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Spatially Balanced Sampling with Local
Ranking

B. L. Robertson , O. Ozturk, O. Kravchuk, and J. A. Brown

Aspatial sampling design determineswhere sample locations are placed in a study area
so that population parameters can be estimated with good precision. Spatially balanced
designs draw samples with good spatial spread and provide precise results for commonly
used estimators when surveying natural resources. In this article, we propose a new
sampling strategy that incorporates ranking information from nearby locations into a
spatially balanced sample. If the population exhibits spatial trends, our simple local
ranking strategy can improve the precision of commonly used estimators. Numerical
results on several test populations with different spatial structures show that local ranking
can improve the performance of a spatially balanced design. To show that local ranking
is simple and effective in practice, we provide an example application for the health and
productivity assessment of a Shiraz vineyard in South Australia.

Supplementary materials accompanying this paper appear online.

Key Words: Environmental sampling; Quasi-random sampling; Ranked set sampling;
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1. INTRODUCTION

Themain objective of a spatial sampling design is to determinewhere sample locations are
placed in a study region so that population parameters can be estimated with good precision.
A common goal is to estimate the mean or total, but other population characteristics may
also be of interest. Natural resources are spatially distributed populations and their spatial
structure should be taken into account when sampling them. The exact spatial structure is
usually not known, but a reasonable assumption is that nearby locations tend to have more
similar response values than distant ones (Stevens andOlsen 2004). Hence, a simple strategy
to improve the precision of commonly used estimators is to spread the sample well over the
resource, called spatially balanced sampling (Stevens and Olsen 2004). In this article, we
consider drawing spatially balanced (SB) locations from a finite set � ⊂ R
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SB designs are known to perform well when sampling natural resources (c.f. Stevens
and Olsen 2004; Grafström and Lundström 2013; Grafström and Schelin 2014) and many
designs have been proposed. One of the first and most widely used SB design is generalized
random tessellation stratified (GRTS, Stevens and Olsen 2004). Stevens and Olsen (2004)
define the spatial balance of a sample {x1, x2, ..., xn} ⊂ � using a Voronoi tessellation.
The sample is considered spatially balanced if

vi =
∑

x j∈ωi

π j ≈ 1 for all i = 1, 2, ..., n,

where 0 < πi < 1 denotes the inclusion probability of xi and ωi is the set of points from
� that fall within the Voronoi polygon for xi , given by

ωi = {
x ∈ � : ‖x − xi‖ ≤ ‖x − x j‖ for all j = 1, 2, ..., n

}
.

GRTS is particularly useful for sampling natural resources because SB over-samples can be
drawn if nonresponse is anticipated (Stevens and Olsen 2004; Larsen et al. 2008). Chauvet
and Le Gleut (2020) improved the statistical properties of GRTS, and a computationally
efficient implementation of GRTS was proposed.

A variety of SB designs have been proposed to draw sample locations from natural
resources (c.f. Benedetti et al. 2015; Kermorvant et al. 2019). Several methods map� to the
real line and then draw sample locations from the one-dimensional frame using, for example,
systematic sampling (Stevens and Olsen 1999, 2003, 2004, Theobald et al. 2007, Dickson
and Tillé 2016). Benedetti and Piersimoni (2017) proposed a flexible class of designs that
draw SB samples based on awithin-sample distance or similaritymeasure. Another group of
methods apply a local repulsion strategy to ensurewell-spread samples are drawn (Grafström
2011; Grafström et al. 2012; Grafström and Tillé 2013; Grafström and Matei 2018). SB
designs based on the Halton sequence (Halton 1960) have been proposed (Robertson et al.
2013, 2017; van Dam-Bates et al. 2018; Robertson et al. 2018, 2021). The Halton sequence
is quasi-random and generates evenly spread points with similar spatial properties to a
regular lattice; however, unlike a regular lattice, points can be added incrementally with no
clumping of points.

