate from various sources, including
resident fibroblasts, bone marrow-derived mesenchymal stem
cells, pericytes, and malignant cells or endothelial cells that have
undergone a mesenchymal transition11,12, further indicating a
diversity within the fibroblast population.

Single-cell RNA-sequencing (scRNA-seq) is a technological
innovation that overcomes the masking of cellular subsets within
the data from bulk RNA sequencing and allows investigation of
the transcriptome of individual cells with the aim to define sub-
populations of cells inferred by similar transcriptional programs.
In tumors, transcriptome analysis of single cells derived from
melanoma patients clearly defined clusters of malignant and non-
malignant cell types, shedding light on the interaction of stromal
and immune cells in the context of tumor growth13. Similarly, a
recent analysis of colorectal cancers employing scRNA-seq cate-
gorized cells into constituent cell types, including CAFs, based on
marker expression9. Also, scRNAseq has been utilized to identify
CAFs as a specific responder population to stimulation with
Hedgehog, which in turn will instigate a CAF-induced cancer
stem cell niche7. However, previous studies have not been
designed to specifically dissect a broadly defined cell type within
the tumor, such as CAFs, into distinct cellular subsets due to
restrictions in the number of cells analyzed and limitations in the
scRNA-seq methodology.

Here, we use the highly sensitive Smart-seq2 protocol to
delineate the heterogeneity of 768 CAFs isolated from the
genetically engineered MMTV-PyMT mouse model of breast
cancer14,15. We define three transcriptionally diverse sub-
populations of CAFs. Notably, each CAF subset is clearly dis-
criminated by the expression of gene programs representing
different functionality and is demonstrated to have a unique
spatial location within the tumor parenchyme. Thus, our work
dissects the CAF population within breast tumors at single cell
resolution and reveals a previously unappreciated functional
diversity within the tumor microenvironment that opens up for
further development of tools for precision medicine.

Results
Single cell RNA-seq reveals subpopulations of breast CAFs. To
improve the taxonomy of CAFs in breast cancer at the cellular
and functional level, we performed scRNA-seq on isolated

mesenchymal cells from tumors of the MMTV-PyMT mouse
model of breast cancer. Due to the lack of a common CAF
marker, and due to the prospect to uncover previously
unknown subsets of CAFs, we used a negative selection
fluorescence-activated cell sorting (FACS) strategy to isolate an
EpCAM−/CD45−/CD31−/NG2− cell fraction devoid of epithelial
cells, immune cells, endothelial cells, and pericytes, respectively
(Fig. 1a, b and Supplementary Figure 1a-e). The isolated fraction
comprised 2.5% of the single viable cells derived from late car-
cinomas of 14 weeks old MMTV-PyMT mice. Immunostaining of
cytospins of the isolated cells for the CAF markers PDGFRα and
α-SMA confirmed the purity of the obtained population, as most
cells stained positively for one or both markers (Supplementary
Figure 1f). Libraries for scRNA-seq were prepared in two 384-well
plates harboring CAFs from one tumor each, and sequenced
using the Smart-seq2 protocol with exogenous RNA controls
from External RNA Controls Consortium (ERCC) spiked into the
cell lysates16.

Based on five quality control metrics, 52 out of 768 libraries
were filtered out due to low quality (Supplementary Figure 1g-k).
Genes with fewer than one count on average over all cells were
removed, resulting in a final of 10,835 endogenous genes and 53
spike-ins kept for further downstream analysis. Each individual
cell contained transcripts of an average of approximately 4600
distinct genes (Fig. 1c). To investigate whether the isolated pool of
CAFs represented different subclasses of cells, we performed
dimensionality reduction by different methods. Indeed, principal-
component analysis (PCA) of the expression of the 557 genes
with the highest biological variation as determined in comparison
to ERCC spike-ins (Supplementary Figure 2a) resulted in two
main clusters and one small cluster in a scatterplot of the first two
principal components (Supplementary Figure 2b). Further, based
on the same gene set, two-dimensional projection by t-distributed
stochastic neighbor embedding (t-SNE) grouped the cells
distinctly into four groups identified by DBSCAN, designated
Population 1–4, demonstrating the existence of subtypes of CAFs
with discrete gene expression profiles (Fig. 1d). Since cells from
both tumors clustered in a similar way with both PCA and t-SNE,
and in general exhibited similar quality metrics, we continued the
analysis without taking the origin of the cells into further
consideration (Supplementary Figure 2b, c). Importantly, the
negative selection markers Epcam, Pecam1, and Ptprc were not
appreciably detected in any cell, excluding the possibility that the
observed cell clusters resulted from analyzing a mixture of
mesenchymal and non-mesenchymal cell types (Supplementary
Figure 2d-f). However, modest levels of transcript from the Cspg4
gene encoding NG2 were detected in Populations 1 and 3, despite
selecting against cells with NG2 protein expression (Supplemen-
tary Figure 2g), suggesting either negligible surface exposure of
the NG2 protein or post-transcriptional regulation of the mRNA.

Subpopulations of CAFs harbor distinct gene programs. Next,
we explored the expression of prototypical CAF markers within
the cellular subtypes. Although we detected expression of at least
one CAF marker in every cell, only the non-specific mesenchymal
marker transcripts Vim and Sparc were expressed by most cells,
highlighting the need to better delineate both general and dis-
tinctive molecular features of the CAF populations (Fig. 1e).
Notably, Pdgfra was specifically expressed by cells in Population
2, whereas Pdgfrb was expressed by all cells apart from Population
4. Fap, S100a4 (encoding FSP-1) and Acta2 (encoding α-SMA)
displayed a salt-and-pepper expression pattern in all four CAF
populations. In addition, the two major CAF subtypes, i.e.,
Population 1 and Population 2, also differed in cell size, as
indicated by the FACS data, further suggesting that the cellular
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subgroups represented entities with separate biophysical proper-
ties (Fig. 1f). In order to confirm the clustering, we made use of
the SC3 R package developed for single-cell transcriptomics17 and
obtained a similar clustering as previously observed by t-SNE
(Supplementary Figure 3a).

Since production and modification of the extracellular matrix
(ECM) are key functions of fibroblasts, we investigated the
transcription of genes encoding ECM proteins included in the
matrisome18 to seek biological validation of the CAF subpopula-
tions. Indeed, based on unsupervised hierarchical clustering of the
matrisome gene set, we observed that the 716 cells clustered
according to our previously defined CAF populations, with the
exception that Populations 1 and 3 were intermingled with each
other (Supplementary Figure 3b). All populations displayed a
unique expression signature of matrisome genes, supporting the
notion that each of the CAF populations produced a distinct
matrix with a specific biological function. Population 2 harbored
the strongest ECM signature with a generally high expression of
matrisome genes.

