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Abstract. A circumpolar increase in shrub growth and cover has been underway in Arctic and
subarctic ecosystems for the last few decades, but there is considerable spatial heterogeneity in this
shrubification process. Although topography, hydrology, and edaphic factors are known to influence
shrubification patterns, a better understanding of the landscape-scale factors driving this phenomenon
is needed to accurately predict its impacts on ecosystem function. In this study, we generated land
cover change models in order to identify variables driving shrub cover increase near Umiujaq (Qu�ebec,
Canada). Using land cover maps from 1990/1994 and 2010, we modeled observed changes using two
contrasting conceptual approaches: binomial modeling of transitions to shrub dominance and multi-
nomial modeling of all land cover transitions. Models were used to generate spatially explicit predic-
tions of transition to shrub dominance in the near future as well as long-term predictions of the
abundance of different land cover types. Model predictions were validated using both field data and
current Landsat-derived trends of normalized difference vegetation index (NDVI) increase in the
region in order to assess their consistency with observed patterns of change. We found that both vari-
ables related to topography and to vegetation were useful in modeling land cover changes occurring
near Umiujaq. Shrubs tended to preferentially colonize low-elevation areas and moderate slopes, while
their cover was more likely to increase in the vicinity of existing shrub patches. Deterministic realiza-
tions of the spatially explicit models of land cover change had a good predictive capability, although
they performed better at predicting the proportion of different cover types than at predicting the pre-
cise location of the changes. Binomial models performed as well as multinomial models, indicating
that neglecting land cover changes other than shrubification does not result in decreased prediction
accuracy. The predicted probabilities of shrub increase in the region were consistent with patterns of
change inferred from field data, but only partly supported by recent local increases in NDVI. Our
findings increase the current understanding of the factors driving shrubification, while warranting fur-
ther research on its impacts on ecosystem function and on the link between land cover changes and
shifts in remotely sensed vegetation indices.
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INTRODUCTION

Arctic and subarctic ecosystems are deeply altered by cli-

mate change and will likely be more impacted by temperature

increases than temperate ecosystems will be due to Arctic

amplification (Serreze and Barry 2011, IPCC 2013). In recent

decades, obvious changes observed in high-latitude environ-

ments include an increase in temperatures, a decrease in sum-

mer sea ice cover, and permafrost thaw (Hinzman et al.

2013). One of the most important changes in terrestrial

ecosystems is greening of the tundra, inferred from an

increase in normalized difference vegetation index (NDVI)

since the 1980s (Bhatt et al. 2013, Ju and Masek 2016). This

greening trend has been repeatedly documented using remote

sensing data spanning resolutions from 8 km AVHRR data

(e.g., Goetz et al. 2005, Jia et al. 2009) to 30-m Landsat data

(e.g., Fraser et al. 2011, 2014, McManus et al. 2012), and

although browning (i.e., a decrease in NDVI) has been

observed in some areas, greening remains the dominant trend

in subarctic regions (Ju and Masek 2016).

Although only successfully calibrated in a few locations,

several studies have attributed increases in tundra ecosystem

NDVI to an increase in shrub cover and size in response to

climate change, a phenomenon termed shrubification (For-

bes et al. 2010, Myers-Smith et al. 2011a, McManus et al.

2012). Repeat aerial photography yields evidence for a sharp

increase in shrub cover in Alaska (Sturm et al. 2001, Tape

et al. 2006), northwestern Canada (Lantz et al. 2013, Fraser

et al. 2014), subarctic Qu�ebec (Ropars and Boudreau 2012,

Tremblay et al. 2012, Provencher-Nolet et al. 2014), and

Siberia (Frost and Epstein 2014), indicating that this phe-

nomenon might be circumpolar in scale. The link between

warmer temperatures and shrub cover is supported by

experimental warming studies that found higher shrub cover

and/or height in response to increased temperature (Chapin
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et al. 1995, Walker et al. 2006, Elmendorf et al. 2012a).

Dendroclimatic analyses also support a positive effect of

warmer temperatures on shrub growth, reinforcing the idea

that the increase in global temperatures might favor this plant

functional group (Forbes et al. 2010, Hallinger et al. 2010,

Blok et al. 2011a, Ropars et al. 2015a, 2017). Moreover, the

growth structure of some shrub species is thought to allow

them to benefit more from increasing temperatures than

other plants (e.g., Betula nana L.; Bret-Harte et al. 2001).

A significant increase in shrub cover and height could

deeply alter the structure and function of tundra ecosystems.

Shrubification might lead to a reduced overall albedo in ter-

restrial Arctic regions because of the low albedo of shrubs,

effectively resulting in a positive feedback to climate change

(Chapin et al. 2005, Sturm et al. 2005a, Bonfils et al. 2012).

Shrubs also affect patterns of snow deposition and accumu-

lation as well as snowmelt by respectively trapping snow

(Sturm et al. 2005b) and accelerating thaw in spring because

of the low albedo of protruding branches (Marsh et al.

2010). By maintaining a thicker insulating snow cover,

shrubs also lead to warmer winter soil temperature under

erect shrub cover and may thus contribute to an increase in

active layer depth and permafrost degradation (Sturm et al.

2005b, Lantz et al. 2013, Myers-Smith and Hik 2013, Par-

adis et al. 2016). This should effectively lead to another pos-

itive feedback loop by which this deeper active layer favors

nutrient mineralization, thus increasing their availability for

shrub growth (Sturm et al. 2005b, DeMarco et al. 2011, but

see Myers-Smith and Hik 2013). An increase in shrub cover

could also have seasonal impacts on the diet of large herbi-

vores such as caribou, which rely heavily on lichens during

winter to meet their energy requirements (Sturm et al.

2005b, Joly et al. 2007).

Although observed throughout most of the circumpolar

region, the rate and extent of shrubification are highly hetero-

geneous in space. At larger scales, shrub cover increase has

been found to occur preferably in the warmer and wetter Low

Arctic as compared to the cold and dry High Arctic (Elmen-

dorf et al. 2012b, Myers-Smith et al. 2015). The rate of shrub

cover increase is also known to vary at a regional scale,

depending on edaphic, topographic, or historical conditions

(Tape et al. 2012, Tremblay et al. 2012, Fraser et al. 2014,

Ropars et al. 2015b). For example, Ropars and Boudreau

(2012) found that shrub cover increase occurred preferably on

sandy terraces as opposed to hilltops, whereas Tape et al.

(2006) observed that hill slopes and valley bottoms favored a

greater increase in shrub cover. Recent research showed that

sites offering greater nutrient and water availability favor

shrub growth (Naito and Cairns 2011, Tape et al. 2012,

Cameron and Lantz 2016, Curasi et al. 2016) and that shrub

growth sensitivity to climate is higher in wetter regions

(Myers-Smith et al. 2015).

A better understanding of the landscape-scale factors driv-

ing shrub growth and recruitment is required in order to pre-

dict shrubification patterns and impacts on the dynamics of

high-latitude ecosystems in the near future. This phenomenon

currently occurring in high-latitude regions could be appro-

priately modeled using a land cover change modeling

approach. Several studies made use of such models in order

to gain insight into the factors underlying land cover changes

and generate predictions to inform land management. For

example, land cover change models were used to predict

directional changes due to either land abandonment (e.g.,

Gellrich et al. 2007, Rutherford et al. 2007, Prishchepov

et al. 2013) or urbanization (e.g., Araya and Cabral 2010).

Spatially explicit models of land cover change often model

the outcome of change as a function of landscape characteris-

tics using binomial (e.g., Pueyo and Beguer�ıa 2007), ordinal

(e.g., Rutherford et al. 2007) or multinomial (e.g., Augustin

et al. 2001) logistic regression.

In the region of Umiujaq, in Nunavik (Subarctic

Qu�ebec), directional changes to shrub dominance have

already been documented in the Tasiapik valley using aerial

photography (Provencher-Nolet et al. 2014) and satellite

data (Beck et al. 2015). In the present study, we implement

a modeling approach meant to identify landscape-scale fac-

tors promoting shrubification in subarctic environments

using data from Umiujaq. Unlike most land cover change

studies, which rely entirely on satellite data or aerial photog-

raphy, we have carried observations in the field in order to

assess how our model predictions were supported. We also

validated our models with independent Landsat-derived

NDVI data in order to assess whether current trends in

NDVI change are consistent with model predictions. Our

aim was to answer the following four questions: (1) What

are the landscape-scale variables driving shrubification near

Umiujaq? (2) How is vegetation expected to change in the

area in the future, based on how it changed in the past? (3)

How are the results of the predictions supported by obser-

vations in the field? (4) How are the results of the predic-

tions supported by current trends in Landsat-derived NDVI

data?

