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Abstract—Properly handling parallax is important for video stabilization. Existing methods that achieve the aim require either 3D

reconstruction or long feature trajectories to enforce the subspace or epipolar geometry constraints. In this paper, we present a robust

and efficient technique that works on general videos. It achieves high-quality camera motion on videos where 3D reconstruction is

difficult or long feature trajectories are not available. We represent each trajectory as a Bézier curve and maintain the spatial relations

between trajectories by preserving the original offsets of neighboring curves. Our technique formulates stabilization as a spatial-

temporal optimization problem that finds smooth feature trajectories and avoids visual distortion. The Bézier representation enables

strong smoothness of each feature trajectory and reduces the number of variables in the optimization problem. We also stabilize

videos in a streaming fashion to achieve scalability. The experiments show that our technique achieves high-quality camera motion on

a variety of challenging videos that are difficult for existing methods.

Index Terms—Video stabilization, warping, optimization, Bézier curve

Ç

1 INTRODUCTION

MOST amateur videos are captured using hand-held
cameras. They are often very shaky and difficult to

watch. Therefore, video stabilization techniques have been
developed to smooth shaky camera motion. Most existing
methods work in 2D and are efficient and robust. However,
these methods use homography, which cannot model
parallax induced by a moving camera imaging a 3D scene,
so they cannot aggressively stabilize shaky camera motions.

To handle parallax well, 3D video stabilization methods
apply 3D reconstruction from structure from motion (SFM)
[1] or depth acquisition from sensors [2]. However, SFM
solves a highly nonlinear optimization problem to recon-
struct a 3D scene, which is computationally expensive and
is often brittle. Depth acquisition is limited to depth
cameras and thus is not applicable to general videos.
Closely related to our technique, where scene modeling is
not required, Liu et al. [3] developed a method that makes
use of “eigen-trajectories,” a middle-level representation
between 2D and 3D, and smoothes camera motion in the
subspace of feature trajectories. However, the method
requires a certain number of long feature trajectories. It
potentially breaks down when such trajectories are not
enough, which usually occurs in videos suffering from
serious blurriness. Goldstein and Fattal developed a

method that uses a projective scene reconstruction [4] to
handle parallax without 3D reconstruction. Their method,
however, cannot work well on videos with strong occlu-
sions and non-Lambertain surfaces.

In this paper, we introduce a video stabilization method
that can handle parallax and is robust to poor motion
estimation results. Our key insight is that the tracked
features are spatially and temporally correlated. Solving a
video stabilization problem in separate passes, say, com-
puting spatial relations (such as planar assumption, SFM,
and subspace extraction) followed by smoothing the
reduced parameters, cannot make use of all the feature
trajectories. Accordingly, we formulate stabilization as a
spatial-temporal optimization problem that considers both
smoothing and spatial rigidity simultaneously to handle
parallax. This formulation enables our system to utilize
both long and short feature trajectories and approach global
optimal solutions when stabilizing videos. To achieve high
performance, we represent each smoothed feature trajec-
tory using a Bézier curve when minimizing the objective
function. Since the unknowns are reduced from feature
positions to only curve control points, heavy computational
cost and memory consumption can be prevented. By setting
a lower degree to Bézier curves, this representation also
achieves strong stabilization because each smoothed feature
trajectory is interpolated from the optimized control points.
Although the Bézier curve idea may be not new [3], [5], [6],
[7], we embed this reduced model in the spatial-temporal
optimization problem and enable high-performance video
stabilization that creates high-quality camera motion.