In order to detect differentially expressed genes that specifically
distinguished each CAF subtype, we performed reproducibility-
optimized test statistic (ROTS)19 for the defined populations.
Each population was compared to the other pooled populations
to find unique gene signatures and upregulated genes with an
FDR <0.001 were considered significantly differentially expressed
(SDE). We detected 1999 SDE genes in Population 2, whereas
Populations 1, 3, and 4 harbored 522, 590, and 859 SDE genes,

respectively. The top 18 SDE genes of each population are
represented in the heatmap depicted in Fig. 2a. We confirmed the
result of the ROTS function by applying commonly used
algorithms, such as SCDE20, edgeR21, DESeq222, and Wilcoxon
rank-sum test23, obtaining closely overlapping lists of SDE genes
(Supplementary Figure 4a).

Next, we used the first 150 SDE genes of each population to
define gene signatures by gene ontology (GO) that functionally
described each subpopulation (Fig. 2b). The SDE genes of
Population 1 were significantly enriched for GO sets for vascular
development and angiogenesis (Fig. 2b), and we therefore termed
this subtype vascular CAFs (vCAFs). Population 2 SDE genes
were enriched for GO sets related to the ECM and EMT (of note,
this gene set contains mainly matrix-related genes), confirming
our previous hierarchical clustering using the matrisome gene set
(Fig. 2b and Supplementary Figure 3b). Due to the strong ECM
signature, cells in Population 2 were named matrix CAFs
(mCAFs). Cell cycle-related gene sets dominated the SDE genes
from Population 3 (Fig. 2b). In agreement with the GO
classification, the trained cell cycle classifier Cyclone24 identified
the majority of cells in Population 3 to be in the G2, M, or S phase
of the cell cycle, whereas cells in other clusters were predomi-
nantly classified to be in the G1 phase of the cell cycle
(Supplementary Figure 4b). Consequently, Population 3 cells
were termed cycling CAFs (cCAFs). Based on the SDE genes,
gene sets detected for Population 4 were connected to
differentiation of cells, as well as the development and
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morphogenesis of tissues (Fig. 2b); we thus labeled this subtype as
developmental CAFs (dCAFs).

vCAFs originate from a perivascular location. Due to the close
correlation of the SDE genes in vCAFs with genes involved in
vascular development, we investigated the expression of proto-
typical marker genes for endothelial cells, such as Cdh5, Pecam1,
Cd34, and Tie1 to rule out inadvertent contamination of the
vCAF population. Reassuringly, we did not find evidence for
meaningful expression of endothelial cell markers in any of our
analyzed cells (Fig. 2c). Instead, the SDE genes for vCAFs
included vascular regulators such as Notch3, Epas1, Col18a1, and
Nr2f2 (Fig. 3a). In addition to genes controlling angiogenesis,
transcription factors and genes involved in cell junctions were
also prominently represented in the specific transcriptomes of
vCAFs (Fig. 3a). We confirmed the high abundance of vCAFs
within the stromal compartment of tumors from MMTV-PyMT
mice using desmin as a marker (Fig. 3b). Notably, the proportion
of mesenchymal stromal cells positive for vCAF markers was
distinctly higher in the tumor core, compared to the leading edge
of the tumor (Fig. 3b). In accordance with their apparent func-
tion, vCAFs predominantly localized in proximity to the vascu-
lature, as shown by immunostaining for the vCAF marker
Nidogen-2 and the endothelial cell marker CD31 (Fig. 3c).
Strikingly, we observed Nidogen-2-positive cells to be tightly
associated with blood vessels in early stages of tumor develop-
ment (8 weeks old MMTV-PyMT mice). During the course of

tumor progression, increasing amounts of Nidogen-2-positive
cells were found detached from vessels, showing streaks of cells
infiltrating the stroma of tumors from 12- and 15-weeks-old
mice. Since Nidogen-2 is a secreted protein, we confirmed its
validity as a vCAF marker in immunostainings by combining
RNAscope in situ hybridization (RNA-ISH) for vCAF transcripts
Kcnj8 and Notch3 with immunostaining of Nidogen-2 (Supple-
mentary Figure 4c). Gratifyingly, immunostaining of Nidogen-2
in human breast tissues showed a stromal expression pattern
(Fig. 3d) and a similar pattern was observed in human breast
carcinomas included in The Human Protein Atlas (http://www.
proteinatlas.org)25, providing independent evidence (Supple-
mentary Figure 4d). We furthermore detected Nidogen-2-positive
stromal cells in tumors from orthotopic transplantation models,
including the murine cell lines 4T1 and EO771 as well as the
human breast cancer cell line MDA-MB-231 (Supplementary
Figure 4e). Thus, based on their histological localization, we
conclude that the vCAF subclass originates from a pool of peri-
vascular cells that later invades the tumor stroma over the course
of tumor progression.

mCAFs are descendants of resident fibroblasts. The mCAF
subset of the tumor stroma specifically expressed transcripts of a
large variety of ECM-related genes, such as glycoproteins (Dcn,
Lum, and Vcan), structural proteins (Col14a1), matricellular
proteins (Fbln1, Fbln2, and Smoc), and matrix-modifying
enzymes (Lox and Loxl1) (Fig. 3e). Additionally, mCAFs
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abundantly expressed the immune cell-attracting factor CXCL14,
suggestive of a role in the regulation of the tumor immune
response. Immunostaining of the mCAF markers Fibulin-1 and
PDGFRα showed high prevalence of positive cells at the invasive
front of tumors, in contrast to the relatively low abundance of
mCAFs in the tumor core (Fig. 3f). The two mCAF markers

Fibulin-1 and PDGFRα identified a profuse infiltration of mCAFs
in the tumor stroma of human breast cancer tissue (Fig. 3g, h and
Supplementary Figure 4d,f). In contrast to vCAFs, the relative
number of mCAFs decreased during tumor progression in the
MMTV-PyMT mouse model (Fig. 3c). In orthotopic grafting
models we observed mCAFs mainly in the syngrafts, but only
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sparsely in the xenograft model (Supplementary Figure 4e).
Intriguingly, and in contrast to the malignant tissue from
12 weeks old and 14 weeks old mice where mCAFs represented
40.3% and 20.0% of the total CAF pool, respectively, 89.0% of
fibroblasts isolated from the mammary gland of non-transgenic
FVB/N mice expressed mCAF markers, as detected by FACS
(Figs. 1d and 3i, j). Based on the similar marker expression of
mCAFs and the dominant fibroblast population in the normal
mammary gland, we conclude that mCAFs may derive from
resident fibroblasts that are co-opted by the tumor.