METHODS

Study area

Our study area is located near the community of Umiu-

jaq, Nunavik, Qu�ebec, Canada, south of the latitudinal tree-

line (Fig. 1). Mean annual temperatures of �3.0°C have

been recorded in Umiujaq between 2002 and 2013 (CEN

2014). In Whapmagoostui-Kuujjuarapik, located approxi-

mately 160 km to the southwest, data spanning a longer

interval show a mean yearly temperature of �4.2°C between

1958 and 1989 and �3.0°C between 1990 and 2015 (Envi-

ronment Canada 2016). The yearly data for both locations

over the period 2002–2013 are highly correlated (r = 0.998),

mean temperatures being on average 0.5°C lower in

Umiujaq (Appendix S1: Fig. S1).

Previous studies have documented an increase in shrub

cover near Umiujaq over the last 20 yr (Provencher-Nolet

et al. 2014, Beck et al. 2015). The most common erect shrub

species in the area are Betula glandulosa Michx. (dwarf

birch), Alnus viridis (Chaix) D.C. ssp. crispa (Aiton) Turrill

(mountain alder), as well as several Salix (willow) species

(most commonly S. planifolia Pursh and S. glauca L.).

Betula glandulosa is commonly recognized as the main spe-

cies contributing to shrub expansion in Nunavik (Ropars

and Boudreau 2012, Tremblay et al. 2012, Ropars et al.

2015a), although other erect shrub species may be involved

as well. Picea mariana (Mill.) B.S.P. (black spruce) is the

only tree species commonly found in the region.
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Two different areas were considered for the purpose of

our study: the Tasiapik valley (~5.33 km2), hereafter

referred to as “the valley,” and the coastal area south of the

village (~1.98 km2; Fig. 1), hereafter referred to as “the

coast.” These areas were chosen because they represent two

contrasting landscapes (coastal and inland) for which a long

tradition of research has resulted in abundant data and a

good understanding of their ecological dynamics. Elevation

in the valley study area ranges from 0 on the shore of the

Tasiujaq Lake (formerly known as the Richmond Gulf or

Lac Guillaume-Delisle) to about 200 m, although most of

the area of interest lies below 150 m above sea level. Shrubs

dominate the vegetation of the valley (59.9% of the area as

of 2010), while lichens and herbaceous vegetation are domi-

nant on scattered permafrost mounds. Small, relatively

uncommon herbaceous patches are also distributed over the

area, mainly around the numerous water ponds found in the

valley. The center of the valley, largely sheltered from the

wind, is dominated by black spruce. The height of erect

shrubs in the valley ranges from ~10 cm on the lichen-domi-

nated plateau overlooking the valley to >2 m (mostly Alnus

and Salix stands) closer to the Tasiujaq Lake.

The coast study area spans about 2 km along the shore of

the Hudson Bay and 1 km inland. Shrubs are also the main

land cover type on the coast (35.9% of dominance as of

2010), whereas large patches of herbaceous (more common

than in the valley) and lichen vegetation are scattered in the

landscape. In the southern part of the coast, land cover is

characterized by sparsely vegetated rock outcrops. Almost

no trees are found on the coast, as conditions are colder and

windier than in the valley. Erect shrub height ranges from

~30 cm to >2 m (mostly Alnus and Salix stands), but is on

average lower than in the valley. Both the valley and the

coast are disturbed to some extent by human activities (e.g.,

by road construction or ATV trails), but human disturbance

is more important on the coast as this area is located closer

to the community.

Land cover classification

Land cover classification of the valley has been carried out

and described by Provencher-Nolet et al. (2014), who classi-

fied 30-cm resolution 1994 and 2010 aerial photographs into

six different land cover classes (Table 1; Appendix S1:

Fig. S2a) using an object-based supervised classification

method with the eCognition software (Trimble, Munich,

Germany). For the purpose of our study, the coast vegetation

was similarly classified using aerial photography of 1990 and

2010 (Appendix S1: Fig. S2b). We used aerial photos from

1990 instead of 1994 for the coast because the quality of the

existing 1994 aerial photography of the coast did not lend

itself to land cover classification. Compared to the Tasiapik

FIG. 1. Location of the study area near Umiujaq, Qu�ebec, Canada, with the valley and coast study areas outlined.

TABLE 1. Description and classification criteria of the seven land
cover types used in the classification of the valley and coast aerial
photos near Umiujaq, Qu�ebec, Canada.

Class Description

Shrub areas dominated by erect shrubs such as B. glandulosa,
Alnus viridis ssp. crispa and Salix spp.

Lichen areas dominated by lichens (mostly Cladonia spp.),
with or without intermingled herbs and shrubs

Spruce areas with at least 30% spruce cover, usually with mosses,
lichens, or shrubs on the forest floor

Herbs heterogeneous class comprising grasses or Cyperaceae
species in wet areas or low vegetation and mosses
sometimes intermingled with prostrate shrub species

Rock talus of fallen rocks or barren to sparsely vegetated
rock outcrops

Water open water cover, comprising ponds and rivers. The
broader part of the main river in the valley was excluded
from the analysis as it is not expected to change

Sand sand-dominated areas found along the shore and as
scattered dunes farther from the Hudson Bay

Notes: Land cover classes are described as in Provencher-Nolet
et al. (2014). The spruce and sand classes are used only for the
valley and for the coast, respectively.
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valley, a “sand” cover class was added to the coast classifica-

tion whereas the “spruce” cover class was removed as almost

no trees are found on the coastline (Table 1). Sand cover on

the coast comprises both the beach running along the shore

and the sand dunes protruding farther from the Hudson Bay.

Details regarding the validation of the land cover maps can

be found in Supporting Information.

Topographic variables

A 1-m resolution digital elevation model (DEM) was

derived from a 2010 airborne LiDAR survey (data obtained

from the Government of Qu�ebec) using the blast2dem func-

tion of LAStools (rapidlasso GmbH, Gilching, Germany).

This DEM was resampled to a 5-m resolution raster from

which we derived four different topographic variables to be

used in land cover change modeling. Elevation was obtained

directly from the DEM. We chose to include elevation in our

models because of its important effects on abiotic factors such

as temperature and wind exposure. Slope and aspect were

computed using the algorithm of Zevenbergen and Thorne

(1987), as implemented in QGIS 2.8.1 (QGIS Development

Team 2015). Aspect was not used as a predictive variable in

itself but rather transformed using the method described by

Beers et al. (1966), which allows it to be represented on a con-

tinuous scale (here, SW = 0 and NE = 2). Slope should influ-

ence soil moisture and mineral content, while both slope and

aspect have an influence on photosynthetically active radiation

exposure. The topographic wetness index (TWI), a measure of

the potential moisture of the soil based on terrain characteris-

tics, was computed using SAGA algorithms (Conrad et al.

2015) in QGIS. We included this variable in our analysis

because shrubification is known to be favored by higher soil

moisture content. In fact, shrubification was found to be

related to TWI in a previous study (Naito and Cairns 2011).

Vegetation-related spatial variables

A series of six vegetation-related spatial variables was

derived from the land cover maps. All variables were obtained

for a 5-m resolution raster (grid) after rasterizing the poly-

gon-based land cover maps. Rasterization was carried out

using the 5-m resolution DEM to ensure that all variables

were aligned. A small part (~5%) of the land cover map of the

valley was not covered by the DEM and was thus not

retained for land cover change analysis. Roads and other dis-

turbed areas were similarly masked and excluded from further

analysis. Resampling to a resolution of 5 m resulted in similar

proportions of the different land cover types and land cover

changes as the original classification. We decided to carry the

modeling on 5-m pixels, as this was the highest resolution at

which we deemed changes to be reliably observed over a time

span of approximately 20 yr, given the quality and resolution

of our data. We have also carried out a sensitivity analysis by

conducting analyses at lower resolutions of 15 and 30 m and

found results to be largely similar to those obtained from 5-m

resolution data (see Appendix S1 for details).

Vegetation, a six-class categorical variable identifying the

dominant land cover type in a given cell, was itself used as a

predictor variable. We expected this variable to be the main

predictor of land cover changes, as all land cover types are

not equally likely to be colonized by shrubs. Edge is a binary

variable indicating whether a cell is located at the edge of

the land cover patch it is part of (i.e., whether it “touches”

other land cover types). Cells located at edges should be

more likely to switch land cover types because of vegetative

propagation and/or because their environmental conditions

might suit other vegetation types. Shrub edge, similarly, is a

binary variable indicating whether there is at least one

shrub-dominated cell in the immediate (eight-cell) neighbor-

hood of a cell; such cells should have a higher likelihood to

become shrub dominated in the future. Neighborhood was

defined as the number of cells of the same vegetation type as

the focal cell in a 24-cell Moore neighborhood (5 9 5 pixel

square). This was treated as a numeric variable with integer

values ranging from 0 to 24 (see also Augustin et al. 2001).