During the optimization, we explicitly constrain the
spatial offsets of neighboring features in each frame when
smoothing their motions. Each local region is enforced to
undergo a rigid transformation because the stabilization
will typically not change the viewpoint too much and thus
will not distort the interior content, unless the video suffers
from rolling shutter artifacts. In addition, the Bézier
representation enables our method to directly smooth
feature trajectories and thus, our system can handle parallax
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well. Although the number of variables in each trajectory
has already reduced, the computational cost of our system
would still increase as more and more trajectories are added
when the video becomes long. We, therefore, optimize the
feature trajectories within the moving time window in a
streaming manner while constraining the smoothness in the
overlapping frames to achieve scalability. Once all trajec-
tories are optimized, we consider the smoothed features as
positional constraints and apply the content preserving
methods to warp video frames sequentially. Finally, a
cropping window is determined to capture the maximal
area containing only valid information to produce the
stabilizing result.

We demonstrate the effectiveness of our technique by
comparing it to state-of-the-art techniques [3], [4], [8] on a
variety of videos containing large parallax and strong
occlusions. Experiments show that our method can handle
parallax and is robust to challenging examples. Since the
L1-Optimization method provided by Youtube [8] is the
most robust technique among these recent works, we also
evaluate the performance of our framework by conducting
a user study with 74 participants, which showed strong
preference of our method over [8].

2 RELATED WORK

Video stabilization techniques have been developed to
smooth shaky camera motions. Two-dimensional stabiliza-
tion methods estimate a homography sequence from the
input video, dampen this sequence, and warp video frames
based on the smoothed sequence [9], [10], [11], [12], [13],
[14]. A recent method achieves aggressive smoothing using
L1 optimization [8], in which the gradient of the camera
motion at each frame can be strongly suppressed, to
produce very high-quality results. However, the use of 2D
motion models still limits its ability to handle parallax.

Three-dimensional stabilization methods use SFM to
estimate 3D camera motion and scene structure, followed
by smoothing the camera motion. These methods then
render a new video according to the smoothed camera path
using image-based rendering [15], [16], homography ap-
proximation [17], or content-preserving warp [1], [18].
However, SFM is a difficult and time-consuming computer
vision problem. It often fails when the video 1) lacks
parallax, 2) contains camera zooming, or 3) suffers from
rolling shutter artifacts. Therefore, these 3D methods are not
practical in many examples.

Liu et al.’s method [3] smoothes feature trajectories with
subspace constraints to achieve robustness and efficiency.
The tracked feature trajectories are factorized into low-
dimensional key bases and reconstruction coefficients. Their
method then smoothes the bases followed by trajectory
reconstruction to stabilize videos. However, the streaming
factorization requires long feature trajectories to cover the
entire factorization window, which do not usually appear in
videos containing dynamic backgrounds and large fore-
ground motions. Goldstein and Fattal [4] applied the
projective reconstruction to account for simple geometric
relations between points and epipolar lines, which raises the
robustness of scenemodeling. They also derived a time-view
point reprojection to stabilize trajectories ofmovingobjects so

that the defined warping constraints can be spread more
uniformly across the frame to capture the scene shape.
However, the projective reconstruction relies on relative
positions of corresponding features between images, so the
method fails at examples that have strong occlusions and
non-Lambertian surfaces. Liu et al. [2] stabilized videos that
are captured by depth cameras, inwhich the relativemotions
of neighboring content can be estimated and then preserved
when smoothing the cameramotion. As thismethod requires
depth acquisition, it cannot work for regular videos. In
contrast, our method, which smoothes each feature motion
while retaining the offsets to neighboring features in the
spatial-temporal coordinate system, achieves high-quality
stabilizationwithout requiring long feature trajectories, scene
reconstruction, or depth acquisition.

Although CMOS technique is becoming appealing due to
its low-cost and low-power consumption, its row by row
readout causes rolling shutter artifacts. To remove the
artifacts, methods such as [19], [20] estimate the parametric
motion between consecutive frames and apply the regular-
ization method to minimize temporal derivative of the
motion. Recently, Grundmann et al. [21] introduced a
calibration-free algorithm, which removes blind rolling
shutters using mixture model of homographies, to handle
challenging artifacts introduced by various CMOS cameras.