cCAFs are the proliferating segment of vCAFs. SC3 clustering
using the matrisome gene set (Supplementary Figure 3b)
demonstrated that cCAFs and vCAFs clustered together. Indeed,
only cell cycle genes were found to be differentially expressed
between cCAFs and vCAFs (Fig. 3k). Furthermore, immunos-
taining for the proliferation marker Ki-67 demonstrated that
dividing stromal fibroblasts were predominantly found within
nests of vCAFs, and not mCAFs, thus localizing cCAFs in situ
and strengthening the proposition that cCAFs are indeed vCAFs
currently engaged in cell division (Fig. 3l). Therefore, we conclude
that cCAFs represent the proliferative segment of vCAFs; based
on their relative abundance at the time of isolation, 7.7% of the
cells within the vCAF population were dividing.

dCAFs share expression patterns with the tumor epithelium.
Apart from harboring a distinct profile of ECM genes, dCAFs
were distinguished by the expression of genes related to various
kinds of stem cells (Scrg1, Sox9, and Sox10, among others)
(Fig. 4a), in keeping with their putative function in tissue devel-
opment. dCAFs, as identified by the specific marker SCRG1, were
scarce in tumor tissue from MMTV-PyMT mice, in agreement
with the low number of cells from this subtype that were isolated
from the original tumors (Figs. 1d and 4b). Interestingly, dCAFs
were intermingled with the malignant epithelium during early
stages of tumor development, whereas SCRG1-positive cells could
be found both within the epithelium and in stromal streaks of
late-stage tumors (Fig. 4b). SCRG1 expression could also be
detected in human tissue in a similar distribution (Supplementary
Figure 4d). Intriguingly, expression of the transgenic PyMT
oncogene was strongly detected in dCAFs, indicating a malignant
cell origin for this subset of cells (Fig. 4c).

We next used RNA-ISH in order to detect dCAF-specific
transcripts in tumor tissue with a variety of markers (Supple-
mentary Figure 5a,b). The Mia transcript was mainly detected at
low levels in the tumor epithelium, with a few sparse hotspots of
increased expression (Supplementary Figure 5a). The Spint2
transcript was homogenously expressed in the tumor epithelium,
but not in the stroma, as identified by the mCAF-specific
transcript Mfap5 (Supplementary Figure 5b). Immunostaining of
human tissues confirmed MIA expression in the tumor

epithelium with few discrete MIA-positive CAFs within stromal
streaks (Supplementary Figure 5c and 4f). Taken together, the
overlapping expression of dCAF SDE genes in both tumor
epithelium and in stromal mesenchymal cells suggests that dCAFs
may originate from tumor cells that have undergone an epithelial-
to-mesenchymal transition (EMT).

CAF subclasses represent histologically distinct entities. In
order to conclusively demonstrate the existence of spatially dis-
tinct subsets of CAFs within malignant lesions, we visualized all
subsets by using fluorescent reporters or immunostaining.
Indeed, simultaneous detection of the vCAF marker Nidogen-2,
the mCAF marker PDGFRα, and the dCAF marker SCRG1,
identified three distinct stromal populations with divergent
growth patterns and localization in relation to the nests of tumor
cells (Fig. 4d). To obtain a better representation of the distribu-
tion of CAF subpopulations and other constituent components of
the tumor, we made use of 2-photon confocal microscopy. The
resulting images again revealed three distinct populations of
CAFs defined by the specific markers (Fig. 4e). Importantly,
PDGFRα-positive mCAFs were found to reside predominantly
within collagen-rich streaks, in keeping with their inferred role as
providers of ECM. Additionally, SCRG1-positive dCAFs were
located on the tumor-stroma boundary, suggestive of their
putative origin as malignant epithelial cells. Finally, the Nidogen-
2-positive vCAFs were distributed along vessels, as well as in
stromal streaks.

To confirm that the detected CAF subpopulations were distinct
using more markers, we used RNA-ISH of vCAF and mCAF
marker transcripts and observed no overlap in the expression of
several pairs of markers (Supplementary Figure 5d-e). In contrast,
the expected partial overlap was detected between the expression
of the mCAF marker Svep1 and the commonly used, but
promiscuous CAF marker Acta2 (Supplementary Figure 5f).
Finally, we confirmed the mutual-exclusivity of mCAF and vCAF
marker genes Fibulin-1 and Nidogen-2 in human tissue sections
by immunostaining (Supplementary Figure 5g).

Subpopulations of CAFs are independent prognostic bio-
markers. We next set out to determine whether the observed CAF
subtypes could be identified in bulk RNA-seq data from human
patient samples. We reasoned that subclasses of cells would be
best detected by using distinguishing gene expression profiles
consisting of highly correlated genes, as co-regulation of tran-
scriptional programs in bulk data would be an indicator of a
common cellular origin. Thus, using bulk RNA-seq data from
The Cancer Genome Atlas (TCGA) database for breast cancer26,
we identified highly correlated genes among the SDE genes from
each CAF subtype, resulting in a condensed profile of 7 genes for
vCAFs and 30 genes for mCAFs (Supplementary Table 1). The
profiles were specific for each cellular subset compared to the

Fig. 3 vCAF and mCAF marker genes can be used to trace back subpopulations in tissue sections. a Violin plots of selected vCAF differentially expressed

genes in log2(RPKM+ 1). Violin colors represent mean expression of each population. Genes were sorted based on gene ontology terms.

b Immunohistochemistry (IHC) staining of desmin on MMTV-PyMT tumor sections (6 µm). Images were acquired from the leading edge and the tumor

center. Yellow boxes (left) indicate 2× magnified area (right). c IF staining of Nidogen-2 (green) and CD31 (magenta) or PDGFRα (red) on MMTV-PyMT

tumor sections (5 µm) from mice of age 8 weeks, 12 weeks, and 15 weeks (top to bottom). Nuclei were counterstained with DAPI. d Immunofluorescence