In this article, we aim to improve the performance of a SB design by incorporating local
ranking information into its sample selection strategy. We consider four SB designs, but
the method can be easily incorporated into any design. The first method is GRTS with
reverse hierarchical ordering. This ordering ensures that all contiguous GRTS subsamples
are SB samples (Stevens and Olsen 2004). The second method is the local pivotal method
(LPM, Grafström et al. 2012). LPM is a very flexible design that uses a local repulsion
strategy to draw SB samples. LPM can draw unequal probability samples and can spread
samples over several auxiliary variables. The third method is the product within distance
design (PWD, Benedetti and Piersimoni 2017), which uses the within sample distance as the
summary index of the spatial distribution of a random selection criterion. The final method
is Halton iterative partitioning (HIP, Robertson et al. 2018), which draws SB samples from
a nested partition related to structural properties of the Halton sequence. HIP samples have
the property that all contiguous subsamples are SB samples (Robertson et al. 2018).
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Ranked set sampling (RSS) is a design that incorporates ranking information into its
sample selection strategy. The ranking information creates artificial strata (judgment classes)
so that homogeneous units can be grouped together without measuring the response variable
directly. Measuring the response variable at points drawn from these artificial strata aims
to achieve good coverage over the full range of the response variable. The method was first
proposed by McIntyre (1952) and later named RSS by Halls and Dale (1966). The balanced
RSS procedure begins by randomly drawing k sets of points from �, with each set having k
points. The points in each set are then judgment ranked using an efficient and inexpensive
method that does not require full measurements of the response variable. Examples of
judgment ranking are to use a quick estimate of the response variable, a visual comparison,
an expert opinion, or measurements of an auxiliary variable related to the response. Then,
based on these rankings, the response variable is measured for the i th ranked point from
set i , with i = 1, 2, ..., k. Even though k2 points are drawn, the response variable is only
measured at k points. These k measurements represent a cycle, and m cycles are used to
achieve a RSS of size n = km. Unbalanced RSS and RSS with random subsamples for
n < km are also possible (Amiri et al. 2015). This approach to data collection has led to
an active field of research and many RSS approaches have been proposed (c.f. Wolfe 2010,
2012; Bouza-Herrera and Al-Omari 2019). Of particular interest for this article is the work
by Robertson et al. (2021) on quasi-random RSS (QRSS).

QRSS uses a quasi-random number sequence, rather than a pseudo-random number
sequence, to draw a ranked set sample of k locations from a continuous natural resource.
To begin, the resource is first scaled and translated to fit within the unit box. Then, using
a ranking set size k, the first k2 points from a random-start Halton sequence (Wang and
Hickernell 2000) that fall within the resource are chosen. These SB locations are divided
into k distinct ranking sets, with each set containing k locations. Each ranking set is judgment
ranked and based on these rankings, the response variable is measured for the i th ranked
location from set i , with i = 1, 2, ..., k. Although the locations of the ranking variable
are SB, there is no guarantee that the locations of the response variable are well spread.
The authors showed that spreading the locations of the ranking variable in this way can
substantially improve the precision of the sample mean when compared with balanced RSS.

In this article, we propose a new sampling strategy that incorporates local ranking infor-
mation into a SB sample. The local ranking strategy we propose is simple:

1. Draw a SB sample of locations and at each location, judgment rank a set of nearby
secondary sampling units (ssus); and

2. Measure the response variable at one judgment ranked ssu at each location.

The motivation for our approach is twofold. Firstly, to improve the precision of SB sampling
by incorporating local ranking information into the design. Because the judgment ranked
ssus are near the SB locations, a locally ranked sample is also SB. Hence, we expect the
locally ranked approach to perform at least as well as the SB design used to draw the loca-
tions. Secondly, to provide a RSS approach that is not too onerous to implement in practice.
Our method ensures that field technicians measure the response and ranking variable at
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nearby sites to assist data collection. For example, ranking neighboring vines in vineyard,
rather than ranking distant vines, before counting the number of fruiting buds (see Sect. 4).

The rest of this article is organized as follows. In Sect. 2, SB samplingwith local ranking is
introduced and estimation techniques are discussed in Sect. 2.2. Local ranking is numerically
tested in Sect. 3 and an example application for the health and productivity assessment of
a Shiraz vineyard in South Australia is given in Sect. 4. This assessment is integral to the
management decisions on pruning or harvesting, and an improvement in sampling efficiency
or accuracy enables better management actions. Concluding remarks are given in Sect. 5.