3 FEATURE TRAJECTORY SMOOTHING

We stabilize videos by smoothing the trajectories that are
integrated from the KLT features [22]. Similar to the
subspace method [3], the tracked features on moving
objects are ruled out in advance using the epipolar
constraint [23]. We then smooth the remaining feature
trajectories while retaining their spatial relations to
stabilize videos. Note that this outlier rejection is not
necessarily perfect because the remaining foreground
features have nearly static motions and those regions can
be treated as backgrounds.

Let the ith trajectory be Pi ¼ fpm
i ;p

mþ1

i ; . . . ;pn
i g, where

pi ¼ ðxi; yiÞ 2 R2 is the feature position, and m and n are
the start and the end frames of Pi, respectively. Our goal is
to solve an optimization problem that can minimize the
acceleration of Pi in each frame while constraining the
offsets of neighboring trajectories to be consistent within
the input video. To achieve high performance, we represent
each smoothed trajectory using a Bézier curve and reduce
the unknown variables from all feature positions to curve
control points. This reduced model also achieves strong
stabilization because the smoothed feature positions are
interpolated from the control points. We show the details of
our technique in the following sections.

3.1 Objective Function

Spatial rigidity preservation. As proved in the work of [3],
individual smoothing of feature trajectories distorts geo-
metric relationships of video objects. Therefore, we retain
the spatial rigidity when stabilizing a video to preserve
neighboring feature trajectories to have similar treatments.
Specifically, we compute the neighbor relations between
features in each frame using the Delaunay triangulation and
enforce each triangle to undergo a rigid transformation.
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This constraint works well in most videos that are free from
rolling shutter artifacts because the change to the camera
motion is typically small in video stabilization. That is,
triangles are allowed to move and rotate but their sizes and
shapes should be retained. Since features are not uniformly
distributed, they may be very different in consecutive
frames (see Fig. 2) and thus, preserving only relative
positions of features is not sufficient to stabilize the regions
that have no features in the current frame but have some
previously. We thus add four corners of each frame when
computing the Delaunay triangulation and introduce the
energy term

�c ¼
X

t

X

f

X

fi;jg2EðfÞ

�

�ðr0ti � r0
t

j

�

�Rt
�

rti � rtj
�
�

�

2

F
; ð1Þ

where t is the frame index, EðfÞ denotes the edges of
triangle f , r ¼ fc;pg, c is the original corner position, R is
the unknown rotation matrix, and r0 is the smoothed
version of r.

Original camera motion approximation. Clearly, video
stabilization cannot deviate the smoothed camera motion
from its original trajectory too much because the motion
usually has important meanings. This requirement also
reduces the content loss because video frames are
transformed during the stabilization and only the over-
lapped areas throughout the entire video will remain.
Therefore, let p0 be the smoothed feature position, we give
the energy term:

�p ¼
X

Pi

X

t

�

�p0t
i � pt

i

�

�

2

F
: ð2Þ

Individual trajectory smoothing. To achieve video stabiliza-
tion, we can minimize the acceleration of each feature
motion using the energy term

�s ¼
X

Pi

X

t

�

�p0t�1

i � 2p0t
i þ p0tþ1

i

�

�

2

F
: ð3Þ

However, minimizing the objective function �c þ �p þ �s

requires solving all feature positions in one step, where
the number of unknown variables is tremendous. This
requirement would lead to heavy computational cost and
large memory consumption when a long and high-
resolution video is processed. In addition, as pointed
out by Grundmann et al. [8], least-squares optimization
satisfies (3), on average, which would result in small but
nonzero gradients between consecutive frames. It means
that the optimized video is only less shaky but still not
stable (see Fig. 3 and our online supplemental video
Bezier.mp4, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2013.11). To solve these two problems,
we represent the smoothed trajectory using a Bézier
curve so that feature motions can be strongly smooth and
the unknown variables are greatly reduced. Specifically,
each node on a trajectory is written as pt