We expected cells with lower neighborhood values to be

more likely to change as these are more exposed to other

land cover types. Considering the 24 neighboring cells

instead of the 8 immediately surrounding cells took into

account the broader context in which cells were located and

thus provided a more detailed description of the configura-

tion of vegetation than edge, while also ensuring more inter-

cell variability. Edge ratio is a continuous numeric variable

computed by dividing the number of border cells in a patch

by the total number of cells in that vegetation patch; edge

ratio values are therefore identical for all cells in a given

patch (see also Augustin et al. 2001). Higher edge ratio val-

ues represent thin and/or irregularly shaped patches,

whereas lower edge ratio values are representative of large,

more or less circular patches that should be less likely to

change since they are less exposed to other land cover types.

Surrounding is a variable identifying the dominant cover

type in a 24-cell Moore neighborhood surrounding the focal

cell. Were there ties between different cover types in the 24-

cell neighborhood, larger square neighborhoods were used

around the focal cell until ties could be broken. We expected

cells to be more likely to change to or stay in the land cover

type that is the most common one in their neighborhood.

Values for variables that depended on surrounding cells

(edge, shrub edge, neighborhood, surrounding) were set to

missing if any of the cells implied in the computation had

missing values in order to account for edge effects.

Statistical modeling of vegetation change for the 1990/1994 to

2010 period

In order to compare different conceptual representations

of the land cover changes occurring in our study area, we

tested two contrasting statistical modeling approaches:

multinomial and binomial logit modeling (Fig. 2).

We used multinomial logit models to represent a process

of vegetation change in which transitions from and to any

land cover type occur (see also Augustin et al. 2001, Ruther-

ford et al. 2007). In order to represent all vegetation changes

between any of the six land cover types (36 transitions in

total, including same-state transitions), we fit multinomial

logit models using the dominant vegetation in 2010 as a

response variable and the 1990/1994 values of explanatory

variables. A multinomial logit model allows calculating the

transition probabilities to every vegetation type given the

values of different predictor variables.
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We used binomial models to represent the conceptual

assumption that the only transitions occurring are those that

lead to shrub dominance (see Pueyo and Beguer�ıa 2007 for a

similar approach). To fit these models, the 2010 vegetation

variable was converted to a binary variable (shrub-dominated

or not). This assumption neglects other vegetation changes

that do happen in the ecosystem (including transitions from

shrubs to other land cover types), but might be a better repre-

sentation of reality given the important shift to shrub-domi-

nated vegetation currently observed. We could make this

assumption because transitions from shrub cover to other

cover types were relatively rare compared to other transitions,

with only ~14% of shrub pixels transitioning to other land

cover types (8% of this being transitions to spruce cover that

are likely due to misclassification; see Appendix S1). Bino-

mial models are also simpler to parameterize and interpret.

The model prediction output generated from such binomial

models is a single probability that a given cell will become

shrub dominated at a later time. Since this conceptual model

did not consider transitions from shrub dominance to any

other cover type, we only considered cells that were not

shrub-dominated at time 1 in the analysis. Cells that were

already shrub-dominated were thus assigned a de facto prob-

ability of transition to shrub cover of 1.

Analyzing such rasterized spatial data as if pixels were

independent from one another would result in a substantial

over-estimation of the actual sample size available for analy-

sis, as neighboring pixels are spatially autocorrelated. In

order to avoid this artificial inflation of sample size and

avoid detecting spurious effects, we opted for an approach

similar to that of Rutherford et al. (2007) and M€uller and

Zeller (2002) and took a regular sample of pixels 35 m apart

(about 2% of the total number of pixels in the data set) in

both the x and y directions from the top left pixel of each

raster. Regular sampling (as opposed to random sampling)

ensures both repeatability of the analysis and uniform sam-

pling of the whole data set. Our sampling resulted in a total

of 3,671 pixels retained for the valley and 1,461 pixels

retained for the coast in multinomial modeling. As shrub-

dominated pixels were not considered in binomial modeling,

only 1,946 of these pixels were kept for the valley and 1,174

pixels for the coast.

We adopted a multimodel inference framework (Anderson

2008) in order to identify the most likely statistical model or

set of statistical models for each of the four modeling situa-

tions (multinomial and binomial logit modeling for both the

coast and the valley). As testing all possible model combina-

tions of the 10 explanatory variables would have resulted in

1,024 models (ignoring interaction and polynomial terms),

we had to narrow the set of models. Notable a priori model

design decisions that we made in that sense were: (1) vegeta-

tion was included in all models, as current vegetation plays

an obvious role in determining vegetation at a later time; (2)

shrub edge and neighborhood were used only in binomial

models, whereas edge and surrounding were used only in

multinomial models, as these variables were deemed more

relevant to the conceptual processes represented by these

modeling approaches (because binomial models focus on

transition to shrub dominance whereas multinomial models

consider all transitions); (3) shrub edge and neighborhood

were never included in the same (binomial) model as they

both imply some representation of the surrounding cells, as

were edge and surrounding for multinomial models; (4)

whenever (transformed) aspect was included in a model,

slope as well as the interaction between slope and aspect

were also included as the effect of aspect is expected to be

stronger on steeper slopes; (5) whenever slope was included

in a model, we also added a quadratic term for slope since

we expected shrubification probabilities to increase on inter-

mediate slopes and decline on very steep slopes based on the

current understanding of the phenomenon (Tape et al. 2006,

Tremblay et al. 2012). The sets thus differed whether they

were used in multinomial or binomial modeling, but they

were identical for the valley and the coast. These considera-

tions resulted in 29 binomial and 29 multinomial models

representing a set of different conceptual hypotheses about

the vegetation change process occurring near Umiujaq

(Table 2). Models were parameterized by using the state of

vegetation in 2010 as a dependent variable and vegetation

characteristics in 1990/1994 in the computation of vegeta-

tion-related explanatory variables. Topography in 1990/1994

was assumed not to be significantly different from that of

2010, so we used the 2010 LiDAR-derived terrain data to

parameterize the models. Although periglacial processes are

FIG. 2. Conceptual representations of the (a) binomial and (b) multinomial models of land cover change in the Tasiapik valley near Umi-
ujaq, Qu�ebec, Canada. Binomial models represent a process where only transitions to shrub dominance occur, whereas multinomial models
represent a process where all possible transitions between land cover classes occur. For simplicity, only same-state transitions and transitions
from lichen (solid arrows) and shrub (dashed arrows) dominance are shown in panel b, but 36 possible transitions are actually considered in
multinomial models.
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known to influence topography in the study areas (Beck

et al. 2015), these changes in topography are unlikely to be

important enough to drive land cover changes over the tem-

poral and spatial scales considered. Moreover, large-scale

topographic changes such as thaw slumps or frost boils have

not been observed in the study area. Models in each set were

ranked according to their AICc values, and model AICc

weights were computed to compare the models to each

other. We computed 95% confidence intervals with model-

averaged mean values and unconditional variances to assess

the importance and effect sizes of model terms included in

the 95% confidence model set. Throughout the study, model

averaging was used if the best model in the set had an AICc

weight <0.90; otherwise, the single best model was used for

statistical inference and predictions.

Spatially explicit modeling and prediction of vegetation

change over the next decades

Model predictions were generated for the whole data set

(173,764 pixels for the valley and 69,044 pixels for the coast)

using model averaging (when applicable), i.e., model predic-

tions were computed using all models by weighting accord-

ing to model probabilities (i.e., AICc weights; Anderson

2008). The actual predictions generated from either the

binomial or multinomial models can be visualized as proba-

bility maps of transition to shrub dominance (for binomial

models) or to any land cover type (for multinomial models),

but they do not generate a predicted vegetation map directly.

Following Carmel et al. (2001), we tested both a determinis-

tic and a stochastic way of translating the statistical model

predictions into spatially explicit predictions of vegetation

at a later time. For binomial logit models, stochastic model-

ing was implemented by setting the vegetation class of a cell

at a later time to shrub dominance with a probability equal

to the value predicted for that cell, whereas deterministic

modeling was implemented by setting all cells with a proba-

bility >0.5 to shrub dominance. For multinomial models,

stochastic modeling was implemented by setting the land

cover of each cell to any of the six cover types depending on

the multinomial distribution calculated for that cell based

on the model (as in a Markov chain), whereas deterministic

modeling was implemented by setting the land cover at a

later time to the vegetation type for which the transition

probability was highest.

