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Spatially defined single-cell transcriptional profiling

characterizes diverse chondrocyte subtypes and nucleus

pulposus progenitors in human intervertebral discs
Yibo Gan1,2, Jian He 3, Jun Zhu1, Zhengyang Xu3, Zhong Wang1, Jing Yan3, Ou Hu1, Zhijie Bai3, Lin Chen4, Yangli Xie4, Min Jin4,

Shuo Huang4, Bing Liu3,5,6✉ and Peng Liu 1,2✉

A comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development,

homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108

IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including

the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on

their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a

PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage

differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β

cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially

regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new

therapeutic strategies for IVD degeneration in the clinic.

Bone Research            (2021) 9:37 ; https://doi.org/10.1038/s41413-021-00163-z

INTRODUCTION
Degenerative disc disease (DDD) is regarded as the primary
cause of low back pain, resulting in a global healthcare burden
and significant socioeconomic costs.1 It may lead to a severe
impact on the quality of life of patients.2 The current treatment
of DDD, mainly including bed rest, rehabilitation, medication,
interventional therapy, and surgery,3 provides only symptomatic
relief but fails to reestablish the homeostasis of the interverteb-
ral disc (IVD).4 Furthermore, the deterioration of the health of
the compromised spine cannot be prevented.5 Thus, the
unrelenting threat posed by DDD to human health has
motivated the search for an increased understanding of human
IVD physiology and pathology.
The IVD has a well-confined structure, including three compo-

nents: the central hydrated nucleus pulposus (NP), the surrounding
lamellar annulus fibrosus (AF), and the cartilage endplate (CEP) that
is adjoining to the vertebra.6 The confined structure of the IVD
plays a part in the mechanical function.7 Unfortunately, alterations
in the cellular composition and microenvironment cause the IVD to
undergo a slow but relentless program that causes the confined
structure to be compromised during the degenerative process.8–10

The origin of the IVD is heterologous, where the NP is believed to
be derived from the notochord,11,12 and the AF and CEP are

derived from the sclerotome.13,14 Consequently, the cells in the IVD
are also heterogeneous, composed of NP cells, and notochord cells
in the NP, AF cells in the AF, and chondrocytes in the CEPs.15

However, classification based on spatial location cannot uncover
the highly heterogeneous cell populations in regard to phenotype
and function. Although previous studies have revealed phenotypes
of IVD cells by bulk RNA sequencing,16–18 the search for molecular
mechanisms underlying degeneration has been complicated by
the large amount of heterogeneity in cellular compositions and the
subsequently highly complex cellular microenvironment of the IVD.
To further examine the cellular heterogeneity, some efforts were
made to distinguish the critical cell types in IVD. The hypothesis
regarding cellular heterogeneity in the IVD was initially supported
by Hunter CJ et al., as evidenced by the existence of large vacuolar
notochordal cells in the NP and small rounded chondrocytes.12,19

Notochordal cells are thought to disappear starting in adolescence
in the human IVD,20,21 which has been questioned because
brachyury (TBXT), a notochord lineage marker, continued to be
expressed in the IVD.22 Thus, notochord cells are thought to be the
precursors of all NP cells regardless of variations in morphology
and size at different stages.23 In addition, mesenchymal stem cells
(MSCs) are thought to exist in the IVD due to the expression of the
MSC markers ENG (CD105), CD44, THY1 (CD90), NT5E (CD73), and
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NGFR (CD271).24,25 NP progenitor cells are characterized by
clonogenicity, pluripotency, and NP reorganization properties.26

However, the different lineages remain largely unknown due to the
lack of high-precision and unbiased resolution for distinguishing
cell populations in the human IVD, although its importance is
widely acknowledged.
Single-cell RNA sequencing (scRNA-seq) is considered as a

powerful tool for resolving cellular heterogeneity and hierarchical
factors forming a complicated cell niche.27,28 Here, we performed
scRNA-seq to obtain an unbiased picture of IVD cell populations.
Our findings provide a better understanding of the inherent
heterogeneity and reshape the existing classifications of chon-
drocytes in the IVD. Notably, we also confirmed the existence of
progenitor cells in the IVD marked by PDGFRA and PROCR. Thus,
our study reveals the cellular landscape of the human IVD and
provides insights that could help to identify therapeutic targets for
human DDD.

RESULTS
Comprehensive scRNA-seq analyses resolve the major cell types in
the human IVD
To determine the cellular composition of the human IVD, we
employed droplet-based single-cell transcriptomic profiling (10X
Genomics Chromium System) of cells from the NP, AF, and CEP
from five healthy human IVDs (Pfirrmann I) (Fig. 1a and
Supplementary Table 1), as evaluated by magnetic resonance
imaging (MRI) according to the Pfirrmann grading system29

(Supplementary Fig. 1a). The integrity of the IVD was confirmed
because the sagittal cross-section showed that it met the criteria
of high hydration and ordered organization with increased
deposition of chondroitin sulfate based on hematoxylin & eosin
and safranin O/fast green staining (Supplementary Fig. 1a).
Because it was difficult to distinguish the boundary between the
NP and inner AF, we harvested gelatinous tissue from the central
region as the NP. Thus, the tissue origins of harvested cells were
identified clearly due to the strict criteria of sampling. A total of
128 833 individual human IVD cells were profiled, and 108 108
cells were retained for subsequent analysis after rigorous quality
control and doublet exclusion (Supplementary Table 1). The
resulting cells were sequenced to a median depth of 5 367 unique
molecular identifiers (UMIs) per cell, with a median of 1 569 genes
detected per cell (Supplementary Fig. 1b and Supplementary
Table 1). Similarities between samples determined by Pearson’s
correlations and the sequencing depth suggested that all samples
were comparable (Supplementary Fig. 1c).
We performed fastMNN30 to correct batch effects among