i ¼
Pd

‘¼0
!
t;‘
i q‘

i ,
where !t;‘ ¼ d

‘

� �

ð1� rÞd�‘
r‘, d is the degree of Bézier

curve, qi are the control points and r ¼ t�n
m�n

is the
interpolation coefficient. Thus, our goal becomes approx-
imating each jittering feature trajectory using a Bézier

curve while retaining the offsets of neighboring features

in each frame. Formally, we rewrite the unknown feature

position p0t
i in (1) and (2) to

Pd
‘¼0

!
t;‘
i q‘

i and neglect (3)

when solving the optimization.
Generally, a larger value of d can retain more content

after cropping while a smaller value enjoys stronger

camera stabilization due to the different degrees of Bézier

curve fitting. For generality, we set d ¼ 2 in all our

experimental results, except the online supplemental video

DegreeComparison.mp4, that we used to illustrate the effect

of different degrees.
Reliability constraints. When video frames containing no

features, there is no way to determine their smoothed

positions. The minimization of (1) and (2) subject to the

Bézeir constraint is not sufficient to stabilize such jittering

videos because the unknowns are not correlated. Therefore,

we slightly enforce the corners of these extremely difficult

frames to have smooth transitions between consecutive time

steps, so that our system can be robust to all challenging

examples. Specifically, we add the energy term

�r ¼
X

t2U

X

3

i¼0

�

�ct�1

i

0 � 2cti
0 þ ctþ1

i

0�
�

2

F
; ð4Þ

where i is the corner index and U is the set of frames that

have no features.

3.2 Optimization

By integrating the mentioned energy terms, we search for

the control points of Bézier curves that can minimize the

objective function

� ¼ wc�c þ wp�p þ wr�r; ð5Þ

to stabilize videos, where wc, wp, and wr are the weighting

factors (wc ¼ 10, wp ¼ 1, and wr ¼ 0:01 in all our experi-

ments). The optimization is solved by iteratively updating

the unknown corners, the control points of Bézier curves

and the rotation matrixes because they are correlated.

Specifically, we first set R ¼ I and compute q and c by

solving a linear system. R is then determined by first

computing a homography transformation between the

original and the smoothed features and corners, and

followed by using the singular value decomposition to

eliminate the shear and the scale components. Please refer

to [24] for more optimization details. Once the control

points are obtained, we compute the stabilized feature

positions at each frame using p̂t
i ¼

Pd
‘¼0

!
t;‘
i q‘

i .
It is known that the Bézier and the rigidity constraints

conflict when handling videos that have parallax. Expecting

each region to undergo an exact rigid transformation cannot

stabilize the video since features with different depth values

have different shaking magnitudes. When this conflict

happens, our system can still smooth feature motions to

handle parallax because our Bézier representation is a hard

constraint but �c is a soft one. While the triangles may be

slightly distorted, each stabilized feature trajectory is

definitely smooth because it is interpolated from the

optimized Bézier control points.
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3.3 Implementation Details

Scalability. We solve for a subset of video frames instead of
the whole video cube at a time to prevent the scalability
problem, even though each feature trajectory is already
transformed into a reduced model. This streaming strategy
is very helpful to our system because the captured videos
are usually long and the computational cost would
increase rapidly. Therefore, we segment the video into
shorter clips, with each clip containing k frames, and with
g frames overlapping between consecutive clips (k ¼ 200

and g ¼ 50 in all our experiments). During the optimiza-
tion of the �th clip, we solve for the smoothed feature
positions from frame k� �� g to frame k� ð�þ 1Þ (see
Fig. 4). Hence, a long trajectory will be approximated using
several Bézier curves. We thus set positional constraints in
the overlapping frames to prevent the discontinuity
artifacts caused by our streaming approach. Specifically,

when stabilizing the �th (� > 0) clip, we replace pt
i by p̂t

i in
(2) if k� �� g � t � k� �, where p̂ is the stabilized feature
position obtained in the ð�� 1Þth clip. Since some features
are computed twice in consecutive clips, they may have
very similar but different positions. We determine their
smoothed positions by linear blending.