Our analysis yielded eight different predicted map types

(all combinations of coast or valley, multinomial or bino-

mial, and stochastic or deterministic). The performance of

TABLE 2. Variables included in the binomial and multinomial sets of models for land cover change modeling both for the valley and the
coast near Umiujaq, Qu�ebec, Canada.

Model Vegetation Elevation Slope Aspect TWI (shrub) edge Neighb/surround Edge ratio

mod1 ✖

mod2 ✖ ✖ ✖ ✖ ✖ ✖ ✖

mod3 ✖ ✖ ✖ ✖ ✖ ✖ ✖

mod4 ✖ ✖ ✖

mod5 ✖ ✖ ✖

mod6 ✖ ✖

mod7 ✖ ✖

mod8 ✖ – ✖ –

mod9 ✖ ✖ ✖ ✖ ✖

mod10 ✖ ✖ –

mod11 ✖ ✖

mod12 ✖ – ✖ ✖ –

mod13 ✖ ✖

mod14 ✖ ✖ ✖ ✖ –

mod15 ✖ ✖ ✖ ✖

mod16 ✖ – ✖ ✖ ✖ –

mod17 ✖ ✖ ✖

mod18 ✖ ✖ ✖ ✖ – ✖ –

mod19 ✖ ✖ ✖ ✖ ✖

mod20 ✖ – ✖ ✖ ✖ ✖ –

mod21 ✖ ✖ ✖ ✖

mod22 ✖ ✖ ✖ ✖ – ✖ –

mod23 ✖ ✖ ✖ ✖ ✖

mod24 ✖ – ✖ ✖ ✖ – ✖ –

mod25 ✖ ✖ ✖ ✖

mod26 ✖ ✖ ✖ ✖ – ✖

mod27 ✖ ✖ ✖ ✖ ✖

mod28 ✖ – ✖ ✖ ✖ – ✖

mod29 ✖ ✖ ✖ ✖

Notes: The variables shrub edge and neighborhood were used in binomial models whereas edge and surrounding were used in multi-
nomial models. A quadratic term for slope was added whenever slope was included, and the interaction between slope and aspect was also
added whenever aspect was included in a model. The variable aspect is a transformation of aspect following Beers et al. (1966). TWI,
topographic wetness index; neighb, neighborhood; surround, surrounding. ✖ represents variable inclusion in the model. – shows that vari-
able has not been included in the model.
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these predictions was assessed by testing how well the 2010

land cover could be predicted from the 1990/1994 data. We

computed the quantity and allocation disagreement and the

standard kappa coefficient for every spatially explicit predic-

tion, as described in Pontius and Millones (2011). Quantity

and allocation disagreement values split total disagreement

(1 � overall accuracy) into two components, respectively

the disagreement due to errors in the number of pixels in dif-

ferent classes, and the disagreement due to errors in location

of the pixels. Mean and standard deviation of disagreement

metrics and kappa values for stochastic realizations of the

model predictions were obtained from 100 independent

runs. For binomial deterministic models, we also calculated

the area under the curve (AUC) of the receiver operating

characteristic (ROC) plots of shrub cover prediction by

varying the threshold value necessary for a cell to undergo

transition to shrub dominance from 0 to 1.

Spatially explicit predictions of future land cover were gen-

erated using the 2010 data for both the valley and the coast.

These predictions are valid for 2026 for the valley and 2030

for the coast because our models describe vegetation changes

occurring over time steps of 16 and 20 yr, respectively, for the

valley and the coast. We generated shrubification probability

maps for 2026 and 2030 as well as long-term (~100 yr) predic-

tions of the proportions of land in each cover class. We do

not expect our models to be accurate up to that time, but we

were interested in the long-term behavior of each of the mod-

els and how they might be impacted by model design deci-

sions. Vegetation-related variables were dynamically updated

at each time step to account for the new configuration of the

vegetation that resulted from the changes, although we

ignored neighboring missing values (contrary to what was

done for model parameterization) as this would have resulted

in a substantial loss of data at every time step due to the

propagation of missing data at the edges.

Field-based model corroboration

We carried observations in the field in order to validate

the 2010 land cover maps and to assess how our model pre-

dictions were supported. Field observations were aimed at

identifying which sites had the potential to transition to

shrub dominance in the near future according to their pre-

sent shrub cover and location at the margin of an erect

shrub stand. In August 2015, we surveyed 150 points in the

valley and on the coast, for a total of 300 sampling points.

Points were randomly selected using a stratified sampling

protocol so as to survey points from the whole range of land

cover types, elevation and slope conditions found in the

area. No point was surveyed in spruce-dominated stands in

2015 because we deemed unlikely, based both on previous

analysis by Provencher-Nolet et al. (2014) and the life-his-

tory traits of the various species, that spruce stands would

be replaced by shrubs in the absence of disturbance. Some

points (n = 19) in the valley had to be randomly relocated

during fieldwork because access to these sites proved to be

difficult. Field surveys consisted of a series of measurements

and observations taken on both a 3 9 3 m and a 9 9 9 m

quadrat centered on the survey point, which was positioned

using a Garmin etrex30 GPS device. For each quadrat, we

assessed the percentage cover of each of the six land cover

classes found in the zone according to an eight-class system

(0%, 1–10%, 11–25%, 26–50%, 51–75%, 76–90%, 91–99%,

100%). We also noted whether the quadrat was located at

the margin of an erect shrub stand (yes/no). The 3 9 3 m

quadrats were used to validate the land cover maps, whereas

9 9 9 m quadrats were used to assess the support for spa-

tially explicit model predictions.

At the end of July 2016, we conducted additional field

surveys in order to refine the validation of the coast and val-

ley vegetation maps. Thirty-six (36) surveys as described

above were conducted on the Umiujaq coast in order to

increase the sample size for vegetation types that were

underrepresented in 2015; these surveys were also included

in the assessment of the accuracy of spatial predictions (de-

scribed below). In the valley, 20 spruce-dominated stands

were surveyed in 2016 since this vegetation class had not

been surveyed in 2015; the objective of these spruce stand

surveys was merely to validate the 2010 vegetation map of

the valley (see Appendix S1), so we went to those locations

and simply noted the dominant vegetation in a 3 9 3 m

quadrat. GPS points for these surveys were not completely

randomly generated but were rather chosen prior to field-

work so as to be close (~30–50 m) to the margin of a spruce

stand, since reaching points that were several hundreds of

meters deep into the spruce forest would have been time-

consuming. If anything, this could result in underestimation

of the accuracy with which spruce stands were recognized

from aerial photography analysis, since classification accu-

racy of spruce stands was lower near margins, where they

could be confused with shrubs (Provencher-Nolet et al.

2014).

In order to assess how spatially explicit model predictions

were supported by field observations, we extracted the pre-

dicted probability of transition to shrub dominance (for

2026 in the valley and 2030 on the coast) using the GPS

points of the ground-truthing surveys and generated linear

models of these probabilities for each of the four modeling

situations (coast/valley and multinomial/binomial models).

We used the shrub cover in the 9 9 9 m quadrat (ordered

categorical variable converted to three classes: 0–25%, 25–

50%, 50–100%) and the presence of an erect shrub stand

margin in the 9 9 9 m quadrat (binary variable) as explana-

tory variables in these linear models. We transformed the

shrub cover classes in this way because all cover values

above 50% represent shrub dominance and because splitting

the values into four even classes would have resulted in only

a few values in each of the upper 50–75% and 75–100%

classes. Points for which shrubs were already the dominant

vegetation type in 2015 or 2016 were not included in the

analysis as we were interested in modeling transition proba-

bilities to shrub dominance from other land cover types. A

multimodel inference approach was used to identify which

of the variables observed in the field (if any) were related to

the percent probability of transition to shrub dominance as

determined by our land cover modeling exercise. For each of

the four transition probability models, we modeled the pre-

diction probabilities using four combinations: cover, margin,

cover + margin, and a null model. We ranked these by AICc

scores to identify the best model or set of models. Normality

and heteroskedasticity assumptions of the global models

(i.e., models including all variables) were met in all cases.
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GPS points were taken in the field at the central plot loca-

tions. However, it sometimes happened that vegetation

recorded in the field did not match the 2010 vegetation

maps. When this could reasonably be attributed to the preci-

sion of the GPS device (between 3 and 5 m), the point was

manually moved to a neighboring cell (<5 m away) so as to

be consistent with observations in the field. Comparison of

the land cover modeling results to the field observations

required that field observations were locally consistent with

the variables upon which the model was based for predic-

tions. When such manual edition of GPS point coordinates

could not be properly done, the survey point was excluded

from the analysis. Overall, data cleaning retained 82 valley

survey points and 121 coastal points, of which 14 and 21

points, respectively, had their coordinates manually edited

(Appendix S1: Fig. S3).