different data sets. Unbiased clustering based on t-distributed
stochastic neighbor embedding (tSNE) identified nine putative
root clusters in the healthy human IVD (Fig. 1b and Supplementary
Fig. 1d), including (1–3) three clusters of SOX9+ chondrocytes
(Chond1, Chond2, and Chond3); (4) notochord cells; (5) stromal
cells; (6) pericytes; (7) endothelial cells (ECs); (8) nucleus pulposus
progenitor cells (NPPCs); and (9) blood cells. The chondrogenic
marker gene SOX9+ and chondrocyte-specific ECM genes (COL2A1
and ACAN) were ubiquitously expressed in the three chondrocyte
clusters (Fig. 1c, d). The notochord origin marker gene, TBXT,31 was
dominantly expressed in the notochord cell cluster, along with
notochord-derived cytokeratin genes, such as KRT832 (Fig. 1c, d).
FOXC2, GJA1, and HES4, which are essential for stromal cell
differentiation,33–35 that were mainly expressed in the stromal cell
cluster. Pericyte and EC clusters were identified by feature gene
expression (ACTA2, TAGLN, and MCAM for pericytes36–38 and
PECAM1, CD34, CDH5, ERG, and VWF for EC39–42) (Fig. 1c, d and
Supplementary Table 2). We found that PDGFRA (the mesenchy-
mal progenitor marker),43 PRRX1 (which is restricted to the
mesodermal origin and regulator of mesenchymal precursors)44

and IGF1 (a growth factor that effectively differentiates MSCs into

NP-like cells)45 were specifically expressed in the NPPC clusters
(Fig. 1c, d). Thus, we speculated that PDGFRA+ NPPCs could be a
mesoderm-derived progenitor cell cluster in the IVD. A total of
2 651 differentially expressed genes (DEGs) were identified that
distinguished human IVD cell populations (Fig. 1d and Supple-
mentary Table 2). Spatially, chondrocytes and stromal cells were
abundant in the NP, CEP, and AF, while notochord cells were
mainly found in the NP (Fig. 1e and Supplementary Fig. 1e). The
expression of some widely reported marker genes of the IVD was
also detected in these cell populations (Supplementary Fig. 1f).
We then performed an immunohistochemistry assay to validate
the spatial distribution of major cell types (Fig. 1f). We found that
most SOX9+ chondrocytes were detected in the NP, AF, and CEP,
as expected. PDGFRA+ NPPCs were mainly distributed in the NP
and rarely found in the AF and CEP. ACTA2+ pericytes and
PECAM1+ ECs were sporadically distributed in the NP and were
present in the tube-like CEP, in line with previous findings on
capillaries in the CEP.46 Moreover, immunofluorescence staining
of the human IVD (Pfirrmann I and II) validated the presence of
scattered PECAM1+CD34+ cells and ACTA2+ cells in the IVD
(Supplementary Fig. 1g).
Pairwise correlation analysis clearly distinguished the chondro-

cyte and nonchondrocyte subsets (Supplementary Fig. 1h). Gene
ontology (GO) analysis revealed distinct functional enrichment in
these cell types (Supplementary Fig. 1i). For example, Chond1 was
enriched for signaling regulation and stimulus-response, while
Chond2 was enriched for ECM synthesis and organization. As
expected, pericyte and ECs were enriched for genes involved in
regulating vasculature development, cell adhesion, and junctions.
Interestingly, the NPPC cluster was enriched for terms that
regulated skeletal development and ossification.
To validate the conserved cell heterogeneity of the IVD across

species, we compared the transcriptome of IVD cells between
humans and rats by reanalyzing the scRNA-seq data from a recent
rat study.47 As expected, most of the cell clusters identified in the
human IVD were also found in the rat IVD and showed gene
expression conservation across cell types, including NPPCs, ECs,
and pericytes (Supplementary Fig. 2a, b). In particular, NPPCs in
rats also highly expressed PDGFRA, PRRX1, and IGF1 and shared
distinct gene expression patterns with their counterparts in
humans (Supplementary Fig. 2c, d).
Overall, these results revealed the cellular diversity in the

human IVD, and we identified a set of markers that can potentially
be used to recognize the cell clusters in the human IVD.

The functional definition of chondrocyte subpopulations in the
IVD
As chondrocytes are known to play a pivotal role in ECM
homeostasis and the degeneration of the IVD,48 we sought to
determine their composition. Each of the three chondrocyte
clusters was divided into two subclusters (Fig. 2a). The distribution
of subclusters exhibited apparent distinctions in the three
compartments of the IVD (Fig. 2b). The subclusters of C1 and C2
were mostly located in the AF and CEP, while C5 was mainly
located in the NP. Subclusters of C3, C4, and C6 were relatively
evenly distributed in the NP, AF, and CEP. A total of 912 DEGs were
found among the six chondrocyte subclusters (Fig. 2c and
Supplementary Table 3). We found that C1 preferentially
expressed growth factor (GF) genes such as BMP2, TGFB1, and
FGF2. Subclusters C3 and C4 preferentially expressed the genes of
the main ECM components of the IVD, such as ACAN and COL2A1.
Subclusters C5 and C6 preferentially expressed PRG4 and CNMD,
suggesting that they may play a protective role and stabilize the
chondrocyte phenotype.49,50