2. LOCALLY RANKED SAMPLES

To perform SB sampling with local ranking, a sampling frame consisting of primary
sampling units (psus) and ssus is needed such that each psu contains nearby ssus. A sampling
frame of this form can be constructed in a number of ways.

1. Merge nearby units/plots/panels into larger distinct groups.

2. Exploit naturally occurring structure in the population, for example, row/column or
grid structure (see Sect. 4), blocks or panels.

3. Partition units/plots/panels into smaller ssus. For example, divide a large plot into
two smaller plots to reduce the data collection effort at each location.

In this article, we assume a sampling frame containing spatial coordinates for N psus

�psu = {x1, ..., xN } ⊂ R
2,

where xi is the location of the i th psu with response value yi and inclusion probability πi .
Furthermore, the i th psu is partitioned into k ssus {xi,1, ..., xi,k} such that

yi =
k∑

j=1

yi, j , (1)

where yi, j is the response at xi, j (the j th ssu at the i th psu). Other than satisfying (1), there
are no restrictions on how the ssus are formed. Therefore, the ssus should be defined to
assist data collection and make ranking simple.

2.1. SPATIALLY BALANCED SAMPLES WITH LOCAL RANKING

Consider estimating the population total

τ =
N∑

i=1

yi =
N∑

i=1

k∑

j=1

yi, j ,
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by measuring the response variable at a sample of n = km + α ssus, where k,m ≥ 1 and
0 ≤ α < k are integers. A locally ranked SB sample with ranking set size k is drawn using
the following two-stage sampling approach.

1. Draw a SB sample of n = km + α psu locations from �psu, given by

S = {x1, x2, ..., xn}. (2)

2. Judgment rank the ssus at the sampled locations using a consistent ranking method
for a measured variable

{x1[1], x1[2], ..., x1[k]}
{x2[1], x2[2], ..., x2[k]}
...

...
...

{xn[1], xn[2], ..., xn[k]},

(3)

where xi[ j] is the j th ranked ssu at the i th psu location, xi .

3. Randomly select one ssu from each row of (3) such that

m ≤ m j ≤ m + �α/k	,

where m j is the total number of j th ranked ssus in the sample with
∑k

j=1m j = n.

Any SB design can be used at step (1) to draw the sample locations and several designs
are considered in Sect. 3. The ssus in (3) define a total of kn candidate ssus and the locally
ranked sample contains one ssu from each row. Because each rank is included at least m
but no more than m + 1 times, the inclusion probability of the i th psu, πi , is spread evenly
among its ssus. The inclusion probability of the j th ranked ssu at location xi , xi[ j], is

πi[ j] = πi

(
α

k

(
m + 1

mk + α

)
+

(
1 − α

k

) m

mk + α

)
= πi/k (4)

with
∑N

i=1
∑k

j=1 πi[ j] = n.
There is flexibility in how the ssus are drawn at step (3). Provided the sample order in S

is randomized, the locally ranked SB sample is

SLR = {x1[1], ..., xm1[1], xm1+1[2], ..., xm1+m2[2], ..., xn−mn+1[k], ..., xn[k]}, (5)

where m j ssus of rank j are included in the sample. In this article, we force spatial spread
in the locations for each rank in (5), such that

{x1, ..., xm1}, {xm1+1, ..., xm1+m2}, ..., {xn−mn+1, ..., xn} (6)

are SB subsamples from S. If GRTS or HIP is used at step (1), the sample output is ordered
such that the sets in (6) are SB samples (Stevens and Olsen 2004; Robertson et al. 2018).
Otherwise, the sets in (6) are obtained by sequentially using the SB design to draw equal
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probability samples of size m j from S, removing the sampled locations from S after each
iteration.

2.2. ESTIMATION

Locally ranked SB samples have first order inclusion probabilities (4), so the Horvitz–
Thompson estimator

τ̂ = k
n∑

i=1

yi
πi

(7)

is an unbiased estimator τ , where yi is the response value for xi[ j] ∈ SLR. Because the psus
contain nearby ssus and the psus are SB, a locally ranked SB sample of ssus (regardless
of the rankings) is spatially balanced. Therefore, the variance of τ̂ depends explicitly on
the SB design used to draw the psu locations. Forcing spatial spread in a sample can make
second order inclusion probabilities difficult to calculate or close to zero (Stevens and Olsen
2003). For some SB designs, many second order inclusion probabilities are zero, meaning
a design-based unbiased variance estimator is not possible (Grafström and Schelin 2014;
Robertson et al. 2018).