Satellite-based model corroboration

While field observations enabled validating model predic-

tions at a small scale, we were also interested in testing our

predictions against vegetation changes observable at a larger

scale. We accessed 30-m resolution Landsat scenes and

assessed how our predictions were consistent with changes in

Normalized Difference Vegetation Index (NDVI) over the

study area under the assumption that increasing shrub cover

is the main driver of NDVI increase. This assumption was

based upon patterns observed in other studies (McManus

et al. 2012, Fraser et al. 2014) and in this study (see Results).

We accessed scenes from WGS frames 19-21 and 20-20

(path-row) using the United States Geological Survey

(USGS) GloVis interface. Landsat scenes came from Landsat

5, 7, and 8 and spanned years 1989–2016. We chose not to

use SLC-off Landsat 7 scenes (scenes collected after 31 May

2003) since they had too much missing data in our study area.

Since our study area was relatively small compared to the size

of a whole scene, we could filter scenes visually based on

whether the study area was covered by clouds or not. We

adopted a conservative approach by removing scenes as soon

as there were traces of clouds or cloud shadows covering the

study area, even when only one of the two zones under study

was affected. Scenes that were taken before Julian day 195 or

after Julian day 250 (14 July and 7 September, respectively,

on non-leap years) were removed from the analysis, as they

were likely outside the peak phenology window. Visual analy-

sis of the NDVI data confirmed that there was no relation-

ship between NDVI and the day of the year over the period

from Julian day 195 to Julian day 250. Filtering on the basis

of cloud cover and day of the year resulted in a set of 27 sce-

nes retained for further analysis (Appendix S1: Table S1).

We converted the red and near-infrared bands to top-of-

atmosphere (ToA) reflectance using coefficients and formu-

lae described in Chander et al. (2009) for TM (Landsat 5)

and ETM+ (Landsat 7) data and in the Landsat 8 Data

Users Handbook (U.S. Geological Survey 2016) for OLI

(Landsat 8) data. NDVI was computed for every 30-m cell

according to the standard formula

NDVI ¼
NIR�Redð Þ

NIRþRedð Þ

where NIR stands for the ToA reflectance of the near-infra-

red band and Red stands for the ToA reflectance of the red

band.

To determine whether Landsat data could be used to iden-

tify areas where shrubification occurred, we conducted a ser-

ies of analyses whose aim was to characterize (1) the link

between land cover and NDVI as well as (2) the link between

land cover transitions and variations in NDVI. We generated

mean NDVI rasters for ~1990 by averaging NDVI values of

six scenes taken in 1989, 1990, and 1992, as well as mean

NDVI rasters for ~2010 by averaging NDVI values of three

scenes taken in 2008, 2010, and 2011. These ~1990 and ~2010

NDVI rasters were used to generate distributions of NDVI

values per cover type by superimposing land cover maps from

these periods. To avoid land cover heterogeneity from adding

noise to the distribution of NDVI values per land cover type,

distributions were generated from sets of relatively homoge-

neous pixels (30-m Landsat cells comprising at least 75% of

5-m pixels of a given land cover type). Since only a few “pure”

30-m water pixels remained, we were not able to generate a

distribution of NDVI values for this land cover class.

We also computed NDVI trends by fitting pixel-wise

Theil-Sen robust regressions (following Fraser et al. 2014)

and considering the regression coefficient for each pixel as a

measure of the NDVI trend of that pixel. Theil-Sen regres-

sions for the period 1990–2010 were based on 20 scenes from

13 different years; NDVI values for years for which more

than one scene was available were averaged and considered

as a single data point. Cells with negative NDVI trends

(2.5% of the 5,920 pixels of the valley and 2.3% of the 2,180

pixels of the coast) were removed from the data set as they

corresponded largely to areas where human disturbance

(mainly new roads and buildings) was known to have

occurred. NDVI trends over the period 2010–2016 were sim-

ilarly generated using six scenes from five different years. We

first used the NDVI trend data to carry linear regressions

modeling the 1990–2010 NDVI trends in a Landsat pixel as

a function of the shrub cover increase in that pixel over the

same period. For every Landsat pixel, we obtained the per-

centage of land cover that had undergone shrubification

between 1990/1994 (coast/valley) and 2010. This percentage

was obtained by splitting every Landsat pixel into 36 5-m

subpixels and determining the proportion of each pixel that

had undergone a transition to shrub dominance over the

time period considered. We regressed NDVI trend against

percentage of shrubification on a regular sample of about

5% of the Landsat pixels (260 pixels in the valley and 103

pixels on the coast). We also assessed where the most sub-

stantial increases in NDVI occurred by generating distribu-

tions of NDVI trends per initial land cover type (i.e., we

generated distributions of 1990–2010 NDVI trends accord-

ing to the land cover type in 1990/1994 and 2010–2016

NDVI trends according to the land cover type in 2010).

Since the results of the aforementioned analyses (see

Results) indicated greater NDVI increases in areas undergo-

ing shrubification, we could assess whether our model pre-

dictions were consistent with recent NDVI trends by

identifying areas that were likely undergoing shrubification

according to their 2010–2016 NDVI trends. Generating a

data set to compare these NDVI trends to the spatially

392 MARC-ANDR�E LEMAY ET AL. Ecological Monographs
Vol. 88, No. 3



explicit model predictions was challenging as both rasters

had different projections and extents. To circumvent this, we

averaged the 2026/2030 shrubification probability values of

the 5-m resolution raster using a 15 m (3 9 3 pixels) moving

window in order to obtain predicted values that were more

representative of the general context. We then constructed a

data set associating every 5 9 5 m pixel to a NDVI trend

value by extracting the corresponding value from the 30-m

resolution Landsat raster. Cells that were already shrub-

dominated in 2010 were excluded from the analysis, as we

were interested in transitions to shrub dominance from

other land cover types. We fit four different linear models

(binomial and multinomial predictions for both the valley

and the coast) of NDVI trends as a function of the predicted

probabilities of transition to shrub dominance on random

samples of about 5% of the number of Landsat cells in the

data set (292 cells in the valley and 104 pixels on the coast).

Normality and heteroskedasticity assumptions were met for

all linear models involving NDVI data.

Software used

Unless otherwise stated, all analyses and data manipula-

tion were done in R version 3.3.1 (R Core Team 2016).

Multinomial logit modeling used the multinom function in

package nnet (Venables and Ripley 2002). Binomial model-

ing used the base glm function with binomial family logit

link. Manipulation of spatial data was used packages sp

(Pebesma and Bivand 2005), raster (Hijmans 2015), and

rgdal (Bivand et al. 2015). Model selection and multi-model

averaging used package AICcmodavg (Mazerolle 2016).

Theil-Sen robust regressions were fit using package mblm

(Komsta 2013). Computation of the 95% confidence inter-

vals used for the visualization of multinomial model predic-

tions used package effects (Fox 2003, Fox and Hong 2009).

AUC values for the binomial models were calculated with

package AUC (Ballings and Van den Poel 2013).

RESULTS

Statistical modeling of land cover change

Binomial modeling of land cover change in the valley

resulted in two models accounting together for virtually

100% of model weights (Table 3). Confidence intervals

(95%) generated using model averaging for parameters

included in these two models suggest that vegetation, eleva-

tion, shrub edge, edge ratio, and neighborhood were impor-

tant factors associated with shrubification in the valley

(Table 4). Model-averaged values for slope and aspect could

not be computed since these were involved in interactions,

but confidence intervals computed individually from the

best models did not support a role of these variables in

shrubification (Appendix S1: Table S2). Transition to shrub

dominance was more likely on areas dominated by lichens,

herbs and rock outcrops (Table 4). Shrubification probabili-

ties decreased with elevation (Fig. 3a), and increased with

increasing edge ratio (Fig. 3b) and with the presence of a

shrub edge (Fig. 3c). Visualization of model predictions did

not support an effect of neighborhood on transition proba-

bilities (Appendix S1: Fig. S4), which is consistent with this

TABLE 3. AICc model selection table of binomial models of land
cover change in the Tasiapik valley near Umiujaq, Qu�ebec, Canada.