Bézier curve fitting. Apparently, a Bézier curve may not
well fit the shape of a long and twisting trajectory. Although
our streaming implementation that solves a subset of video
frames at a time can ease the problem, it potentially
happens to some complicated camera motions and results
in waving artifacts. Therefore, before the minimization of �
shown in (5), we compute a best fit Bézier curve for each
trajectory without considering spatial rigidity. We then
determine the fitting error by computing the largest
distance between the pair of the original and the smoothed
feature positions. For the trajectory having a fitting error
larger than � pixels, we partition it into two subtrajectories
at that position. This process repeats until each partitioned
trajectory can be well fitted. We set � ¼

ffiffiffiffi

A
p

in our system,
where A is the averaged triangle area.
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Fig. 2. We show the features and the neighboring relations using red dots and green triangles. Clearly, the spatial preservation based on only green
triangles potentially causes instability artifacts due to the sudden appearance of right features. We thus further retain the relative offsets of four
corners to features (purple triangles) in each frame to prevent this problem.

Fig. 1. The original (a) and the stabilized (b) feature trajectories are shown in the spatial-temporal coordinate system. We smooth feature trajectories
while retaining the neighboring feature offsets (c) in each frame to handle parallax. We then warp each video frame based on the stabilized features
and crop the maximal overlapping area to produce the result (d).

Fig. 3. We compare the smoothness of stabilized feature trajectories
using acceleration minimization and Bézier curve fitting.

Fig. 4. We streamingly stabilize a long video to achieve scalability. The
feature positions in the overlapping frames are smoothed to prevent the
discontinuity artifacts.



4 VIDEO WARPING

We warp video frames according to the optimized feature
positions to determine the result. We render each video
frame based on the deformed grid mesh, rather than the
triangular one shown in Fig. 2 because the appearing and
the missing features are less reliable (pointed out by Liu
et al. [1]), and additional stability constraints are needed.

Specifically, we represent each video frame using a
regular grid mesh Mt ¼ fVt;Etg with each quad covering
roughly 10� 10 pixels, where vt

i 2 Vt and fi; jg 2 E are the
grid vertices and edges, respectively. During the frame
warping, we expect each quad to undergo a homography
transformation Ht while constraining each feature to locate
at the smoothed position according to the feature reliability.
The transformation Ht can be considered as a 2D stabiliza-
tion and it is computed according to the original and the
smoothed features and corners. We use this homography to
stabilize the regions with no features, including homo-
geneous regions and moving foregrounds. Although the
transformation Ht treats each moving foreground as a
plane, our system does not introduce noticeable visual
artifacts because the foreground motions are usually much
larger than the jittering caused by depths.

Due to the discrete representation, we constrain each
feature position using the linear combination of surround-
ing vertices when warping a video frame. We also
compute the reliability value of each feature using �ti ¼
minð1; t�m

10
; n�t
10
Þ, which is mainly based on distances to end

points of a trajectory. By considering the above criteria, we
minimize the objective function Dt

h þDt
p to warp each

video frame, where

Dt
h ¼

X

fi;jg2Et

�

�

�

v̂t
i � v̂t

j

�

�Ht
�

vt
i � vt

j

�
�

�

2

F
; ð6Þ

Dt
p ¼

X

p̂t
i

�ti

X

j2Lt
i

�tjv̂
t
j � p̂t

i

�

�

�

�

�

�

�

�

�

�

�

�

2

F

; ð7Þ

Lt
i are the indexes of vertices surrounding p̂t

i and � is the
combination weight. Note that solving the mentioned
objective function does not degenerate our algorithm to a
2D stabilization even though the energy term Dt

h treats each
video frame as a plane, because the features are still
constrained at the smoothed positions by Dt

p. As Fig. 5
shows that the quad deformations are similar but not
identical to ensure all features moving smoothly. Once all

meshes are transformed to achieve stabilization, we linearly
interpolate pixel colors in each quad and determine the
maximal window that covers only valid information to
produce the stabilized video.