Several variance estimators have been proposed for SB designs. The local mean variance
estimator (Stevens and Olsen 2003) was proposed for GRTS and is commonly used, given
by

v̂arNBH(̂τ ) =
n∑

i=1

∑

j∈Di

wi j

(
y j
π j

− τ̂Di

)2

, (8)

where Di is a neighborhood containing at least four nearest neighbors from the sample to the
i th point, τ̂Di is an estimate of the population total on Di and wi j are weights (see Stevens
and Olsen 2003). Although this estimator does not explicitly include ranking information,
each Di will likely include different ranked ssus because the locations of each rank in SLR

are SB samples (see 6).
Another estimator, based on squared local deviations (Grafström and Schelin 2014) was

proposed for LPM, given by

v̂arSB(̂τ ) =
n∑

i=1

n∗
i

n∗
i − 1

⎛

⎝ yi
πi

− 1

n∗
i

∑

j∈S∗
i

y j
π j

⎞

⎠
2

, (9)

where Si is a subset of the sample containing n∗
i points. This subset includes all the sample

points within a distance d of the i th point (including the i th point itself), where d is the
distance to the nearest neighbor in the sample. Robertson et al. (2018) tested (9) and found
it also worked well for HIP.

We also consider a resampling method proposed by Robertson et al. (2021) for equal
probability quasi-random sampling, which is based on modified bootstrap RSS (Modarres
et al. 2006). The variance estimator is given in Algorithm 1.
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Algorithm 1 Variance estimator for τ̂ under locally ranked SB sampling, v̂arBoot
1: Input: S = {xi , yi }ni=1, where yi is the measured response value at xi .
2: for b = 1 to B do
3: Define S∗

b = {x∗
i , y

∗
i }ni=1, where x

∗
i is the i th point in a SB sample from

4: �psu and y∗
i is the response value of x∗

i ’s nearest neighbour in S.
5: τ̂∗

b = N
n

∑n
i=1 y

∗
i .

6: end for
7: Output: v̂arBoot = 1

B
∑B

b=1(̂τ
∗
b −�τ∗)2, where�τ∗ = 1

B
∑B

b=1 τ̂∗
b .

At each pass of the outer loop (lines 2–6), an estimate of the population total τ̂ ∗
b is calcu-

lated from resampled response values. Lines 3 and 4 draw n SB psu locations from�psu and
for each psu, the nearest known response value from S is included in the resample. Resam-
pling response values using nearest neighbors instead of random sampling with replacement
aims to capture the spatial spread of locally ranked SB samples. Local ranking information
is implicitly captured because the locations of each rank in SLR are SB samples. The outer
loop gives B estimates of τ and the variance of these estimates is an estimator for var(̂τ ).

We test the performance of v̂arNBH, v̂arSB and v̂arBoot for locally ranked GRTS, HIP,
LPM and PWD samples in Sect. 3.3.

3. NUMERICAL RESULTS

In this section, we test the performance of equal probability SB sampling with local
ranking on several synthetic populations. We restrict our attention to psus containing two
ssus to investigate locally ranked samples in their simplest and most practical setting, where
two neighboring units are ranked. The psu locations were defined using 100 × 100 regular
grid over the unit box

�psu = {xi = (2λ1 + 1, 2λ2 + 1)/200 : i = 1, 2, ..., 10, 000},

where λ1, λ2 are integers from 0, 1, ..., 99. The locations of two neighboring psus at each
xi were defined using

xi,1 = xi − (1/400, 0) and xi,2 = xi + (1/400, 0)

so that

�ssu = {xi, j : i = 1, 2, ..., 10, 000 and j = 1, 2}.

We consider estimating the population total

τ =
10,000∑

i=1

yi =
10,000∑

i=1

∑

j=1,2

yi, j ,
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Figure 1. Three functions used to define the global spatial structure of the response variable.

where yi = yi,1 + yi,2 is the i th psu total and yi, j is the response value for xi, j . Although
the spatial locations of the ssus are not needed to implement our local ranking strategy,
defining them allows us to use existing designs that estimate τ by directly sampling either
�psu or�ssu. Hence, the benefits of merging neighboring units together to define larger psus
or dividing each psu into two smaller ssus can be investigated.