Model K AICc ∆AICc wAICc LL

mod2 13 2105.0 0.0 0.862 �1039.4

mod3 13 2108.6 3.7 0.138 �1041.2

mod22 11 2134.1 29.2 0.000 �1056.0

mod4 7 2138.9 33.9 0.000 �1062.4

mod23 10 2147.0 42.1 0.000 �1063.5

mod5 7 2147.8 42.8 0.000 �1066.9

mod25 8 2149.5 44.5 0.000 �1066.7

mod26 11 2153.0 48.0 0.000 �1065.4

mod27 10 2169.2 64.2 0.000 �1074.5

mod29 8 2178.4 73.4 0.000 �1081.1

mod18 11 2180.6 75.6 0.000 �1079.2

mod28 11 2182.0 77.0 0.000 �1079.9

mod19 10 2192.1 87.2 0.000 �1086.0

mod24 11 2194.3 89.3 0.000 �1086.1

mod21 8 2199.4 94.5 0.000 �1091.7

mod6 6 2200.7 95.7 0.000 �1094.3

mod7 6 2202.2 97.3 0.000 �1095.1

mod20 11 2264.6 159.6 0.000 �1121.2

mod9 11 2276.4 171.4 0.000 �1127.1

mod8 6 2276.9 171.9 0.000 �1132.4

mod14 10 2278.9 173.9 0.000 �1129.4

mod15 9 2292.2 187.2 0.000 �1137.0

mod17 7 2315.3 210.3 0.000 �1150.6

mod10 6 2317.2 212.2 0.000 �1152.6

mod12 9 2418.6 313.6 0.000 �1200.2

mod16 10 2418.9 313.9 0.000 �1199.4

mod11 7 2423.4 318.4 0.000 �1204.6

mod1 5 2455.9 350.9 0.000 �1222.9

mod13 6 2456.1 351.2 0.000 �1222.0

Notes: The variables included in each model are listed in Table 2.
K, number of parameters in the model; AICc, Akaike’s information
criterion corrected for small sample size; ∆AICc, difference in AICc
from the best model; wAICc, weight (model probability) associated
with the model; LL, log-likelihood of the model.

TABLE 4. Model-averaged parameter values for the binomial
modeling of land cover change in the Tasiapik Valley near
Umiujaq, Qu�ebec, Canada.

Parameter b SE Lower CL Upper CL

Intercept† �1.97 0.82 �3.59 �0.36

Veg: spruce† �0.58 0.13 �0.84 �0.32

Veg: herbs 0.21 0.21 �0.20 0.62

Veg: water† �2.20 0.37 �2.93 �1.46

Veg: rock �0.23 0.24 �0.69 0.24

Elevation† �0.0068 0.0014 �0.0094 �0.0041

TWI 0.020 0.013 �0.006 0.046

Shrub edge† 0.81 0.11 0.59 1.04

Edge ratio† 2.45 0.41 1.66 3.25

Slope2 �0.0014 0.0009 �0.0031 0.0003

Slope 9 aspect 0.013 0.011 �0.008 0.035

Neighborhood† �0.077 0.011 �0.100 �0.055

Notes: Estimates and confidence intervals were computed using
model averaging and unconditional standard errors from the whole
model set. Values are presented only for those parameters included in
at least one of the models in the 95% confidence model set. Estimates
for the vegetation land cover classes are relative to the lichen class.
Veg, vegetation; b, model-averaged coefficient estimate; SE, model-
averaged unconditional standard error; lower CL, lower confidence
limit (95%) associated with the parameter estimate; upper CL, upper
confidence limit (95%) associated with the parameter estimate.
†Parameters whose confidence interval excludes 0.
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variable being found only in the second best model, which

was markedly less well supported than the top model.

Multinomial modeling of land cover change in the valley

identified model 3 as being vastly better supported than any

of the 28 alternatives considered (Table 5), so we used it

alone for all model inferences and predictions. Interpreting

multinomial models is more challenging than binomial mod-

els because parameters are estimated for every possible out-

come relative to the reference outcome, shrub dominance in

this instance. Confidence intervals (95%) generated for the

90 model parameters included in the best multinomial model

for the valley suggest an effect of the variables vegetation,

surrounding, elevation, slope, and TWI as well as the inter-

action between slope and aspect on land cover transitions

(Appendix S2: Table S1). As would be expected, the parame-

ters for vegetation indicated that cells tended to remain in

their initial land cover class, while the effect of surrounding

was to favor transitions to the dominant surrounding cover

type. The effect of elevation was consistent with that of the

binomial models, with decreasing probabilities of transition

to shrub dominance from lichen, spruce and herbaceous

cover as elevation increased (Fig. 4a; Appendix S1: Fig. S5).

Probabilities of transition to shrub dominance increased on

intermediate slopes (10–30°) covered by herbs, whereas stee-

per slopes were associated to rock outcrops where almost no

vegetation can grow (Fig. 4b; Appendix S1: Fig. S6). Transi-

tion to shrub dominance was more likely to occur with

increasing TWI on lichen-dominated and, to a lower extent,

FIG. 3. Predicted probabilities of transition to shrub dominance from different land cover types as estimated from binomial models of
land cover change. (a) Effect of elevation on shrubification probabilities in the valley. (b) Effect of edge ratio on shrubification probabilities
in the valley. (c) Effect of shrub edge on predicted shrubification probabilities in the valley. (d) Effect of slope on shrubification probabilities
on the coast. Predicted values and 95% confidence intervals (dashed lines) were computed using model averaging from the whole set of mod-
els (Tables 3 and 6). Variables other than those of interest were set to the mean (continuous variables) or most common (categorical vari-
ables) value in the data set.
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spruce-dominated cover (Fig. 4c; Appendix S1: Fig. S7).

The parameter values for the interaction between slope and

aspect suggested that transition to shrub dominance on

steeper slopes was more likely to occur when these were

facing northeast for herb- and rock-dominated areas

(Appendix S2: Table S1). The multinomial model also sup-

ported evidence for an effect of edge ratio consistent with

that observed for the binomial model, specifically that the

probability of transition to shrub dominance increased with

edge ratio, although it was only significant for lichen and

rock patches (Appendix S2: Table S1).

On the coast, binomial modeling of land cover change

resulted in a 95% confidence model set comprising four

models (Table 6). Confidence intervals (95%) generated

using model averaging for parameters included in these

models suggest that vegetation, shrub edge, edge ratio, and

the quadratic term for slope were important parameters in

shrubification binomial modeling on the coast (Table 7). As

for the valley, model-averaged values for slope and aspect

could not be computed since these were involved in interac-

tions, but confidence intervals computed individually from

the best models did not exclude 0, so there was no evidence

for a role of these parameters (Appendix S1: Table S2).

Transitions to shrub dominance were more likely to occur

on herbaceous and lichen cover than on other land cover

types (Table 7). The effect of shrub edge was similar on the

coast as in the valley, but the effect of edge ratio on pre-

dicted probabilities showed only a weak effect of this vari-

able as compared to the valley (data not shown). The effect

of the quadratic term for slope was a result of higher proba-

bilities of transition to shrub dominance on slopes steeper

than 10° (Fig. 3d), although these represent only 4.8% of

the coast area.

Multinomial modeling of land cover change on the coast

also resulted in a single model with virtually 100% of the

AICc weight (Table 8), which we used alone for all model

inferences and predictions. Confidence intervals (95%) gen-

erated for the 80 model parameters included in the best

multinomial model for the coast highlight the important

effect of vegetation relative to other variables (Appendix S3:

Table S1). Compared to the valley, where surrounding was

important in modeling transitions to all cover types, the

effect on the coast was only significant for rock and herba-

ceous cover (Appendix S3: Table S1). Apart from a higher

probability of transition from herbaceous and sand cover to

shrub dominance with increasing elevation (Fig. 4d;

Appendix S1: Fig. S8) and a higher probability of transition

to shrub dominance for lichen-dominated patches facing

northeast (Appendix S3: Table S1), there was no conspicu-

ous effect of topographic variables on multinomial transi-

tion probabilities on the coast.

Spatially explicit modeling of land cover change

Spatially explicit shrubification probabilities for 1990/

1994–2010 were estimated from binomial and multinomial

models for both the valley and the coast (Fig. 5) and were

used to generate spatially explicit predictions. AUC values

for the binomial models of the valley and the coast were

0.77 and 0.74, respectively, which indicates a fair predictive

capability for these models (Swets 1988). The overall accura-

cies of our spatially explicit predictions (corresponding to 1

minus the total disagreement presented in Fig. 6) ranged

from 58.7% to 76.9%. Quantity and allocation disagreement

values for all eight types of spatially explicit predictions indi-

cate that most of the inaccuracy of our predictions stems

from allocating pixels to the wrong class rather than allocat-

ing the wrong number of pixels in each class (Fig. 6). Spa-

tially explicit maps generated from deterministic realizations

of the statistical model predictions were consistently better

(in terms of total disagreement) than those generated from

stochastic realizations, although stochastic realizations

tended to perform better than their deterministic counter-

parts in terms of quantity disagreement (Fig. 6). Interest-

ingly, multinomial stochastic models resulted in almost

perfect quantity agreement while resulting in the worst allo-

cation disagreement (Fig. 6). Moreover, stochastic realiza-

tions resulted in highly pixelized maps that we deemed

rather unrealistic representations of the vegetation change

processes underway in the region (results not shown). Deter-

ministic multinomial models generated slightly better spa-

tially explicit predictions than binomial models (Fig. 6), but

given the much higher number of parameters that have to be

estimated, the significance of the minor improvements is

TABLE 5. AICc model selection table of multinomial models of
land cover change in the Tasiapik Valley near Umiujaq, Qu�ebec,
Canada.