To better understand the specific characteristics of IVD
chondrocytes, we compared the transcriptomic differences
between these chondrocyte subclusters and articular cartilage
chondrocytes at different stages of osteoarthritis (stages 0-4)
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Fig. 1 Single-cell transcriptomic landscape of human intervertebral disc (IVD) cells. a Schematic workflow of the experimental strategy. Cells
isolated from the NP, AF, and CEP of the human IVD were subjected to droplet-based scRNA-seq. NP nucleus pulposus, CEP cartilage endplate,
AF annulus fibrosus, IVD intervertebral disc, scRNA-seq single-cell RNA sequencing. b Distribution of 108 108 cells from human intervertebral
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curated feature genes for cell clusters defined in b on the tSNE map. d Heatmap revealing the scaled expression of DEGs for each cell cluster.
DEGs differentially expressed genes. e Fraction of cell clusters in the NP, CEP, and AF. f Representative immunohistochemistry staining of
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Fig. 2 Characterization of chondrocytes in the human IVD. a tSNE plot of the six subclusters of 93 495 chondrocytes defined in the IVD.
b Fraction of each chondrocyte subcluster in the NP, CEP, and AF. c Heatmap revealing the scaled expression of DEGs for each
chondrocyte subcluster. d Heatmap showing pairwise Pearson correlations in the global transcriptome between IVD chondrocytes and
articular chondrocytes (Ji et al.,51). FC fibrocartilage chondrocyte, HomC homeostatic chondrocyte, HTC hypertrophic chondrocyte,
preHTC prehypertrophic chondrocyte, ProC proliferative chondrocyte, RegC regulatory chondrocyte, EC effector chondrocyte. e Dot
plot showing the mean expression of selected chondrocyte function-associated genes among the six chondrocyte subclusters. Dot size
indicates the percentage of cells in subclusters with detected expression. f The fraction of each chondrocyte subcluster arrested in the
different cell-cycle phases. g Radar map showing the performance of six gene sets associated with the indicated function and
metabolic pathway among each chondrocyte subcluster. h Heatmap showing pairwise Pearson correlations of expressed matrisome
genes in chondrocytes. Two signature patterns (matrisome-associated and core matrisome) were identified by hierarchical clustering.
i The number of expressed genes associated with six matrisome patterns in each chondrocyte subcluster. ECM extracellular matrix.
j Violin plots showing the expression levels of representative genes associated with six matrisome patterns in each chondrocyte
subcluster
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(Fig. 2d).51 There was no characteristic correspondence among
subclusters C1, C2, and articular chondrocytes. We found that
subclusters C1 and C2 shared some DEGs with articular regulatory
chondrocytes (RegCs), including CKS2 and HMOX1 (Fig. 2e), and
highly expressed IBSP and CYTL1, which are NP-negative
biomarkers (Supplementary Table 3).17,52 Moreover, subclusters
C1 and C2 showed a higher percentage of cells arrested in the G2/
M phase than that in others, which was indicative of relatively
higher proliferative activity (Fig. 2f). We also evaluated these
subclusters using a gene set related to chondrocyte function
(Fig. 2g). The results showed that oxidative phosphorylation
played a role in the metabolic pattern of C1 and C2, which could
be explained by the fact that C1 and C2 were mainly located in the
vascularized AF and CEP. Notably, subcluster C1 was enriched for
genes related to chondrogenic differentiation. Therefore, we
hypothesized that subclusters C1 and C2 represent regulatory
chondrocytes that stimulated surrounding cells by secreting GFs.
Pairwise correlation analysis revealed close relationships among

C3, C4, and homeostatic chondrocytes (HomCs, Fig. 2d) with a
similar pattern of gene expression as articular HomCs, such as
CCNL1 and WSB1 (Fig. 2e).51 In contrast with regulatory
chondrocytes C1 and C2, fewer cells in C3 and C4 were arrested
in the G2/M phase (Fig. 2f). In particular, both C3 and C4 exhibited
strong enrichment of circadian regulation genes and moderate
enrichment of chondrogenic differentiation (Fig. 2g). C3 was also
enriched for cellular adhesion genes, which are critical for forming
chondrocyte clonal columns within an ordered, three-dimensional
cell array.53 Considering that they preferentially expressed ECM-
related genes, we chose to classify C3 and C4 as homeostatic
chondrocytes, which function in maintaining ECM homeostasis
and circadian rhythm.
The C6 subcluster was relatively similar to hypertrophic

chondrocytes (HTCs) and prehypertrophic chondrocytes (preHTCs,
Fig. 2d). COL5A1 and EPYC were expressed in the subclusters of C5
and C6 (Fig. 2e), similar to articular HTCs and preHTCs.51 We also
found that C5 and C6 highly expressed genes reflecting protective
characteristics (KLF2 and CHI3L1) (Fig. 2e)54,55 and existed in the
dormant stage of proliferation (Fig. 2f). Interestingly, subclusters
C5 and C6 preferentially performed metabolic processes, including
oxidative phosphorylation and glycolysis, showing the traits of a
high metabolism (Fig. 2g) and the characteristics of articular
effector chondrocytes.51 Unlike the resident quiescent chondro-
cytes with low metabolism,56 these subclusters were possibly
adapted to anaerobic metabolism because C5 was mainly located
in the NP, which has an avascular and hypoxic microenvironment,
consistent with previous study showing that the NP that is
predominantly glycolytic due to vigorous HIF1 activity.57 Collec-
tively, we inferred that C5 and C6 were effector chondrocytes with
high metabolic rates and protective/repair functions.
To reveal the core function of chondrocytes in modulating

ECM homeostasis, we detected the expression of matrisome-
related genes. Matrisome genes were categorized into the core
matrisome (collagens, proteoglycans, and ECM glycoproteins)
and matrisome-associated (ECM regulators, ECM affiliation, and
secreted factors) according to a matrisome classification
database (matrisomeproject.mit.edu).58 We first evaluated the
average expression of six modules in eight clusters (Supplemen-
tary Fig. 3a) and compared the expression of matrisome genes
distinctly expressed in the NP, CEP, and AF (Supplementary
Fig. 3b and Supplementary Table 4). Correlation analysis of
matrisome-related genes in chondrocytes revealed two patterns:
the core matrisome and matrisome-associated (Fig. 2h). To clarify
the primary function of matrisome-related gene subsets in six
chondrocyte subclusters, we compared the expression abun-
dance of these genes (Fig. 2i, j). We found that secreted factors
were predominantly expressed in the regulatory C1 subset, while
the homeostatic C3 subset preferentially expressed genes of the
core matrisome (Fig. 2i, j). In contrast, the effector C5 subset

exhibited high expression of ECM regulators, reflecting its
regulatory role in ECM homeostasis (Fig. 2i, j).
Taken together, these data add to the knowledge on the

functions of chondrocyte subclusters in human IVD.