The response values for each population were defined via a continuous function f :
[0, 1)2 → R such that

yi, j = αi, j f (xi, j ),

where αi, j is a uniform random variable on [1 − �, 1 + �] with 0 < � < 1/3. The function
f determines the global spatial structure of the response and the parameter � removes the
smoothness from f by introducing random jumps/drops to increase local variability in the
response. We consider three functions from Robertson et al. (2018) and three levels of local
variability with � ∈ {0.1, 0.2, 1/3} to give a total of nine populations. These functions are
illustrated in Fig. 1 and reader is referred to the supplementary material for further details.

The three � values define different levels of local variability in the response. However,
for each population, the local variability is not large enough to obscure the spatial trends
defined by f . For � = 0.1, for example, we have locally similar response values

0.9 f (xi, j ) ≤ yi, j ≤ 1.1 f (xi, j )

with yi, j at most 10% above or below f (xi, j ). The intracluster correlation coefficients
(ICCs) for these 10% populations were between 0.95 and 0.98, indicating that most of the
variability occurred between the psus. Whereas, when � = 1/3, one of the psu’s response
values can be twice as large as the other, with ICCs between 0.63 to 0.83. We refer to these
three scenarios as locally similar response values (10%); moderate local variability (20%);
and relatively high local variability in the response (33%).

3.1. SAMPLING DESIGNS

Seven sampling designs were considered in the simulation study.

1. SRS (ssu) and SRS (LR): SRS on �ssu and local ranked SRS.
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2. HIP (ssu), HIP (psu), and HIP (LR): SB sampling using HIP on �ssu, �psu and with
local ranking.

3. GRTS (ssu), GRTS (psu), and GRTS (LR): SB sampling using GRTS on �ssu, �psu

and with local ranking (spsurvey, Dumelle et al. 2022).

4. LPM (ssu), LPM (psu), and LPM (LR): SB sampling using LPM on �ssu, �psu and
with local ranking (BalancedSampling, Grafström and Lisic 2019).

5. PWD (ssu), PWD (psu), and PWD (LR): SB sampling using PWD on �ssu, �psu and
with local ranking (Spbsampling, Pantalone et al. 2020).

6. RSS: RSS on �ssu with k = 2 and k = 5.

7. QRSS: QRSS on �ssu with k = 2 and k = 5 (see Sect. 3.1.1).

The (psu) and (ssu) sampling designs are single-stage methods and do not use ranking
information. The (ssu) designs draw sample locations directly from �ssu. The (psu) designs
are cluster sampling methods that sample �psu rather than �ssu directly. To begin, a sample
of n/2 SB psus was drawn. Then, the two response values from each sampled psu were
selected to give a total of n response values.

The remaining designs are two-stage methods that utilize ranking information. RSS
and QRSS sample �ssu directly, without using the population’s primary/secondary unit
structure. The locally ranked (LR) designs use the primary/secondary unit structure to draw
their sample. To begin, a sample of psus was drawn from �psu. Then, the ssus within each
sampled psu were ranked and the response was measured.We assumed that perfect rankings
were possible, but other than for ranking purposes, the magnitude of the ranking variable
was not utilized in the estimation. Although ranking errors are likely to occur in practice,
this allowed us to study RSS, QRSS and local ranking in their ideal settings.

3.1.1. Quasi-Random RSS Using HIP

In this section, we extend the QRSS design of Robertson et al. (2021) to point resources.
QRSS uses the random-start Halton sequence to ensure the locations of the ranking variable
are well spread over a continuous resource. For point resources, we use HIP to draw SB
sample locations for the ranking variable.