5 RESULTS AND DISCUSSIONS

We implemented and tested our algorithm on a desktop PC
with Core i7 3.0-GHz CPU. We use the direct solver with
Cholesky factorization to minimize � in (5) to achieve high
precision. In general, the computational cost mainly
depends on the number of feature trajectories. The
trajectory lengths do not affect the performance too much
because we have already transformed each trajectory into a
Bézier curve and only control points are solved to obtain its
smoothed version. In addition, we stabilize a subset of
video frames sequentially instead of the whole video cube
at a time to achieve scalability. The size of the linear system
is thus small. For the example, we show in Fig. 1, there are
563,351 feature positions among 775 frames. Since we
represent each trajectory using a quadratic Bézier curve,
we solve for only 3� 7;008 control points in average when
stabilizing each 200-frames segmented video clip so as to
achieve high performance. On the other hand, we use the
conjugate gradient method to warp each video frame
because the frame can be prewarped using the homography
transformation and used as an initial guess for fast
convergence. We also leverage parallel implementation to
speed up individual frame warping. Table 1 shows the
timing statistics. Our method uses the Voodoo camera
tracker [25] to track KLT features. While the KLT
implementation used in our method is not real-time, feature
trajectory estimation is a common step in existing video
stabilization methods. Our method achieves real-time
performance after we preprocess the input video to estimate
the KLT feature trajectories.

We have tested diverse examples containing dynamic
backgrounds, strong occlusions and large parallax to
demonstrate the effectiveness of our system. All the results
are generated automatically using the default parameters.
Many of the examples involve large foreground objects
occupying almost the whole video frame, making the
stabilization rather challenging. While previous methods
[3], [4], [8] all fail in such difficult examples, our technique
successfully stabilizes the videos with no visual artifacts. To
achieve a fair comparison, we also tested the videos chosen
from previous methods to demonstrate that our system not
only works well in our selected examples but also in theirs.
Please refer to Figs. 1, 5, 6, and 7, the accompanying videos
and our project webpage1 for more results and comparisons,
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Fig. 5. (left) The warped quad mesh and the smoothed features. (top
right) The warped frame. (bottom right) The original frame. We warp
each video frame by enforcing features to be located at the smoothed
positions so that some grid lines bend although each local region is
transformed homographically.

TABLE 1
Video Information and the Corresponding Timing Statistics

Note that the timing of KLT feature extraction is not included

1. http://people.cs.nctu.edu.tw/~yushuen/VideoStabilization/.



especially as the temporal stabilities are difficult to visualize
and appreciate in still images.

Robustness. Our system can leverage very short feature
trajectories because we solve a global optimization to
achieve video stabilization. When sometimes the frame
number of a trajectory n�mþ 1 may be smaller than the
number of Bézier control points dþ 1, we represent that
trajectory using the curve with degree n�m in our
implementation. Although our stabilizing result will be
equal to the original video if all trajectories are two frames
long, this extreme case rarely appears. Moreover, our
reliability constraint allows some video frames to have
even no features because constraining corner vertices to
have smooth transitions ensures all unknowns being
correlated when solving the optimization. Although the
frames with no features may not be effectively stabilized in

this scenario, our system can produce the result for such a
challenging example, which is much more stable than its
original version (see Fig. 8 and our online supplemental
video limitation.mp4).

Comparisons. We have compared our results with those
stabilized by state-of-the-art techniques, including L1-
optimization [8], the subspace [3], and the epipolar [4]
methods. The 3D stabilization [1] is not included because
the latter two approaches [3], [4] can also handle parallax
and have been demonstrated to be more robust. We show
that our method can work well on videos that are shown in
the paper of [3], [4], [8] in our online supplemental
materials (CompToLiu.mp4, CompToGrundmann.mp4, and
CompToGoldstein.mp4). Meanwhile, we focused on the
selected challenging examples containing large parallax,
strong occlusions and fast camera motions to demonstrate
the effectiveness of our technique. Since the methods of [3],
[4] fail at producing many results among these examples,
we thus mainly compare our technique to [8] in our demo
video Main.mp4. For those examples that the subspace and
epipolar methods [3], [4] can stabilize, we show their
results as well as ours in challenging.mp4.