Delineating nucleus pulposus progenitor cells and their signature
genes
NP progenitor/stem cells are critical in the physiological and
pathological processes of the IVD.59,60 We identified NPPC-
enriched genes related to bone development, bone morphogen-
esis, connective tissue development, and endochondral bone
growth (Supplementary Fig. 1i). To better understand the role of
the NPPC cluster, we sought to determine their composition in the
human IVD. We partitioned NPPCs into four subclusters (Fig. 3a).
The localization of the discogenic marker PAX1 confirmed the
physical presence of the NPPC-1 subcluster. PAX1 is expressed in
the sclerotome, which is critical for the formation of vertebrae and
IVDs,61 indicating the potential role of discogenic differentiation in
NPPCs. Subcluster NPPC-2 specifically expressed ANGPT1, which is
critical for the survival of nucleus pulposus cells.26 PRG4, the
signature gene of NPPC-3, was also highly expressed in articular
cartilage progenitor cells.62 SOX9 expression indicated the
chondrogenic priming of NPPC-4 (Fig. 3b). These NPPC subclusters
were also distinguished by the indicated DEGs (Supplementary
Fig. 4a and Supplementary Table 5). GO analysis of these DEGs
showed that NPPC-1 and NPPC-3 were enriched for genes
regulating ECM organization, while NPPC-4 was enriched for
genes involved in mRNA catabolic metabolism (Supplementary
Fig. 4b). Gene set enrichment analysis (GSEA) showed that NPPC-1
was enriched for the calcium signaling pathway, which played a
vital role in modulating NP homeostasis by regulating AQP2.63

NPPC-2 was enriched for the MAPK signaling pathway, potentially
playing a protective role in cell survival in the NP.64 NPPC-3
preferentially expressed the SMAD2/3 pathway, and NPPC-4 was
enriched for NOTCH signaling, which plays a role in cell growth
(Supplementary Fig. 4c).65

To explore the regulatory networks that determine cell fate
specification in the NPPC subclusters, we utilized single-cell
regulatory network inference and clustering (SCENIC) to infer
the regulatory activity (regulon) from the coexpression of
transcription factors (TFs) and their downstream target genes.66

We filtered 21 core regulons out of 227 regulons that were used to
discriminate the four NPPC clusters (Fig. 3c, Supplementary Fig. 4d,
and Supplementary Table 6). The highly enriched regulons in
NPPC-1 included HOXA10 and HOXA7. The SOX4, RARA, and MEIS1
regulons were specific to NPPC-2. NPPC-3 exhibited strong
enrichment of ZFP14 and SMAD3. NPPC-4 was enriched for
regulons such as GLI1, EGR2, and NR2F1 (Fig. 3c and Supplemen-
tary Table 6). Some important regulons, including HOXA10, SOX4,
SMAD3, and GLI1, together with their downstream target genes,
such as the abovementioned PAX1, PRG4, and ANGPT, had the
potential to regulate the function of NPPCs (Fig. 3d and
Supplementary Table 5). Specifically, HOXA10 is a critical regulator
of osteogenesis.67 SOX4 is highly expressed in osteoblast
progenitors, and its expression is increased during osteoblast
differentiation.68 GLI1 marks mesenchymal progenitors responsi-
ble for bone formation and fracture repair and regulates
chondrocyte differentiation.69 SMAD3, the downstream target of
TGF-β, plays a dominant role in chondrogenesis and maintaining
the phenotype of chondrocytes.70

To immunophenotype these NPPC subclusters, we screened
for cell surface marker genes that were differentially expressed
among the four NPPC subclusters. Among them, PDGFRA
showed higher expression in NPPC-1, NPPC-2, and NPPC-3 than
in NPPC-4. Interestingly, we found that NPPC-3 preferentially
expressed PROCR (Fig. 3e), a widely reported signature gene for
progenitor cells in multiple organs, including the hematopoietic
and vascular systems,71–74 pancreas,75 ovaries,76 etc. Thus, the
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Fig. 3 Characterization of NPPC in human IVD. a Four subclusters of 2 157 NPPCs were visualized by a tSNE plot. b tSNE plot of signature gene
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regulons; “OFF” indicates inactive regulons. SCENIC Single-Cell Regulatory Network Inference and Clustering. d The HOXA10, SOX4, SMAD3,
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GEne Network Inference with Ensemble of trees. e Dot plot showing differentially expressed genes encoding surface markers in each
subcluster of NPPCs. f Violin plots showing the expression levels of the signature genes of NPPC-3 in the IVD. g Immunofluorescence staining
showing the coexpression of PDGFRA, PROCR, and PRRX1 in human IVD cells in situ (n= 3). Scale bar, 5 μm. h Flow cytometry gating strategies
for sorting PDGFRA+PROCR+ in the human IVD. i Representative crystal violet staining of CFU-F colonies generated by sorted primary PROCR+

cells of the human IVD (left, n= 3). Scale bar, 5 mm. Quantification of the number of CFU-F colonies (right). The statistical significance of
differences was determined using one-way ANOVA with multiple comparison tests (LSD). **P < 0.000 1. Error bars indicate the SEM. CFU-F
colony-forming unit-fibroblast, ANOVA Analysis of Variance, LSD least significant difference, SEM Standard Error of the Mean.
j Immunofluorescence staining of SMAD3 and p-SMAD3 in the PROCR+ and PROCR− cells of the human IVD (n= 3). Scale bar, 40 μm
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specific expression of PROCR suggested the potential stemness
capacity of NPPC-3. We then combined the expression of the
membranous marker genes PDGFRA and PROCR and the
transcription factor PRRX1 as a signature for the identification
of NPPC-3 (Fig. 3f and Supplementary Fig. 4e) and performed
immunofluorescence staining to examine their coexpression
(Fig. 3g). Immunostaining of a healthy IVD (Pfirrmann I,
Supplementary Table 1) showed that PDGFRA+PROCR+ NPPCs
were mainly located in the NP zone (Supplementary Fig. 4f). To
assess the proportion of PDGFRA+PROCR+ NPPCs in the NP,
primary PDGFRA+PROCR+ cells were flow cytometrically sorted
from the human IVD (Pfirrmann II, Supplementary Table 1). The
results showed that the frequency of PDGFRA+PROCR+ cells was
0.36% (Fig. 3h), and PDGFRA was enriched in almost all PROCR+

cells in the IVD. To test the clonogenicity of NPPC-3, primary
PROCR+ cells were sorted by flow cytometry for a colony-
forming unit-fibroblast (CFU-F) colony formation assay. The
counts of typical colonies derived from primary PROCR+ cells
were 25.9 ± 3.3 per 1 000 cells, which was comparable to that for
PDGFRA+ MSCs77 and significantly higher than that for PROCR−

cells (2.9 ± 1.4 per 1 000 cells) (Fig. 3i), indicating that NPPCs
exhibited enhanced colony-formation ability. To verify the in
silico finding of the enriched regulatory activity of SMAD3 in
PROCR+ NPPCs, we detected the expression level of p-SMAD3
in P2 PROCR+ and PROCR− cells from the human IVD (Pfirrmann
II, Supplementary Table 1). As expected, the expression of
p-SMAD3 in the nucleus was higher in PROCR+ cells than in
PROCR− cells (Fig. 3j). These results indicated that SMAD3 was
highly activated in PROCR+ cells, suggesting the potential role of
PROCR+ cells in the chondrogenesis of IVD.
Taken together, these data elucidated the cellular heterogeneity

in NPPCs, which was highly regulated and comprised the
population with clonogenicity that could be enriched by PDGFRA
and PROCR.