To draw a QRSS sample of n = km locations from �ssu, the following approach was
used. To begin, an equal probability HIP sample of k2m locations was drawn from �ssu.
These locations were then randomly assigned to km ranking sets, S1, S2, ..., Skm , with each
set containing k locations. The QRSS sample was defined using

Q = {x1[1], ..., xm[1], xm+1[2], ..., x2m[2], ..., x(k−1)m+1[k], ..., xkm[k]},

where xi[ j] ∈ Si had the j th lowest judgment ranking in set Si . Themain difference between
QRSS and HIP with local ranking is that the locations of the response values in QRSS are
not necessarily spatially balanced, only the locations of the ranking variable are well spread.
Locally ranked HIP samples are SB on the ssus because each ranking set is a psu containing
nearby ssus and the sampled psus are well spread over the resource.
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3.2. PRECISION

To investigate the precisionof a samplingdesign, var(̂τ )was estimatedusing the empirical
variance estimator over K = 10, 000 runs

v̂arSIM(̂τ ) = 1

K

K∑

i=1

(̂τi − τ)2, (10)

where τ̂i is the estimate of τ for the i th sample. We report relative precision by dividing
(10) by the variance of the Horvitz–Thompson estimator under SRS on �ssu, where values
less than one indicate greater precision in the proposed design.

Results for GRTS, HIP, LPM and PWD are displayed in Fig. 2. SB sampling was an
effective strategy here because each population has spatial trends that are not obscured by the
local variability, with the strongest trends in the Corrugated Plane populations. As expected,
the precision of SB sampling decreased as local variability in the response was increased.
For the 10% populations, the ICCs were between 0.95 and 0.98, which made local ranking
superfluous. Otherwise, for each SB design, local ranking consistently performed better
than SB sampling on �ssu, with PWD (LR) performing the best. SB sampling on �psu with
random (not ranked) ssu choice was also considered, but the results were indistinguishable
from SB sampling on �ssu. These results suggest that the precision of a SB design on
populations with spatial trends can be improved using our local ranking strategy.

Results for SB cluster sampling are given in the supplementary material, as shown in
Fig. 4. For each design, SB cluster sampling on�psu was less effective than SB sampling on
�ssu. The ICCs were relatively high (between 0.63 and 0.95) and so sampling �ssu directly
was a better strategy. In some cases, SB cluster sampling performed worse than SRS on
�ssu.

Results for locally ranked and RSS approaches are displayed in Fig. 3. SRS with local
rankingperformed slightly better thanSRSon the 33%populations, otherwise nomeaningful
gains in precision were observed. The RSS approaches were more precise than SRS, with
QRSS performing the best. The only difference between these ranked set designs is that
QRSS forces spatial spread in the locations of the ranking variable. Incorporating this
spatial aspect into the design proved useful here because these populations have spatial
trends. As expected, the larger ranking set size of k = 5 produced better results for both
approaches. However, these designs require substantiallymore ranking information, making
them more demanding to implement in practice. For most of the populations, QRSS with
k = 2 performed better than RSS with k = 5.

HIP (LR), LPM (LR) and PWD (LR) performed better than QRSS on most of the popu-
lations considered, with QRSS (k = 5) performing better than HIP (LR), LPM (LR) on the
Peak and Bird 33% populations. However, QRSS (k = 5) ranks 5n SB locations before the
response is measured. Locally ranked samples only need to rank 2n ssus at n psu locations
and the response is measured without leaving each psu’s location. Hence, it may not be fair
to compare QRSS (k = 5) with HIP (LR) and LPM (LR) directly, without considering the
impact of ranking error and the cost of sampling a larger number of units in the ranking
process. The important difference between QRSS and locally ranked SB samples is that
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Figure 2. Relative precision of GRTS, HIP, LPM and PWD on �ssu and with local ranking on the Corrugated
Plane, Peak andBird functionswith three levels of local variability in the response—locally similar (10%);moderate
(20%); and relatively high (33%).

the locations of the response values in QRSS are not necessarily SB. Hence, forcing spatial
spread in the locations of the ranking variable was an effective strategy, but retaining spatial
spread in the locations of the response variable was also important.
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Figure 3. Relative precision of local ranking and RSS designs on the Corrugated Plane, Peak and Bird functions
with three levels of local variability in the response—locally similar (10%); moderate (20%); and relatively high
(33%).