(IF) staining of Nidogen-2 on human tumor tissue (5 µm). Nuclei were counterstained with DAPI. e Violin plots of selected mCAF differentially expressed

genes in log2(RPKM+ 1). f IHC staining of fibulin-1 and PDGFRα in MMTV-PyMT tumor sections (6 µm). Images were acquired from the leading edge and

the tumor center. IHC staining of fibulin-1 (g) and PDGFRα (h) in human tumor tissue sections (6 µm). FACS-sort of MMTV-PyMT tumor (i) and

mammary gland (j) tissue. Gating on single, living CD45−CD31−NG2−EPCAM− cells followed by gating on PDGFRα+ cells (blue box) or PDGFRα- cells

(red box). k Violin plots of cell cycle gene expression in log2(RPKM+ 1). l IF staining for Nidogen-2 (red) and Ki-67 (grey) on sections (5 µm) from

PDGFRα-EGFP (green) reporter mice. Arrows indicate Nid2+Ki67+ cCAF. Scale bar: 50 µm
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others, thus further indicating the existence of CAF subtypes also
in human breast tumors (Fig. 5a). In addition, the gene profiles
were also highly and specifically correlated within bulk RNA-seq
data from other cancers, such as pancreatic adenocarcinoma, lung
cancer, and renal cell cancer, suggestive of a certain extent of
commonality in the development of CAFs within distinct
malignant diseases (Fig. 5b–d). When using the same approach
for dCAFs, only 2 genes remained with a correlation coefficient
>0.7, indicating that many of the genes that signify dCAFs
compared to other CAF populations may also be expressed by
other cell types within the tumor tissue, or alternatively that
dCAFs are very scarce, in keeping with their putative origin from
a transient EMT (Supplementary Table 1). We did not attempt to
derive a gene profile for cCAFs, since the strategy would be
irrevocably confounded by the overarching expression of
proliferation-related genes.

Next, in order to determine whether the functionally distinct
gene programs of vCAFs and mCAFs could also be discerned
from the analysis of bulk data from the TCGA database, we
investigated the correlation between the condensed gene profiles
for each cellular subtype and metagenes for their inferred
functions, i.e., regulation of angiogenesis and ECM production.
In keeping with the data from mouse tumors, the vCAF signature
was highly correlated to an endothelial cell metagene in breast
tumors, whereas the mCAF signature was strongly associated
with an ECM metagene27 (Fig. 5e–h). Notably, the converse
relations were not observed, strongly indicating conservation of
the functionally distinct gene programs of vCAFs and mCAFs
between mouse and human tumors. Also, similar findings were

made using transcriptional data from pancreatic adenocarcinoma
(Supplementary Figure 6a).

CAFs have been suggested to be important regulators of crucial
parameters for determining the prognosis of cancer patients,
including tumor progression, metastatic seeding, and response to
therapy. By using the mean combined centered expression of the
CAF profiles as a proxy for cellular abundance, we set out to
determine whether the cellular CAF subtypes were related to
metastatic dissemination in human cohorts. We first made use of
transcriptional data from a population-based nested case–control
study encompassing 768 subjects. The study is designed such that
190 breast cancer patients that developed distant metastatic
disease (cases) were selected from a consecutive series of
individuals, and each closely matched by adjuvant therapy, age,
and calendar period at diagnosis with three patients free from
metastasis (controls)28. The gene signature for vCAFs correlated
strongly to an endothelial metagene27 and a microvasculature
signature29 within the dataset from the case–control study,
whereas mCAFs instead were highly associated with a stroma-
derived invasion signature30 and a stroma-related treatment-
predictive signature31 (Fig. 5i). In strong support of the notion of
CAFs as modifiers of the malignant phenotype, the vCAF gene
signature was found to be an independent prognostic indicator
associated with an increased risk for developing metastatic disease
in both univariable and multivariable analysis in a conditional
logistic regression model involving common risk factors such as
lymph node status, tumor size, HER2 status, and proliferative
index (Table 1). Similarly, mCAFs were also associated with risk
of disseminated disease, albeit to a lesser degree (Table 1). All
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correlations within the case–control study were independent of
the molecular subtype of the tumor (Supplementary Figure 6b,c),
and both vCAFs and mCAFs were weakly anti-correlated to the
PAM50 proliferation metagene32, ruling out general effects on
cancer cell division as the link between the CAF abundance and
metastatic dissemination (Fig. 5i). The observed correlations of
the vCAF and the mCAF profiles to other microenvironmental
gene signatures, the independence of molecular subtype, and the
association to relapse were confirmed in a second clinically well-
annotated gene expression dataset from 1875 patients included in
the METABRIC cohort (Supplementary Figure 6d and Supple-
mentary Table 2)33–35. Finally, to obtain an experimental
correlate of the invasion-promoting effects of vCAFs and mCAFs
suggested by our analysis, we seeded PeRo-Bas1 breast cancer
cells isolated from MMTV-PyMT mice in the upper chamber of a
trans-well system. The malignant cells were separated from the
lower chamber, in which CAF populations isolated by FACS were
seeded, by a membrane coated with Matrigel. In support of our
previous findings in human tumors, both vCAFs and mCAFs

significantly augmented the number of cancer cells that invaded
through the matrix into the lower chamber, compared to cell
culture medium alone (Fig. 5j).

In conclusion, gene profiles of vCAFs and mCAFs were readily
detectable in bulk RNA sequencing data and held biological and
clinical significance for human tumors.

Discussion
Taken together, we have significantly improved the cellular
resolution of studies of CAFs by employing scRNA-seq to provide
compelling evidence for the existence of at least three spatially
and functionally distinct subsets of breast CAFs. Histological
characterization is suggestive of distinct cellular sources of CAFs,
as vCAFs, mCAFs, and dCAFs appear to originate from a peri-
vascular location, resident fibroblasts, and malignant cells having
undergone an EMT, respectively. The CAF subtypes are distin-
guishable within bulk transcriptional data by applying condensed
gene signatures, which are conserved both between mouse and
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human tumors, and between distinct malignant diseases. Notably,
the expression of gene signatures for different CAF subtypes, used
as a proxy for the cellular abundance, held utility as independent
predictors of metastatic dissemination in human breast cancer,
indicating that the observed CAF subclasses have biological
relevance.