Reconstruction of the bilineage trajectory of PDGFRA+PROCR+

NPPCs
Connective tissue comprised stromal cells with phenotypic and
functional complexity,78 which provided support during NP
development and repair.79 We collected 1 372 stromal cells from
the NP that were divided into six subclusters (Supplementary
Fig. 5a and Supplementary Table 7), including three subclusters
of fibroblasts (Fib1, Fib2, and Fib3) that expressed high levels of
fibroblast signature genes, such as CEMIP, AKR1C1, MGP, COMP,
DNER, and MELTF,80,81 two subclusters of neurogenic cells (Neu1
and Neu2) with high expression of the neurogenic markers SOX2,
NGFR, NCMAP, and CLDN19,82–85 and osteogenic cells that
expressed high levels of the osteogenic regulators RUNX2 and
DLX5 (Supplementary Fig. 5b).86–88 To further verify the existence
of the cell clusters in the IVD, immunofluorescence staining of
human IVDs (Pfirrmann I and II) showed a few RUNX+SP7+ cells
and SOX2+ cells in the IVD (Supplementary Fig. 5c), consistent
with the findings from the scRNA-seq analysis.
We next sought to investigate the differentiation trajectories

that determined the cellular hierarchy in NP cells. All NP cells,
including four subclusters of NPPCs, three subclusters of
fibroblasts, three subclusters of chondrocytes, and osteogenic
cells, were involved in reconstructing the differentiation
trajectories using Monocle 3 (Fig. 4a), an algorithm for the
reconstruction of lineage programs based on similarity at the
transcriptional level.89 We set NPPC-3 as the starting point of
the differentiation trajectories due to its high expression of
pluripotent genes and progenitor potential identified above,
and then computed pseudotime for cells along the inferred
developmental axis (Fig. 4a, b). More specifically, NPPC-3 was
predicted to differentiate into two distinct cell lineages,
including the chondrogenic branch, which includes NPPC-3,
NPPC-1, Chond2, and Chond3, and the osteogenic branch, which

includes NPPC-3, NPPC-2, NPPC-4, osteogenic cells, and Fib3
(Fig. 4a, b).
To explore gene expression dynamics along the trajectories, we

grouped genes that varied between cell clusters into 16 modules
using Louvain community analysis (Supplementary Table 8). A
heatmap showed the aggregated expression in each module
across cell clusters (Fig. 4c). We found that the expression of genes
in module 4 was downregulated along both trajectories, such as
the differential regulator genes TWIST1 and FOXP1,90,91 which
were enriched for genes related to ECM organization (Fig. 4d–f). In
contrast, the expression of chondrogenic genes was gradually
elevated along the chondrogenic trajectory, such as COL2A1 and
ACAN in module 7, and remained at high expression levels until
terminal differentiation (Fig. 4d, e), which was also evidenced by
the expression of module 9 (e.g., the chondrogenic CNMD and
FGFBP2) (Supplementary Fig. 5d, e). The expression of the
osteogenic gene set was elevated along the osteogenic trajectory,
such as RUNX2 and ALPL in module 11 (Fig. 4d, e) and the
expression of SP7, BGLAP, and MMP11 in module 16 (Supplemen-
tary Fig. 5d, e).
According to the prediction of the bifurcating differentiation

trajectories of NPPC-3, we tested the trilineage differentiation of
PROCR+ cells (cells that were expanded from CFU-F colonies)
ex vivo and found that they efficiently underwent osteogenic,
chondrogenic, and adipogenic differentiation (Fig. 4g).
Taken together, these data depicted the trajectories of NP cells,

in which PROCR+ cells were enriched for multipotent NPPCs that
generate three lineages, consequently revealing the successive
activation of transcriptional programs in NP homeostasis.

Putative signaling network for the intercellular crosstalk regulating
the homeostasis of the NP
To seek further insights into the critical factors involved in the NP
cell niche of the human IVD, we investigated the signaling network
among the main cell types in the NP. CellChat analysis of these
14 subclusters in the NP identified the signaling network for
intercellular crosstalk. Relative active bidirectional signaling inter-
actions among these cell subclusters revealed highly regulated
cellular communications (Fig. 5a and Supplementary Table 9). ECs,
pericytes, fibroblasts, and neurogenic cells identified as niche
components in the NP played distinct roles in signaling interac-
tions to regulate the differential process. To determine the
important factors, we further analyzed the intercellular signaling
networks of VEGF, TGFB, PDGF, and FGF (Fig. 5b–e).
Interestingly, Fib3 was involved in VEGF signaling, both

autocrine and paracrine (Fig. 5b, f). ECs were the leading receiver
of VEGF signals, as expected, and NPPC subclusters functioned as
regulators of the communication (Fig. 5b). Moreover, the TGF-β
pathway was involved in many signaling interactions among
chondrocyte subclusters and NPPC clusters via TGFB3-TGFBR or
TGFB3-ACVR1 (Fig. 5c, f). As shown above, NPPC-3 was enriched for
SMAD3, the key downstream target of TGF-β, which prompted us
to further investigate the role of TGF-β3 in chondrogenesis in
NPPCs. The results showed that 10 ng·mL−1 TGF-β3 effectively
induced chondrogenesis and the formation of dense cartilage
extracellular matrix (ECM) compared with that in the negative
control group after 28 days of differentiation. However, supple-
mentation with 10 μmol·L−1 SB505124, a TGF-β receptor inhibitor,
blocked the chondrogenesis of PROCR+ cells both with and
without TGF-β3 (Fig. 5g). The results demonstrated that the TGF-β
family plays an important role in the chondrogenic regulation of
PROCR+ cells.
In the PDGF signaling network, the NPPC clusters acted as

critical contributors by secreting PDGFA ligand, leading to the
paracrine activity of NPPCs to osteogenic cells, pericytes, and Fib1
and the autocrine activity of NPPCs to themselves. Specifically,
NPPC-3 was the key population that dominated the PDGF
signaling network (Fig. 5d, f). Previous studies have reported that
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PDGF-AA is involved in the regulation of cell proliferation.92,93