From a practical point of view, the results for SB sampling with local ranking are encour-
aging. Firstly, with k = 2, ranking is not too cumbersome and ranking errors are less likely
to occur. Secondly, because nearby ssus are ranked, we expect the implementation costs of
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a locally ranked and unranked SB design to be similar. A more efficient approach (from a
practical perspective) was SB cluster sampling, but the ICCs used here were too large to see
statistical gains. We investigate the effect of low ICCs and weak spatial trends in Sect. 4.
Finally, even if the local ranking is superfluous or unreliable, SB samples are obtained which
are known to perform well on populations with spatial trends.

3.3. VARIANCE ESTIMATION

In this section, we consider estimating the variance of τ̂ for locally ranked SB samples
using the nine populations from the previous section. We report the relative bias of the
proposed estimator v̂ar using (ave(v̂ar) − v̂arSIM)/v̂arSIM, where v̂arSIM is given in (10) and
ave(·) is the average over 10,000 runs. The results are displayed in Fig. 4.

The variance estimators proposed for GRTS, HIP and LPM, performed reasonably well
for locally ranked GRTS, HIP and LPM samples. The best estimator for locally ranked
GRTS was the local mean variance estimator. To simplify Fig. 4, these curves were omitted
because all relative biases for v̂arNBH were between -0.05 and 0.15. The v̂arNBH and v̂arSB
estimators provided conservative estimates for locally ranked LPM and HIP samples, with
v̂arSB having less bias on the 10% populations. The resampling variance estimator, v̂arBoot,
also performed well for locally ranked LPM and HIP samples, and had the least relative
bias for these methods.

The existing design-based variance estimators for SB approaches were not as effective
for locally ranked PWD samples. The v̂arNBH and v̂arSB estimators were conservative and
v̂arBoot was a little optimistic on the 33% populations.

The best estimate of var(̂τ ) for locally ranked SB samples depends explicitly on the SB
design used to draw the sample. The authors recommend using v̂arNBH for locally ranked
GRTS samples and either v̂arBoot or v̂arSB for locally ranked HIP, LPM and PWD samples.

4. EXAMPLE APPLICATION: COOMBE VINEYARD

A vineyard rootstock trial is established at Coombe Vineyard, University of Adelaide,
Waite Campus. The vineyard contains 350 Shiraz vines, which were planted in 1993 using a
grid pattern with 11 rows and 32 columns. Each vine’s trunk splits into two cordons (arms)
of vines, which are trained on wire, and it is expected that thicker cordons are pruned to have
more spurs (fruit bearing buds). See Johns (1957) for explanations and photos on training and
pruning Shiraz plants. Estimating the total number of spurs can be useful for research and
management purposes and can be incorporated into the overall assessment of the health and
productivity of a vineyard. Therefore, an improvement in sampling efficiency or accuracy
can enable better management actions. In 2019, University of Adelaide students conducted
a census on 348 vines (two vines were not available) at the vineyard, where the number of
spurs on each cordon was recorded. We use this population as an example application of
SB sampling with local ranking to estimate the total number of spurs (τ = 5780) at the
vineyard. Exploiting the inherent vineyard structure, the vines are psus and the cordons are
ssus, where each vine has two cordons to give a total of 696 cordons.
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Figure 4. Relative bias of v̂arNBH, v̂arSB and v̂arBoot for SB samplingwith local ranking on the Corrugated Plane,
Peak and Bird functions with three levels of local variability in the response—locally similar (10%); moderate
(20%); and relatively high (33%).

To draw a locally ranked SB sample, we begin by drawing a SB sample of n = 2m + α

vines from the vineyard, where m is an integer and α ∈ {0, 1}. Then, randomly choose
u ∈ {0, 1} and count the number of spurs on the lowest ranked cordons for m + u vines
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Table 1. Samples drawn from the Coombe Vineyard using four SB designs. Columns 2 to 4 show the relative
empirical variance estimates of τ̂ for sampling the psus, ssus, and local ranking, respectively. Column 5
shows the empirical variance for local ranking and columns 6 to 8 show estimates of this variance. All
values are averages using 10,000 runs

GRTS
n psu ssu LR v̂arSIM (̂τ ) v̂arNBH (̂τ ) – –

20 0.96 0.99 0.67 99,404 113,200 – –
50 0.95 0.99 0.66 37,530 46,203 – –
100 0.94 1.00 0.61 16,010 23,107 – –
150 0.94 0.98 0.58 9357 15,302 – –