Through the use of scRNA-seq and unbiased clustering of 716
individual, high-quality transcriptomes, we dissected the most
prominent cellular constituent of the tumor microenvironment
with high resolution, and thereby identified three distinct cellular
subsets within the broadly defined CAF population. The tumor
microenvironment has been suggested to harbor subpopulations
of various cell types, including macrophages, endothelial cells,
and CAFs, based on analysis of the expression of a limited set of
markers. A recent study defined two putative subpopulations of
CAFs in colorectal cancer by scRNA-seq9. However, the identi-
fication was based on only 17 cells denoted by the expression of
only a few marker genes, making the uncertainty in classification
considerable. Previous work using scRNA-seq of tumors has
attempted to classify the full variety of constituent cells within
cancer, thereby compromising the resolution of the studies of
each individual cell type. Our approach to specifically dissect a
large number of an unbiased population of CAFs using the sen-
sitive Smart-seq2 protocol enabled enumeration of comprehen-
sive lists of hundreds to thousands of genes that distinguished
each CAF subset, thus describing the full complexity within this
particular element of the tumor mass. Whether or not even
deeper analysis would reveal further lower-abundance subsets of
CAFs, or subdivide the clusters we observed, remains to be tested.
In addition, more detailed analyses are needed in order to com-
pare and contrast the CAF subpopulations defined by our studies
with CAF subsets recently described in the literature. As an
example, subpopulations of breast CAFs isolated by FACS based
on differential expression of six commonly used mesenchymal
cell markers were demonstrated to harbor immunosuppressive

gene programs8. Immunomodulatory functions were not identi-
fied as a distinguishing feature of any of the CAF populations
observed in our study, although more detailed analyses are war-
ranted to investigate further as differential expression of impor-
tant immune-regulatory elements was indeed detected.
Furthermore, two recent studies demonstrate the promotion of
cancer stem cell features by CAF subpopulations expressing
CD10/Gpr77 and Hedgehog target genes such as Fgf5,
respectively7,10. Intriguingly, CD10 and Gpr77 are both specifi-
cally expressed by dCAFs, raising the possibility that malignant
stem cells uphold their own niche through EMT. As a mounting
number of studies detailing CAF subpopulations by various
technologies are presented, it will be increasingly important to
develop computational tools for comparisons across platforms in
order to understand the functional relationships between various
subsets of CAFs.

The origin of CAFs is still contested. Conceivably, CAFs from
different pedigrees may be represented within the tumor par-
enchyme. Indeed, our analyses suggest that the different CAF
subsets may have distinct sources. Interestingly, mCAFs appear to
originate from the dominating resident variety of fibroblast in the
normal mouse mammary gland, based on similarities in marker
expression and their peripheral location close to the surrounding
normal tissue. In contrast, the malignant mammary tissue from
MMTV-PyMT mice is dominated by vCAFs, possibly due to their
proliferative capacity manifested in the cCAF identity. The vCAF
subset shares many marker genes with pericytes, including Cspg4,
Rgs5, Pdgfrb, and Des, albeit at comparably low levels. The
expression of endosialin (Tem1 or Cd248) was previously repor-
ted to be a marker for activated mesenchymal cells, including
both CAFs and tumor pericytes36. Indeed, endosialin is highly
expressed by vCAFs. Our observation of vCAFs being tightly
vessel-associated in early-stage tumors, followed by detachment
and invasion of the tumor tissue during progression, indicates a
close relation between vCAFs and perivascular cells. Taken

Table 1 Univariable and multivariable conditional logistic regression models comparing patients developing metastatic disease

with patients free from disseminating disease in a nested case–control study

Variablea n Univariate models Multivariate models

HRb 95% CI P HRb 95% CI P

vCAF metagene 1.47 1.23–1.76 <0.001 1.66 1.33–2.08 <0.001
mCAF metagene 1.28 1.07–1.53 0.005 1.32 1.05–1.66 0.015
Lymph node status <0.001 0.003

Negative 304 1 (ref.) 1 (ref.)
Positive 442 2.52 1.69–3.77 2.06 1.34–3.16
Unknown 22 1.11 0.36–3.41 1.84 0.52–6.46

Tumor size, mm 0.007 0.010
≤20 354 1 (ref.) 1 (ref.)
>20 398 1.73 1.22–2.44 1.81 1.21–2.71
Unknown 16 0.98 0.27–3.59 0.78 0.19–3.29

Histologic grade <0.001 0.012
Grade 1 68 1 (ref.) 1 (ref.)
Grade 2 327 4.86 1.91–12.39 3.76 1.38–10.20
Grade 3 328 3.94 1.52–10.23 2.51 0.87– 7.20
Unknown 45 3.46 1.09–10.98 3.07 0.84–11.20

HER2 status <0.001 0.001
Negative 519 1 (ref.) 1 (ref.)
Positive 145 2.60 1.74–3.88 2.24 1.44–3.49
Unknown 104 0.75 0.44–1.31 0.98 0.50–1.92

Proliferation metagenec 1.20 0.99–1.46 0.061 1.77 1.31–2.40 <0.001

Controls randomly matched to cases by age (<45, 45–55, 55+), adjuvant systemic therapy (endocrine therapy (ET) only, chemotherapy (CT) only, ET+ CT), and calendar period of diagnosis
(1997–2000, 2001–2005)
aNumerical variables are centered and scaled (standard deviation set to one) in the models
bFor numerical variables, HR is the relative hazard when increasing the variable one standard deviation
cPAM50 proliferation index33, average expression of 11 proliferation genes in the PAM50 gene set
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together, gene expression data and localization are conducive to
speculation of a pericyte origin for vCAFs, although the concept
of pericyte-to-fibroblast transition has been under recent
debate37. The fact that vCAFs are enriched in the tumor core may
indicate that hypoxia is fueling the detachment of vCAFs from its
perivascular niche; a notion that is further supported by their
expression of Epas1 (HIF2-α). Finally, SDE genes denoting
dCAFs were found to also be expressed by cells within the tumor
epithelium, including the transgenic oncogene PyMT. Even
though classical markers for EMT such as Slug, Snail, and Twist1
were not expressed to a greater extent by dCAFs compared to
other CAF populations (Supplementary Figure 7), their tran-
scriptional signature and histological localization suggest an
epithelial origin. Conceivably, our negative selection strategy may
not have excluded malignant cells having undergone an EMT,
since EpCAM has been reported to be downregulated during the
mesenchymal transition38. Intriguingly, the detected dCAF SDE
genes provide a unique source of new distinguishing features that
aid in the functional and histological definition of EMT-cells
in situ in mixed pools of non-EMT malignant cells and
mesenchymal stromal cells within tissues.