Therefore, we explored the effect of PDGF-AA on the proliferation
of PROCR+ cells from the human IVD (Fig. 5h). The results showed
that 20 ng·mL−1 PDGF-AA significantly promoted the proliferation
of PROCR+ cells on the 10th day of expansion, and 100 nmol·L−1

crenolanib, a PDGFR α/β inhibitor, significantly inhibited the
proliferation of PROCR+ cells in the presence or absence of PDGF-
AA after treatment for 10 days. The FGF signaling network
exhibited intensive exchanges among almost all the cell types
with FGF ligands that were mainly secreted by Fib3 (Fig. 5e, f).
By comprehensively predicting signaling networks for inter-

cellular crosstalk, large numbers of ligand-receptor pairs partici-
pated in ligand-receptor pairs of VEGF, TGFB, SEMA3, PDGF, NGF,
LAMC, FGF, BMP, and ANGPT between NPPCs and other cell types
(Fig. 5f). Interestingly, Fib3 was involved in almost all the above
pathways, suggesting its significance in NP homeostasis. We
further revealed that NPPC-1, NPPC-2, NPPC-3, and pericytes sent
communications to other cells via IGF and PDGF (Supplementary
Fig. 6a). As expected, Fib3 was exclusively dominated by FN1 in
regard to outgoing communication. In addition, Fib3 and Chond1
received incoming communication by BMP, GDF, and ANGPT,
which reportedly played a prominent essential role in the IVD
(Supplementary Fig. 6b).26,94,95 EGF, used by NPPC-2, NPPC-4, and
Neu1 for incoming signaling, could be a protective factor in IVD
regeneration (Supplementary Fig. 6b).96

CellChat analysis of NP, AF, and CEP cells also revealed a large
number of signaling networks among cell subclusters from the
three substructures of the IVD (Supplementary Fig. 6c). For example,
NPPCs interacted with Chond1 from the AF and CEP. In particular,
the GAS signaling pathways were intensively regulated between
NPPCs and Chond3 from the AF (Supplementary Fig. 6d), possibly
protecting the IVD from inflammatory factors.97 SPP1, an
osteogenesis-related factor, was highly involved in the interaction
among NPPCs and stromal cells in the CEP (Supplementary Fig. 6d).
This was in line with our above hypothesis that osteogenic cells
might play a role in IVD homeostasis and/or degenerative
processes. However, these proposed signaling pathways should
be considered as multiple biological cascades rather than a sole
event because the three substructures always work as a whole.
Taken together, these results indicated that there is a

complicated relationship among the distinct cell types and
described a cellular crosstalk network with a hierarchical signaling
pathway that regulates NP homeostasis in a coordinated manner.

DISCUSSION
The severe threat of DDD to human health prompted us to seek
an innovative treatment that reestablishes IVD homeostasis.
Inadequate knowledge of IVD physiology, and pathology poses
a challenge to the development of novel treatment strategies. Due
to the cellular heterogeneity and resulting complex microenviron-
ment in the human IVD, an in-depth understanding of specific
markers and their roles in IVD homeostasis is urgently needed.
Here, we resolved the cellular diversity at a single-cell level using
transcriptomic profiling and identified the cell types with a set of
specific markers in the human IVD. We classified IVD chondrocytes
into three subtypes based on their potential roles in ECM
homeostasis. Notably, we identified new subtypes of progenitor
cells with signature genes, spatial distribution in situ, and
progenitor potential. Moreover, we analyzed the intercellular
crosstalk based on the signaling network and uncovered key
factors, such as the PDGF and TGF-β cascades, as important cues
for regulating the NP microenvironment. Together with previous
studies,12,98,99 a better understanding of the cellular heterogeneity
of the human IVD is developing, with the aim of contributing to
new therapeutic strategies for DDD.
The cellular heterogeneity of IVD cells has been a long-debated

controversy due to the complexity of the IVD ontogeny, a

tricomponent organization with distinct origins.100 Multiple
developmental origins lead to the inhomogeneity of the cell
composition. Although some scholars have attempted to examine
the IVD at the single-cell level, a highly precise and unbiased
description of cell populations in the human IVD remains to be
elucidated.52,98 Previously, notochord cells and chondrocytes were
recognized in the NP, which was regarded as the notochordal
lineage, evidenced by the constant expression of TBXT.101 In line
with previous findings, we found a minor cluster that expressed
high levels of the markers TBXT and KRT8, which could be a rare
but distinct notochord cell cluster. As expected, we found three
major clusters of chondrocytes, which are always regarded as
core players in ECM homeostasis in the human IVD. Although the
expression of TBXT was not detected, another notochord marker,
NOG, was expressed in the majority of chondrocytes (Supplemen-
tary Fig. 1f). This interesting finding coincides with a previous
theory that distinctive cellular morphology in the NP is due to the
various phases along the notochord lineage during aging and
degeneration.5,102–105