Model K AICc ∆AICc wAICc LL

mod3 90 4883.93 0.00 1.00 �2349.68

mod22 80 4921.52 37.59 0.00 �2378.96

mod23 75 4953.49 69.56 0.00 �2400.16

mod25 65 5043.31 159.38 0.00 �2455.47

mod24 80 5097.98 214.05 0.00 �2467.18

mod5 60 5107.65 223.72 0.00 �2492.81

mod7 55 5219.34 335.41 0.00 �2553.82

mod2 70 5256.14 372.21 0.00 �2556.69

mod26 60 5266.92 382.99 0.00 �2572.44

mod18 60 5285.13 401.20 0.00 �2581.55

mod9 60 5307.41 423.48 0.00 �2592.69

mod14 55 5313.98 430.05 0.00 �2601.14

mod27 55 5333.64 449.71 0.00 �2610.97

mod19 55 5354.53 470.60 0.00 �2621.41

mod28 60 5374.90 490.97 0.00 �2626.44

mod15 50 5380.53 496.60 0.00 �2639.56

mod29 45 5453.18 569.25 0.00 �2681.02

mod21 45 5468.44 584.51 0.00 �2688.65

mod20 60 5484.37 600.44 0.00 �2681.17

mod17 40 5491.78 607.85 0.00 �2705.44

mod10 35 5496.78 612.85 0.00 �2713.04

mod4 40 5557.05 673.12 0.00 �2738.07

mod6 35 5561.03 677.10 0.00 �2745.17

mod12 50 5562.21 678.28 0.00 �2730.40

mod16 55 5563.30 679.37 0.00 �2725.80

mod11 40 5635.65 751.72 0.00 �2777.38

mod8 35 5668.85 784.92 0.00 �2799.08

mod1 30 5747.01 863.08 0.00 �2843.25

mod13 35 5748.48 864.56 0.00 �2838.90

Notes: The variables included in each model are listed in Table 2.
K, number of parameters in the model; AICc, Akaike’s information
criterion corrected for small sample size; ∆AICc, difference in AICc
from the best model; wAICc, weight (model probability) associated
with the model; LL, log-likelihood of the model.
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questionable. Predictions were consistently more accurate

for the valley than for the coast according to total disagree-

ment, but these differences were less pronounced when

looking at kappa coefficients (Fig. 6). This is likely a conse-

quence of the higher proportion of shrub dominance in the

valley, which makes it more likely to accurately predict a cell

as being shrub dominated.

Based on the preceding results, long-term predictions of

the proportion of land dominated by different cover classes

over time were generated from the deterministic models. Pre-

dictions for both the valley (Fig. 7a) and the coast (Fig. 7b)

were marked by an increase of shrub cover, mainly at the

expense of lichen and herb cover. Predictions generated from

binomial and multinomial models were roughly similar,

except for the proportions of rock and herbaceous cover on

the coast, which differed markedly between the two models

(Fig. 7b). The models tended towards equilibrium of the

proportions of land in different land cover classes, presum-

ably as the most probable vegetation conversions had all

occurred by the end of the simulation period.

Field-based model corroboration

Comparison of the model predictions for 2026 in the val-

ley with the data collected in the field ranked the model with

only margin as the best model both for the binomial and

FIG. 4. Predicted probabilities of transition to shrub dominance from different land cover types as estimated from multinomial models
of land cover change. (a) Effect of elevation on predicted shrubification probabilities in the valley. (b) Effect of slope on predicted shrubifica-
tion probabilities in the valley. (c) Effect of topographic wetness index (TWI) on predicted shrubification probabilities in the valley. (d) Effect
of elevation on predicted shrubification probabilities on the coast. Predicted values and 95% confidence intervals (dashed lines) were com-
puted from the single best model of each study area (Tables 5 and 8) using the effects package in R. Variables other than those of interest
were set to the mean (continuous variables) or most common (categorical variables) value in the data set. Surrounding was an exception to
that rule since this variable was set to the same value as vegetation.
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multinomial predictions (Table 9). Based on AICc weights,

there was no support for an association between shrub cover

and model predictions. Quadrats on the margin of a shrub

patch in the field had higher predicted probabilities of

shrubification than others, even though there was consider-

able overlap between the probability values (Fig. 8a). On

the coast, binomial model predictions were best modeled by

the global model, which included both margin and shrub

cover, as evidenced by the ranking of the global model as

the best model (Table 9). Multinomial model predictions for

the coast were best modeled by the global model as well.

Among the univariate models, there was better support for

an effect of shrub cover in the field than for margin

(Table 9). Predicted shrubification probabilities, both from

binomial and multinomial models, were higher on the coast

when shrub cover was also higher in the field (Fig. 8b).

Satellite-based model corroboration

Different land cover types clearly differed in the distri-

bution of their NDVI values, with NDVI values decreasing

roughly as expected in the following order: shrubs >

spruce > herbs > lichen > rock > sand (Appendix S1: Fig. S9).

Although increasing trends were observed for all land cover

TABLE 6. AICc model selection table of binomial models of land
cover change on the coast near Umiujaq, Qu�ebec, Canada.

Model K AICc ∆AICc wAICc LL

mod2 13 1103.03 0.00 0.39 �538.36

mod18 11 1103.19 0.15 0.36 �540.48

mod20 11 1104.92 1.89 0.15 �541.35

mod19 10 1106.96 3.93 0.05 �543.39

mod4 7 1108.85 5.82 0.02 �547.38

mod22 11 1109.97 6.93 0.01 �543.87

mod24 11 1112.72 9.68 0.00 �545.25

mod23 10 1112.98 9.94 0.00 �546.39

mod8 6 1113.12 10.09 0.00 �550.53

mod3 13 1113.84 10.81 0.00 �543.76

mod21 8 1114.46 11.43 0.00 �549.17

mod25 8 1122.47 19.44 0.00 �553.17

mod7 6 1122.84 19.81 0.00 �555.38

mod5 7 1124.42 21.38 0.00 �555.16

mod26 11 1124.59 21.56 0.00 �551.18

mod28 11 1127.88 24.85 0.00 �552.83

mod27 10 1128.41 25.37 0.00 �554.11

mod14 10 1131.11 28.07 0.00 �555.46

mod9 11 1133.11 30.08 0.00 �555.44

mod12 9 1134.30 31.26 0.00 �558.07

mod15 9 1135.01 31.97 0.00 �558.43

mod16 10 1136.21 33.17 0.00 �558.01

mod11 7 1138.10 35.07 0.00 �562.00

mod29 8 1140.73 37.70 0.00 �562.31

mod6 6 1141.73 38.69 0.00 �564.83

mod10 6 1148.54 45.51 0.00 �568.23

mod17 7 1150.29 47.26 0.00 �568.10

mod1 5 1153.65 50.62 0.00 �571.80

mod13 6 1155.17 52.13 0.00 �571.55

Notes: The variables included in each model are listed in Table 2.
K, number of parameters in the model; AICc, Akaike’s information
criterion corrected for small sample size; ∆AICc, difference in AICc
from the best model; wAICc, weight (model probability) associated
with the model; LL, log-likelihood of the model.

TABLE 7. Model-averaged parameter values for the binomial
modeling of land cover change on the coast near Umiujaq,
Qu�ebec, Canada.

Parameter b SE Lower CL Upper CL

Intercept† �1.73 0.57 �2.86 �0.61

Veg: herbs† 0.53 0.18 0.18 0.88

Veg: sand† �2.43 0.65 �3.71 �1.15

Veg: rock† �1.20 0.27 �1.72 �0.67

Veg: water† �2.35 1.16 �4.62 �0.09

Elevation 0.010 0.008 �0.006 0.025

TWI �0.001 0.018 �0.036 0.034

Shrub edge† 0.90 0.17 0.56 1.23

Edge ratio† 1.02 0.49 0.06 1.99

Slope2† 0.015 0.007 0.002 0.029

Slope 9 aspect 0.001 0.050 �0.097 0.100

Notes:: Estimates and confidence intervals were computed using
model averaging and unconditional standard errors from the whole
model set. Values are presented only for those parameters included
in at least one of the models in the 95% confidence model set. Esti-
mates for the vegetation land cover classes are relative to the lichen
class. Veg, vegetation; b, model-averaged coefficient estimate; SE,
model-averaged unconditional standard error; lower CL, lower con-
fidence limit (95%) associated with the parameter estimate; upper
CL, upper confidence limit (95%) associated with the parameter
estimate.
†Parameters whose confidence interval excludes 0.