CAFs are known to support many of the hallmarks of cancer2–
4. However, recent studies of pancreatic ductal adenocarcinoma
contest the view of the tumor-supportive CAF, as an increase in
growth and aggressiveness was observed following eradication of
α-SMA+ CAFs or targeting of the desmoplastic response induced
by Hedgehog39,40. The contradictory influence of CAFs on the
malignant phenotype may be explained by the existence of sub-
populations of cells with opposing functions. We classified CAFs
into three different subtypes based on global gene expression
patterns. The functional grouping of CAFs was strongly sup-
ported by independent unsupervised clustering of the cells based
on the expression of gene sets of importance for known CAF
functions, such as ECM production. Additionally, mapping of
cells within the tumor tissue by immunostaining of unique
markers validated the spatial separation of the CAF subclasses. Of
note, we observed a striking difference in the spectrum of
expressed ECM genes between vCAFs, mCAFs, and dCAFs.
While mCAFs abundantly produced a wide variety of matrix
components, vCAFs and dCAFs were more restricted in their
expression pattern, specializing in the production of basement
membrane products and paracrine signaling molecules, respec-
tively. Based on the expression of specific genes, inferences can be
made as to the function of that CAF subgroup. As a case-in-point,
we have recently in a separate study identified paracrine PDGF-
CC signaling to CAFs as a regulator of the basal-like molecular
subtype of breast cancers41. The receptor for PDGF-CC, i.e.,
PDGFRα, is exclusively expressed by mCAFs, identifying this
subgroup as responsible for the specification of ERα-negativity in
breast tumors. Another recent study corroborated the link
between CAFs and ERα status, demonstrating that a subset of
CD146+ CAFs increased hormone receptor expression in mam-
mary tumors6. Indeed, CD146 is absent from mCAFs and
exclusively expressed by vCAFs in our classification, supporting
specific targeting of PDGFRα+/CD146− CAFs as an attractive
strategy to sensitize basal-like breast tumors to endocrine therapy
by conversion into an ERα+ phenotype. Thus, apart from pro-
viding information about the functional properties of the differ-
ent subclasses of CAFs, our approach also provides putative drug
targets for further development.

In translational efforts, we found that the vCAF and mCAF
signatures were highly conserved in patient samples of breast
tumors, indicating that fibroblast subtypes representing func-
tionally distinct biologies are a feature also of human malig-
nancies. Cross-comparison of a range of different malignant
diseases demonstrated that the CAF subpopulations that we

defined were present in many, but not all, other tumor types. It is
likely that the spectrum of CAF subsets within a particular tumor
reflects different aspects of biology, including cell-of-origin and
molecular activation status. The ability to distinguish stromal cell
subclasses within data from bulk RNA-seq, opens up the possi-
bility to use quantitative measures of microenvironmental com-
position as prognostic or predictive biomarkers. In support of this
proposition, the signatures from vCAFs or mCAFs held prog-
nostic capabilities by their association to metastatic dissemination
in two large clinical cohorts comprising >2600 breast cancer
patients. Further, the mCAF signature was correlated to a
treatment-predictive stromal signature31. Taken together, we here
present an improved cellular, molecular, and functional tax-
onomy of breast CAFs, opening up the possibility for develop-
ment of novel targeted drugs or biomarkers of clinical
significance with increased precision.

Methods
Cell isolation from breast tumors. All animal experiments were performed
according to institutional guidelines and approved by the local ethics committee in
Lund (permit number M167/15). Tumors from 14-week-old MMTV-PyMT mice
were excised and the surrounding mammary fat pad removed. Tumors were
minced and digested in 10 ml FACS buffer PBS, 5% Cell dissociation buffer (Gibco,
13151014), 0.2% BSA (Sigma Aldrich, 05479) containing 25 mg Collagenase II
(Gibco, 1797319), 25 mg Collagenase IV (Gibco, 17104-019), 5 mg DNAse (Sigma
Aldrich, DN25), for 15 min stirring at 37 °C. The digested cell suspension was
strained through a 100 µm cell strainer with the plunger of a plastic syringe. After
spinning down for 3 min at 300×g, red blood cells were lysed using RBL buffer
containing 0.15 M ammonium chloride and 10 mM sodium EDTA in ddH2O for
30 s. Red blood cell lysis was stopped with ice-cold FACS buffer. Cells were counted
after additional straining through a 70 µm mesh cells and centrifugation at 300×g
for 3 min.

Orthotopic transplantation models. For syngeneic models, 105 4T1 (ATCC) and
5 × 105 EO771 (ATCC) tumor cells were injected in 50 µl PBS in the 4th inguinal
mammary fat pad of BALB/c and C57BL/6J mice, respectively. For human xeno-
grafts, 2 × 106 MDA-MB-231 cells (ATCC) were injected in 50 µl PBS in NOD.
CB17-Prkdcscid.

Flow cytometry and sorting. Fc regions on cells were blocked with 2 µl Fc-block
(BD Pharmingen, 553141) in 50 µl FACS buffer per 106 cells for 10 min on ice. For
fibroblast negative selection, the cells were incubated in staining cocktail containing
anti-CD31-APC (1 µl/106 cells, BD Biosciences, 561814, Clone: MEC 13.3), anti-
CD45-APC (1 µl/106 cells, BD Biosciences, 559864, Clone: 30-F11), anti-CSPG4-
AF647 (0.4 µl/106 cells, Bioss, bs-4800R-A647), and anti-CD326-APC (5 µl/106

cells, BD Biosciences, 563478, Clone G8.8) in FACS buffer for 30 min on ice. 4′-6′-
diamidino-2-phenylindole (DAPI) was added to the cell suspension before sorting.
We gated on DAPI−, Epcam−, CD31−, CD45−, NG2− cells after excluding
doublets. The cells were sorted using a FACSARIA II (BD Biosciences) into
individual wells of 386-well plates containing lysis buffer provided by the Eukar-
yotic single cell facility (ESCG), SciLifeLabs, (Stockholm, Sweden). For population
resorting, cells obtained from MMTV-PyMT mice crossed with the PdgfRα-EGFP
reporter mouse42 were stained with anti-CD31-APC, anti-CD45-APC, anti-NG2-
AF647, anti-CD326-APC, anti-PDGF-Rβ-biotin (Thermo Scientific, 13-1402-82)
for 30 min on ice, followed by 20 min incubation on ice with streptavidin-PE/Cy7
(Thermo Scientific, 25-4317-82).

cDNA preparation and sequencing. Lysis buffer, library preparation, and
sequencing were provided by ESCG, following the Smart-Seq2 protocol16. Read
alignment, gene-expression estimation, normalization, and quality control were
provided by ESCG.