Apart from the leading role of notochord lineage cells, the
supporting role of minor cell clusters is more notable because of
their unclear function, which has been infrequently reported. First,
SOX2+NGFR+ neurogenic cells, one of the stromal subclusters,
were also found in the NP (Supplementary Fig. 5a–c). Although the
healthy disc was regarded as an aneural tissue,106 the pattern of
nerve endings has been previously confirmed in healthy and
degenerative IVDs,107–110 which were small in diameter and
relatively sparse.111 Thus, sporadic SOX2+ neurogenic cells were
probably related to neural ingrowth. Furthermore, RUNX2 played a
part in postnatal IVD development and regulated the notochordal
transition into chondrocyte-like cells.112 Upregulated RUNX2
expression was also found in the degenerated IVD, which led to
IVD calcification.113,114 In addition, the stem cells in the IVD
exhibited osteogenic potential during ex vivo culture.25 These
studies may have indicated that the homeostasis of bone
formation is important for the physiological and pathological
processes of IVD. Our scRNA-seq analysis and immunofluores-
cence staining revealed the existence of a rare cell cluster that
differentially expressed the osteogenic genes RUNX2, DLX5, and
SP7,86–88 which were defined as osteogenic cells (Supplementary
Fig. 5a–c). This finding suggested that osteogenic cells exist in
healthy IVDs. We hypothesized that osteogenic cells likely
contribute to the homeostasis of the IVD or are involved in the
pathological process of early degeneration, which began as early
as during the teenage years.115,116 Finally, the dynamics of
vascularization, represented by ECs and pericytes, play a role in
disc homeostasis. Previous studies showed that blood vessels
penetrated the AF and CEP during the early postnatal years but
regressed later, leaving an avascular microenvironment, which
accounted for the poor ability for remodeling and repair in
IVDs.117–119 However, blood vessels are present in the human IVD
until even the third decade of life.120 During the slow process of
vascular regression, it is reasonable that some remnants are left
behind, such as ECs. A recent study reported that cross bridges
after vascular regression are indeed present in both healthy and
degenerated human disks. The cross-bridges of the IVD stained
positively for PECAM1 in adult sheep, although the PECAM1+

cross-bridges declined with aging.121 In line with scRNA-seq
analysis, ACTA2+MCAM+ pericytes and PECAM1+CD34+ ECs were
scattered in the IVD (Fig. 1b–f and Supplementary Fig. 1g). Our
data showed that ECs and pericytes communicated with NPPCs
via the VEGF, PDGF, and TGF-β signaling pathways, suggesting
that they played a role in NP homeostasis (Fig. 5). Notably, MCAM
is regarded as a classical surface marker of pericytes/MSCs.122

Previously, periosteal and meniscal MCAM+ cells were shown to
exhibit canonical features of skeletogenesis,123,124 and MCAM+ or
ACTA2+ cells were also detected in the disc.47,125–127 Interestingly,
MCAM was specifically expressed in the cell population with
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migration and repopulating potential in degenerative IVDs.125 The
functional characteristics of these cell types should be investi-
gated in future studies. The highly conserved cellular hetero-
geneity across cell clusters between human and rat IVDs
(Supplementary Fig. 2) suggested that the rat is an ideal animal
model to study the role of the above cell clusters in IVD
homeostasis.
Cells in the IVD are generally referred to as “chondrocyte-like”

cells or “IVD chondrocytes”. Traditionally, chondrocytes in the IVD
are classified into NP, AF, and CEP chondrocytes based on their
spatial distribution. However, the spatial-based classification of the
cell population was insufficient because of the cellular hetero-
geneity and possible cell migration among the three sites of the
IVD.128 Thus, the precise roles of IVD chondrocytes in ECM
homeostasis are still largely unknown.16–18,129 Therefore, a deeper
understanding of the roles of IVD chondrocytes in ECM home-
ostasis is necessary. Taking advantage of the high throughput
nature of analysis at the single-cell level with scRNA-seq, we were
able to identify six subclusters of IVD chondrocytes with three
functional patterns (Fig. 2). First, we identified a new population of
regulatory chondrocytes with active GF expression and chondro-
genic pathway regulators, implying its regulatory role in
chondroid ECM homeostasis. In contrast, homeostatic chondro-
cytes showed high similarity to classical chondrocytes, which were
quiescent, fully differentiated, and responsible for ECM deposi-
tion.130 Interestingly, homeostatic chondrocytes were enriched in
circadian regulation genes, which involved key pathways regulat-
ing the homeostasis of IVDs.131 This finding suggests that
homeostatic chondrocytes could be a potential therapeutic target
for circadian rhythm in the human IVD. It is noteworthy that the
effector chondrocytes were metabolically active, which is impor-
tant in maintaining the ECM biogenesis of the IVD.132 In addition,
the high expression of PRG4 (lubricin) also implies that they play a
protective role in reducing shear stress and inflammation and
keeping the joint healthy.133 In contrast, effector chondrocytes
were characterized by ossification and shared expression patterns
with articular HTCs.51 Thus, the definitive function of effector
chondrocytes is certainly worth future investigation. Overall, the
six transcriptomically defined populations of chondrocytes exhib-
ited distinct roles in ECM homeostasis, providing new perspectives
for exploring the mechanism of IVD chondrocytes.
The IVD possesses the capability of spontaneous regeneration,

as evidenced by self-healing after disc degeneration,134 probably
due to the presence of in situ progenitor cells. Progenitor cells
expressing different marker gene sets existed in three compart-
ments of the IVD.59,60 The progenitor cells exhibited certain
plasticity and the ability to slow down disc degeneration.135,136

Thus, it is a promising strategy to activate endogenous progenitor
cells or transplant exogenous progenitor cells for DDD therapy.
However, a comprehensive understanding of their in vivo
characteristics, including discriminable identity, lineage, spatial
distribution, and functional role, is still lacking. We sought to help
to increase the understanding of progenitor cells at a single-cell
resolution. Surprisingly, we found a cluster of cells that exclusively
expressed PDGFRA, a signature of MSCs,77,137,138 and was mainly
distributed in the NP (Supplementary Fig. 4). Notably, the
PDGFRA+PROCR+ NPPC subcluster was enriched for genes in
the SMAD3 signaling pathway and exhibited higher activation of
p-SMAD3 (Fig. 3), which determines the TGF-β-induced chondro-
genesis139 and cell fate decisions of stem cells by participating in
the cell-cycle process and binding of m6A methyltransferase.140,141