The L1-optimization results we used for the comparison
are from the YouTube Video Stabilizer,2 which is imple-
mented based on Grundmann et al.’s technique [8]. This
strategy strongly smoothes camera paths by solving
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Fig. 6. From left to right are the consecutive frames. In this example, the appearing, existing and the missing features are shown in blue, red and
green, respectively. The subspace [3] and the epipolar [4] methods fail at this example due to short feature trajectories. Our approach successfully
stabilizes the video since the global optimization is solved.

Fig. 7. We show the warped video frames (top row) and the cropped results (bottom row) that are determined by our system.

2. http://youtube.com/editor.

Fig. 8. Although our algorithm is robust to all challenging examples,
the stabilization is not effective if there are no background features in
some frames.



inequality constraints. Although their system is robust to
challenging examples, its 2D nature limits the ability to
handle parallax, in which case global shaking potentially
appears after stabilization, as demonstrated in the accom-
panying video. In contrast, we smooth feature trajectories in
the spatial-temporal coordinate system to coherently trans-
form features with different depth values and handle
parallax well.

User study. Based on the selected challenging examples,
we conducted a user study with 74 participants coming
from diverse backgrounds and ages to evaluate our method.
The participants were presented with an original video and
two stabilizing results side by side, and they were asked to
answer which result they prefer. During the study, the
questions are presented in a random order to avoid bias.
The results are automatically stabilized using [8] and our
technique. The methods of [3], [4] were not included in the
study because they fail to produce results for the examples
due to the lack of long feature trajectories.

Fig. 9 shows the summary of the obtained results, which
shows the significant preference of our method. Overall, it
was favored over the method of [8] in 77 percent of 616
comparisons. In particular, the participants prefer our
results that contain large parallax (see Fig. 9, U03.mp4,
U07.mp4, and U08.mp4 in our online supplemental material)
due to the less noticeable jittering artifacts. This obtained
statistic is not unexpected, because our stabilization system
can handle parallax well.

Limitations. Our system relies on the tracked background
features to stabilize videos. Since even state-of-the-art
feature trackers are not perfect, our stabilizing results are
not always satisfactory. Some video frames potentially fall
back to the shaky states due to excessive blur caused by
extremely fast motions or lack of rigid background objects
(see Fig. 8). In addition, the epipolar constraint may not
remove the foreground features if their motions are slow.
Our spatial rigidity preservation becomes insufficient in
this scenario. Fortunately, the induced distortions are not
visually noticeable because the relative positions of these
foreground features to their neighboring background
features change smoothly. Finally, as video frames are
warped to achieve stabilization, our system may crop too
much information if the given video is aggressively
stabilized. We consider solving the mentioned problems
in our future work.

6 CONCLUSIONS AND FUTURE WORKS

We have introduced a robust, efficient, and streamable
technique to video stabilization. Thanks to the spatial
preservation of features in each video frame, our system
successfully handles parallax without the reconstruction of
a 3D scene. Although we achieve high robustness by
solving a global optimization, our Bézier representation
greatly reduces the computational cost when stabilizing a
video. In addition, this strategy strongly stabilizes the video
because the feature positions are linearly interpolated based
on the optimized control points. Our technique matches or
performs even better than the quality of state-of-the-art
stabilizing systems while being robust to wide and diverse
set of examples. We show the experimental results in our
accompanying and the online supplemental videos to verify
our technique.

Our streaming implementation achieves scalability and
real-time performance when stabilizing long and high-
resolution videos, as long as KLT features are precomputed.
Since real-time KLT implementations are currently avail-
able,3 we plan to embed this GPU-accelerated feature
extraction into our system in the near future.
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