Read alignment and estimation of gene-expression. Single-end 43 bp long reads
were aligned at ESCG to mm10 mouse genome using STAR v2.3.043 with default
settings, and RefSeq annotation was used for gene expression quantification, which
resulted in 24,490 endogenous gene counts and 92 spike-in counts, the latter was
used for the analysis of technical variation.

Normalization. Gene expression counts were normalized as reads per kilobase
gene model and million mappable reads (RPKMs) using rpkmforgenes44.

Data pre-processing and quality control. For data pre-processing, an estimate of
systematic biases in gene expression between the 768 cells from the two plates was
performed in order to exclude technical variation as a basis for any observed
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differences. No significant divergence in genome-wide expression pattern was
found based on comparison of the total numbers of exonic reads, percentages of
uniquely mapping reads, and uniquely mapping exonic reads between all cells.
Furthermore, no difference in the number of highly expressed genes was detected.

To assess the quality of each cell the parameters reads, readlength, uniquely
mapping reads (%), multimapping reads (%), unmapped reads (%) from the STAR
log summary file were analyzed. We assessed the number of exon reads, the
percentage of uniquely mapping reads, and the percentage of exon reads for each
cell. In addition, we evaluated extreme RPKM values and the maximum correlation
which is calculated as the maximum value of the pairwise Spearman correlations
for each well. A cell was considered as an outlier if it fell beyond two standard
deviations away from the mean of a QC metric distribution or in case of exon reads
were below the cutoff of 10,000 reads mapped to mRNA. We excluded 52 cells that
were outliers in the least two QC metrics from further analysis (Supplementary
Figure 2f-j).

Population identification. Dimensionality was reduced by t-SNE using the Rtsne
R package with 30 initial principal components, perplexity of 27 and theta= 0.545.
The runs were repeated 50 times and the run with the lowest CL-divergence value
containing the total costs for all objects was selected. Clusters were defined density-
based spatial clustering of applications with noise (DBSCAN) clustering algorithm
in R with an eps= 3.1. Two undefined outliers were manually assigned to Popu-
lation 1.

Differential expression analysis. ROTS, edgeR, DESeq2, Wilcoxon rank-sum
test, and single cell differentially expressed genes (SCDE) software package were
used for differential expression analysis of the defined populations. RPKM nor-
malized data with a mean RPKM count ≥1 in all cells was used as an input except
for SCDE for which raw counts were used.

Cell cycle analysis. Cell cycle assignment was performed in R using the cyclone
function24 included Bioconductor package “scran”46.

GO-analysis. The top 150 SDE genes in each population were used as an input to
investigate gene sets in the Molecular Signatures Database [http://software.
broadinstitute.org/gsea/msigdb/index.jsp]47.

Single cell immunofluorescence. Flow cytometry sorted bulk cells were resus-
pended in 100 µl PBS and spun for 2 min at 1000 rpm in a Cytospin 4 (Thermo
Scientific). The cells were dried and fixed in 4% PFA for 10 min. After incubation
in ice-cold acetone for 10 min and washing in PBS, all the following steps were
performed in a humidified chamber. Unspecific binding sites were masked with
serum-free blocking reagent (DAKO) for 90 min at room temperature. Rat-anti-
PDGF-Rα (1:200, 14-1401-82, eBioscience) and anti-αSMA-Cy3 (1:100, C6198,
Sigma Aldrich) were applied overnight at 4 °C. Goat-anti-rabbit-AF488 was applied
1:1000 in PBS+ 1% BSA for 90 min at room temperature, followed by mounting
with DAPI-containing mounting medium (Vector Laboratories). Fluorescent
images were acquired with an Olympus BX63 microscope, DP80 camera, and
cellSens Dimension v 1.12 software (Olympus Cooperation).

Immunostaining. For immunofluorescence staining, tissues were preserved in 30%
w/v sucrose overnight at 4 °C before embedding in OCT Cryomount (Histolab). 6
µm tissue sections were dried at room temperature and fixed in ice-cold acetone for
10 min. All the following steps were performed in a humidified chamber. After
washing in PBS, sections were blocked with serum-free blocking reagent (DAKO,
X090930-2), 90 min at room temperature. Primary antibodies goat-α-mouse
SCRG1 (1:200, sc-165436, Santa Cruz Biotechnology), rabbit-α-mouse Nidogen-2
(1:400, ab131279, Abcam), rat-α-mouse PDGFRβ (1:200, 16-1402-82,Thermo
Fisher), rat-α-mouse ki67 (1:200, 14-5698-82, Thermo Fisher), rat-α-Epcam-APC
(1:200, 17-5791-82, Thermo Fisher) diluted in PBS+ 1% BSA and sections were
incubated overnight at 4 °C. After washing with PBS, secondary antibodies (1:1000
in PBS+ 1% BSA) against the respective species were applied for 1 h at room
temperature. Sections were washed and mounted in DAPI-free or DAPI-containing
mounting medium.

Immunohistochemistry. Formalin-fixed paraffin-embedded (FFPE) sections were
deparaffinized for 2 h 60 °C and re-hydrated, followed by epitope retrieval in citrate
buffer (pH 6) in a pressure cooker. Endogenous peroxidase activity was quenched
with BLOXALL (Vector laboratories, SP-6000) for 15 min at room temperature,
followed by washes with 0.05% Tween-20 in PBS. For antibodies raised in mouse,
the Mouse on Mouse (M.O.M.) basic kit (Vector Laboratories, BMK-2202) was
used according to the manufacturer’s datasheet, with an additional blocking step
with CAS-block (Thermo Fisher, 008120) for 30 min prior to the incubation in M.
O.M. diluent. Primary antibodies against Desmin (1:100, sc-23879, Santa Cruz
Biotechnology) and Fibulin-1 (1:50, ab211536, Abcam) were diluted in M.O.M.
diluent. CAS-block was used for the blocking (2 h) and incubation of primary
antibody against PDGFR-α (1:500, D1E1E 3174, Cell Signaling Technology). Pri-
mary antibody incubation was performed overnight at 4 °C in a humidified

chamber. After washing, appropriate secondary biotinylated antibodies and the
ABC elite standard kit peroxidase system (Vector Laboratories) with DAB as a
substrate (Vector Laboratories) were applied.