HIP
n psu ssu LR v̂arSIM (̂τ ) v̂arNBH (̂τ ) v̂arSB (̂τ ) v̂arBoot (̂τ )

20 0.97 0.97 0.64 95,731 120,915 170,294 79,800
50 0.93 0.97 0.65 37,237 47,767 67,743 36,143
100 0.92 0.96 0.59 15,522 23,524 32,830 17,445
150 0.95 0.98 0.58 9328 15,594 21,875 9884

LPM
n psu ssu LR v̂arSIM (̂τ ) v̂arNBH (̂τ ) v̂arSB (̂τ ) v̂arBoot (̂τ )

20 0.95 0.99 0.66 97,542 120,123 179,015 73,815
50 0.93 0.97 0.65 37,093 48,058 71,498 29,606
100 0.94 0.96 0.61 15,925 23,755 35,667 14,411
150 0.93 0.97 0.59 9403 15,710 23,614 8721

PWD
n psu ssu LR v̂arSIM (̂τ ) v̂arNBH (̂τ ) v̂arSB (̂τ ) v̂arBoot (̂τ )

20 0.95 0.97 0.65 97,308 123,543 186,237 52,328
50 0.93 0.97 0.63 35,903 48,714 73,163 22,661
100 0.94 0.97 0.60 15,834 24,093 36,861 12,359
150 0.90 0.96 0.57 9170 15,884 24,462 7918

in the sample. For the remaining m + 1 − u vines in the sample, the spurs on the highest
ranked cordons are counted. A desirable feature of this approach is that only n (rather than
2n) locations need to be visited by the field technicians because the ranking is done locally
at each vine.

To test the effectiveness of the local ranking strategy on this vineyard, we compare
GRTS, HIP, LPM and PWD using local ranking and sampling the psus and ssus directly.
Ranking errors were not permitted andwe report relative precision by dividing each design’s
empirical variance (10) by var(̂τ ) under SRS. Two-stage SRS was also considered, but the
results were indistinguishable from SRS. Results are given in Table 1.

Drawing SB samples of cordons (ssus) with GRTS, HIP, LPM and PWDproduced results
similar to SRS. Hence, spatial trends in the cordon counts were too weak to observe a statis-
tical advantage from SB sampling. The ICC was low (−0.03) for this clustered population,
and hence, drawing SB samples of vines (psus) was effective, with each SB design perform-
ing slightly better than SRS. However, the greatest improvements over SRS were made with
local ranking.

Local ranking substantially improved the statistical performance of each SB design. SB
sampling psus with random (not ranked) ssu choice was also considered, but the results were
indistinguishable from SB sampling the ssus. In terms of practical implementation, the only
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difference between a SB design and a locally ranked SB design is that the field technician
needs to rank neighboring cordons before the spurs are counted. The v̂arNBH estimator
performed well for the locally ranked SB samples and v̂arSB was overly conservative for
HIP, LPM and PWD. The resampling estimator, v̂arBoot, produced good estimates for HIP,
but consistently underestimated var(̂τ ) for LPM and PWD.

5. CONCLUSION

In this article, we introduced a new sampling strategy that incorporates local ranking
information into a SB sample. The strategy is simple and can be used with any SB design.
To begin, a SB sample of psus containing nearby ssus was drawn. The ssus at each sampled
psu were then judgment ranked, and based on these rankings, the response variable was
measured at one ssu from each sampled psu. Because the psus contain nearby ssus, these
samples are SB and not too onerous to select in practice.

Numerical results on test populations with different spatial structures and three levels of
local variability showed that local ranking was an effective strategy for GRTS, HIP, LPM
and PWD. If the response values within the psuswere similar, local rankingwas superfluous.
However, if there was local variability in the response, local ranking improved the precision
of the Horvitz–Thompson estimator. Existing design-based variance estimators for GRTS,
HIP, LPM and PWD were tested and performed reasonably well for locally ranked samples
on the populations considered.

Local ranking was also an attractive alternative to QRSS. Although QRSS’s strategy of
forcing spatial spread in the locations of a ranking variable was effective, retaining spatial
spread in response variablewas also advantageous. Fromapractical standpoint, local ranking
has an advantage for field technicians because ranking nearby ssus assists data collection.
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