Moreover, PROCR was used to sort rare progenitor/stem cells with
high efficacy. For example, PROCR (encoding CD201) was used as a
sorting marker to harvest isolated 1% of islet cells, which robustly
formed islet-like organoids.75 Applications in the hematopoietic
system showed that PROCR enriched T1 prehematopoietic stem
cells at a resolution of 68 parts per million and functional HSCs in
the human fetal liver.71,73 In this study, we identified an NPPC

cluster that highly expressed PROCR, which exhibited pluripotency
with colony-formation capacity and osteochondrogenic potentials
(Figs. 3 and 4), similar to the characteristics of multipotent
mesenchymal stromal cells.142 Thus, we characterized these cells
as resident progenitor cells in the human IVD. It is possible that
the alternative cell fate in NPPCs determines the outcome of the
IVD when a degenerative program is initiated. On the one hand,
the chondrogenic fate could help rebalance IVD homeostasis via
cell replenishment.143 On the other hand, the osteogenic fate
could lead to DDD by inducing heterotopic ossification.144

Accordingly, these results have new implications for innovative
therapeutic strategies targeting NPPCs.
The two branches of the cell fate of NPPCs motivated us to

explore the key regulatory factors. Resident progenitor cells are
exhausted or altered during degeneration,26,145 indicating that the
microenvironment has a significant influence on cell fate. To
identify the key factors regulating the fate of NPPCs, CellChat
analysis was used to dissect the intercellular crosstalk based on
the signaling network in the human IVD (Fig. 5). We found that GF-
related signaling pathways were involved in the crosstalk network,
mainly including the previously reported FGF family,143,146 TGF-β
family,147,148 BMP family,149,150 and PDGF family.151 Among them,
TGF-β was important due to the high activation of SMAD3 in
NPPCs. TGF-β directs embryonic matrix development within the
notochord and promotes the differentiation of the sclerotome into
the AF,61,152,153 suggesting that it is an inherent regulator of the
human IVD. Previous studies have shown that the TGF-β family
plays an important role in the development and protection of the
IVD, especially in maintaining the phenotype of chondrocytes.154

Moreover, the loss of TGF-β signaling in growth plate chondro-
cytes and inner AF cells led to the loss of matrix tissue and
endplate cartilage cells and abnormal growth plate cartilage
morphology in Tgfbr2 conditional knockout mice.155 The critical
role of TGF-β was also evidenced by the observation that the
knockout of SMAD3, the key downstream target of TGF-β, led to
the spontaneous development of IVD degeneration in 30-day-old
mice.156 In addition, TGF-β has been shown to have a beneficial
effect on chondrogenic anabolism in MSCs.157 In this study, TGFB
was involved in regulating NPPCs, as evidenced by TGF-β3
promoting the chondrogenesis of PROCR+ cells (Fig. 5). Mean-
while, the secretory role of chondrocyte clusters on TGF-β should
not be neglected in the human IVD (Fig. 5). Furthermore, PDGF
was found to engage in regulating NPPCs, probably due to the
exclusive expression of its receptor gene PDGFRA in NPPCs.
Previous studies have reported that PDGF-AA is involved in the
regulation of cell proliferation.92,93 In line with the CellChat
analysis, we found that PDGF-AA significantly promoted the
proliferation of PROCR+ cells (Fig. 5). Interestingly, all the minor
clusters in the NP are involved in interacting with NPPCs,
suggesting their potential role in regulating NPPCs and subse-
quently maintaining IVD homeostasis. Moreover, further investiga-
tions need to elucidate their roles and establish an innovative
strategy to optimize the microenvironment and benefit IVD stem/
progenitor cells.
Although we validated the existence of identified cell popula-

tions by flow cytometry, immunofluorescence staining, and
scRNA-seq evidence from the rat IVD, we surprisingly found that
Sample 1 was from a 16-year-old donor who suffered from
vertebral fracture exhibited obvious variability in the proportion of
cell clusters (Supplementary Fig. 1e). Acute trauma has been
shown to stimulate resident cells to regenerate in previous
studies.158–160 Interestingly, a recent study reported that NP cells
derived from trauma patients showed higher adipogenic and
chondrogenic potential than those derived from degenerated
IVDs.161 Thus, we are more inclined to hypothesize that ECs,
pericytes, and NPPCs are rare in the IVD, and acute trauma may
induce local regeneration, which accounts for the unwanted
distribution variability across donors. Due to the scarcity of
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desirable samples of healthy disks from young patients with
vertebral fractures, this needs to be explored in future studies.
In summary, our study described the cell atlas of the human IVD,

providing a valuable resource for further investigation of IVD
homeostasis at the mechanistic level. The cellular heterogeneity and
signaling network we uncovered help to increase the understanding
of the human IVD at a single-cell level and provide crucial clues for
establishing new therapeutic strategies for DDD treatment.

MATERIALS AND METHODS
For full methods, see the Supplementary Methods.

Human IVD tissue specimens
This study was approved by the Institutional Ethics Review Board
of Daping Hospital [Ethics Committee (2019-127)] and the
Chinese Clinical Trial registry (ChiCTR1900028201). All proce-
dures were performed in accordance with the ethical standards
of the committee responsible for human experimentation and
with the Declaration of Helsinki of 1975, as revised in 2000.
Informed consent was obtained from all patients for inclusion in
the study. Eleven human IVDs were carefully dissected from nine
donors in this study (Supplementary Table 1). The gelatinous
tissue from the central region was harvested as the NP. The
peripheral lamellar structure of the outer IVD was harvested as
AF. The superior and inferior homogeneous cartilage tissue was
harvested as CEP. The sampling areas of NP, AF, and CEP are
indicated (Supplementary Fig. 1a).

Single-cell RNA sequencing
The cells were washed with PBS three times and concentrated to
700–1 200 cells per μL. The suspension was then loaded on a
Chromium Controller (10X Genomics). For scRNA-seq library
construction, a Chromium Single Cell 3′ Library and Gel Bead Kit
V2 (10X Genomics, PN120237) was utilized to generate single-cell
gel beads in emulsion (GEM) within barcoded, full-length cDNA
from polyadenylated mRNA. The captured cells were lysed in
GEM, and the released RNA was reverse-transcribed with primers
containing poly-T, a barcode, UMIs, and the read 1 primer
sequence, in that order. Barcoded, full-length cDNA was PCR
amplified for library construction. After enzymatic fragmentation,
an adapter ligation reaction was performed to add a sample index
and read 2 primer sequences to the cDNA fragment. After quality
control, the libraries were sequenced on an Illumina NovaSeq
6000 platform to generate 150-bp paired-end reads, according to
the manufacturer’s instructions (Berry Genomics).
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