RNA in situ hybridization. Tissues were fresh frozen in OCT Cryomount (His-
tolab, 45830) and 5 µm sections were stained following the RNAscope Fluorescent
Multiplex Assay (Advanced Cell Diagnostics, USA) instructions. Images were
acquired with a Zeiss LSM 710 laser scanning microscope.

2-Photon confocal microscopy. Immunostained tissues were imaged using an
inverted Leica SP5-X MP multiphoton Leica microscope connected to a Ti-
Sapphire laser (Spectra Physics MaiTai HP DeepSee Laser), Spectral Physics
(tunable wavelength: 690 –1040 nm). The objective used was a HCX PL APO
lambda blue 63 × 1.20 NAWATER UV. Tissue sections containing GFP-expressing
cells were stained for expression of SCRG1 (Alexa 555) and Nidogen-2 (Alexa 647).
Fibrillar collagen was imaged by means of second harmonic generation (SHG)
using two-photon excitation at 892 nm and emission between 426 and 446 nm was
detected using a hybrid detector (HyD SP, Leica). GFP-expressing cells were
simultaneously excited using the 892 nm two-photon excitation and emitted GFP-
light was collected between 505 and 550 nm using a PMT detector. SCRG1 (Alexa
555) and Nidogen-2 (Alexa 647) was excited with a supercontinuum white light
laser (WLL) and emitted light (Alexa 555: 567–612 nm and Alexa 647: 650–710
nm) were detected using the hybrid detector (HyD SP, Leica). All images are from
back-scattered light and captured with a resolution of 1024 × 1024 pixels, at 200
Hz.

Transwell invasion assay. All cells were cultured at 37 °C and 5% CO2 and were
frequently checked for mycoplasma infections using the MycoAlertTM Mycoplasma
Detection Kit (Lonza). 8 µm pore 24-well transwell inserts were coated with
Matrigel® Growth Factor Reduced (GFR) Basement Membrane Matrix (Corning,
USA) 1:3 in starvation medium (DMEM+ 0.1% BSA). 105 PeRo-Bas1 tumor cells
(generated in-house) were seeded in the transwell insert and placed in 24-well
plates containing CAFs (80% confluent) in starvation medium. Starvation medium
only and FBS were used as negative and positive controls. After 24 h the transwell
inserts were removed and cells on the bottom side of the membrane were fixed with
70% EtOH and stained with crystal violet. The stained area of four representative
images was determined using ImageJ.

Gene profile definition. RNA-seq data for breast cancer were downloaded from
the TCGA data portal and log2 transformed after adding an offset of 1. For each
population, the SDE genes were compacted using Spearman correlation. A gene
was used as a seed and the top correlating genes to that seed were added until the
average correlation between all genes was <0.7.

Clinical samples and datasets. Human breast cancer tissue for immunostaining
was provided by the Sweden Cancerome Network Breast Initiative (SCAN-B)48;
ClinicalTrials.gov identifier NCT02306096 with approval# 2009/658 and 2009/659
by the local Ethics Review Board.

The TCGA RNAseq data were downloaded from the TCGA data portal (https://
tcga-data.nci.nih.gov) 2015 on June 12th (pancreatic adenocarcinoma), September
17th (lung adenocarcinoma), and September 18th (breast carcinoma and renal
clear cell carcinoma). The expression data were log2-transformed after addition of
1. The METABRIC data set33,34 was downloaded from cBioPortal for Cancer
Genomics (http://www.cbioportal.org). Clinical–pathological data and intrinsic
molecular subtype classifications were retrieved from the supplementary
information of the publication28. Preprocessed microarray gene-expression data
was retrieved from the European Genome-phenome Archive (EGA) with accession
numbers EGAD00010000210 and EGAD00010000211. Probesets were mapped to
Entrez Gene IDs using the R/Bioconductor annotation package illuminaHumanv3.
db.

The nested case–control study has been described in detail previously28,49. In
brief, women diagnosed with primary breast cancer 1997–2005 in the Stockholm
health care region of Sweden were identified, and patients developing distant
metastatic disease (cases) were selected and controls (free from distant disease)
were randomly matched by adjuvant therapy, age, and calendar period at diagnosis.
Microarray gene expression data are available at the Gene Expression Omnibus
(GEO) database under accession number GSE48091. Probe sets were mapped to
Entrez Gene IDs using the manufacturer’s annotations. A quality control sub-study
of the nested case–control study (GEO GSE81954) was also analyzed with
reassuring results (Supplementary Figure 8a,b). The nested case–control study has
previously been approved for gene expression analyses by the ethics committee at
Karolinska Institutet, Stockholm, Sweden.

All gene expression data analysis and statistical analysis were done in R/
Bioconductor. Microarray data were log2 transformed, normalized probe intensity
values. Expression data were collapsed to gene level using a non-specific filter
keeping only the probe sets with the highest interquartile range in the case of
multiple mappings to the same Entrez Gene ID. Intrinsic molecular subtypes of the
tumors in the nested case–control study were determined using nearest correlations
with the PAM50 centroids.

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07582-3 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:5150 | DOI: 10.1038/s41467-018-07582-3 |www.nature.com/naturecommunications 11

http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
https://tcga-data.nci.nih.gov
https://tcga-data.nci.nih.gov
http://www.cbioportal.org
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Six gene expression signatures were explored for their correlation with the CAF
populations. These included endothelial/microvasculature signatures27,29, stroma-
related signatures27,30,31, and a proliferation signature32. Gene signature scores
were derived as the weighted averages of the expression values of the constituent
signature genes, where the weight for each gene is +1 or −1 depending on the
direction with the phenotype in the original publication. Only original genes that
could be mapped to Entrez Gene IDs were used. The derived signature scores were
named as EC metagene (CDH5, CXorf36, TIE1)27, Microvasculature29, Stroma 130,
Stroma 231, ECM metagene (COL1A1, COL1A2, COL3A1)27, and Proliferation32.

In the nested case–control study, the association with risk of disseminating
disease was analyzed with conditional logistic regression models. In the
METABRIC study, the association with risk of breast cancer deaths was analyzed
with Cox proportional hazards regression models with stratification by study site
and intrinsic molecular subtype.

Data availability
ScRNA-sequencing data that support the findings of this study have been deposited
in GEO with the accession code GSE111229 and will be made available upon
publication of the article. Main R scripts for the analysis and necessary data are
available at GitHub [www.github.com/KPLab/SCS_CAF]. A reporting summary
for this article is available as a Supplementary Information file.
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