TABLE 8. AICc model selection table of multinomial models of
land cover change on the coast near Umiujaq, Qu�ebec, Canada.

Model K AICc ∆AICc wAICc LL

mod22 80 2351.07 0.00 1.00 �1090.84

mod23 75 2365.19 14.12 0.00 �1103.48

mod3 90 2365.29 14.22 0.00 �1086.66

mod24 80 2387.92 36.85 0.00 �1109.27

mod25 65 2389.96 38.89 0.00 �1126.90

mod18 60 2397.21 46.14 0.00 �1135.99

mod2 70 2405.85 54.78 0.00 �1129.35

mod7 55 2409.25 58.18 0.00 �1147.43

mod19 55 2409.98 58.91 0.00 �1147.80

mod5 60 2416.88 65.81 0.00 �1145.82

mod14 55 2430.79 79.72 0.00 �1158.20

mod9 60 2437.80 86.73 0.00 �1156.29

mod26 60 2439.76 88.69 0.00 �1157.27

mod15 50 2446.05 94.98 0.00 �1171.22

mod21 45 2447.29 96.22 0.00 �1177.18

mod27 55 2454.46 103.39 0.00 �1170.04

mod20 60 2458.15 107.08 0.00 �1166.46

mod10 35 2477.48 126.41 0.00 �1202.86

mod17 40 2483.60 132.53 0.00 �1200.65

mod29 45 2490.22 139.16 0.00 �1198.65

mod8 35 2492.11 141.04 0.00 �1210.17

mod4 40 2495.14 144.07 0.00 �1206.41

mod12 50 2499.91 148.84 0.00 �1198.15

mod28 60 2500.86 149.80 0.00 �1187.82

mod16 55 2506.73 155.66 0.00 �1196.17

mod11 40 2512.80 161.73 0.00 �1215.24

mod6 35 2532.27 181.20 0.00 �1230.25

mod1 30 2542.70 191.63 0.00 �1240.70

mod13 35 2548.21 197.14 0.00 �1238.22

Notes: The variables included in each model are listed in Table 2.
K, number of parameters in the model; AICc, Akaike’s information
criterion corrected for small sample size; ∆AICc, difference in AICc
from the best model; wAICc, weight (model probability) associated
with the model; LL, log-likelihood of the model.
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types, higher NDVI increases over the period 1990–2010

were observed in areas where the vegetation was initially

herb or lichen dominated, both in the valley and on the

coast (Appendix S1: Fig. S10); these cover types also corre-

spond to the ones that underwent the most important transi-

tion to shrub dominance over the same period. Similar

tendencies were not observed for the 2010–2016 NDVI

trends (Appendix S1: Fig. S10), which proved to be

markedly higher than 1990–2010 trends (see also the maps

of Appendix S1: Fig. S11). We found significant positive lin-

ear relationships between NDVI trends and percentage

shrubification for both the valley (b = 0.004, P < 0.001;

Appendix S1: Fig. S12) and the coast (b = 0.005, P < 0.001;

Appendix S1: Fig. S12), although the proportional

explained variance was low (R2 of 0.11 and 0.20, respec-

tively). Among the four linear models constructed in order

to assess the link between model-predicted probabilities and

2010–2016 NDVI trends, only the models of the coast

showed a significant relationship between NDVI trends and

predictions (binomial predictions, b = 0.01, P < 0.01,

R2
= 0.07; multinomial predictions, b = 0.01, P < 0.01,

R2
= 0.06; Fig. 9), although the explained variance was very

low. The two models of the valley did not yield evidence for

a relationship between binomial nor multinomial predicted

values and 2010–2016 NDVI trends.

DISCUSSION

Topographic drivers of shrubification

Recent research on the spatial patterns of shrubification

underlines the importance of topography, hydrology, and

disturbance as drivers of this phenomenon at the landscape

scale. A unifying paradigm from much of this research is

that shrub growth and recruitment are enhanced where both

nutrients and water are not limiting (Tape et al. 2012) and

where climate conditions are milder (Swanson 2015). Shrub

stands usually grow higher and expand more rapidly along

drainage features (Naito and Cairns 2011, Tape et al. 2012,

Curasi et al. 2016) and dendrochronological data (Myers-

Smith et al. 2015) show that the climate sensitivity of shrub

growth is higher in wetter areas. Tape et al. (2006) observed

that the rate of shrub cover increase differed from one valley

system to another and among different topographical units,

hill slopes and valley bottoms being more liable to shrubifi-

cation than interfluves. Ropars and Boudreau (2012)

FIG. 5. Spatially explicit analysis of shrubification patterns for (a–c) 1994–2010 in the Tasiapik valley and (d–f) 1990–2010 on the coast
near Umiujaq, Qu�ebec, Canada. Areas that have undergone shrubification during the timespan of the study are shown for (a) the valley and
(d) the coast along with associated probabilities of transition to shrub dominance estimated from (b, e) binomial and (c, f) multinomial
models. Areas that were already dominated by shrubs at the beginning of the study period were masked from all maps and thus appear in
white. Note the different map scales for the valley and the coast.
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similarly found that shrub cover increased more rapidly on

river terraces than on hilltops. Aerial photography analyses

by Tremblay et al. (2012) and Cameron and Lantz (2016)

also yield evidence for a higher shrubification rate at lower

elevation sites, although increases in shrub cover tend to

also occur at higher elevations. Increasing disturbance from

human activity (Fraser et al. 2014, Cameron and Lantz

2016), fire (Lantz et al. 2013), or geomorphological pro-

cesses (Lantz and Kokelj 2008, Lantz et al. 2009) also

enhance shrub growth and recruitment by increasing nutri-

ent availability and exposing favorable seedbeds.

Our results are in accordance with previous research

in emphasizing the importance of topographical variables in

the control of shrub expansion in subarctic ecosystems. In

the valley, we found that shrub cover is more likely to

increase at lower altitudes, as was observed in previous stud-

ies (Tremblay et al. 2012, Cameron and Lantz 2016). Lower

elevation sites in the valley are largely sheltered from the

wind and are characterized by numerous drainage features

and wetter areas where shrubs can thrive. On the contrary,

the lichen-dominated plateau overlooking the valley is char-

acterized by shallow soils and high wind exposure unfavor-

able to the development of erect shrub stands. Field

observations of our research group on this plateau suggest,

however, that shrub cover and size have increased recently

and that B. glandulosa is ubiquitous even though aerial pho-

tography has not detected a switch to shrub dominance in

this area between 1994 and 2010. These observations in the

field are supported by our analysis of 2010–2016 NDVI

trends, which show that large increases in NDVI have

occurred on the plateau over this period (Appendix S1:

Fig. S11). It is likely that shrub dominance will also increase

on the plateau, although the timespan of our study did not

allow our modeling exercise to detect significant changes in

this area. Whether shrubs will remain low or will develop

into high shrub stands in this area is of interest, since the

ecological impacts of shrubification occur mainly in high

shrub stands (Myers-Smith and Hik 2013, Paradis et al.

2016).

The influence of elevation on land cover changes was not

as obvious on the coast as in the valley. This was expected,

as the elevation range on the coast (0–45 m above sea level)

is narrower than in the valley (0–180 m above sea level).

Multinomial modeling of land cover change for the coast

found an effect opposite to the one observed in the valley,

with increasing probability of transition to shrub dominance

with elevation on herbaceous and sand cover. This effect is

likely due to increasing distance from the sea with increasing

elevation on the coast; areas farther from the coast are more

sheltered from the wind and therefore more likely to favor

FIG. 6. Quantity disagreement, allocation disagreement and kappa values for eight different model realizations of land cover change
near Umiujaq, Qu�ebec, Canada. Kappa values corresponding to each model realization are shown to the right of the bar. Values computed
for stochastic realizations are mean � SD from 100 independent runs. SD values were also computed for quantity and allocation disagree-
ment but are not represented graphically as they were all ~ 0.001 or smaller.
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shrub recruitment and growth. The higher probability of

shrub colonization on northeast-facing lichen patches also

supports the interpretation that the influence of the sea

plays an important role in land cover transitions on the

coast, since patches facing northeast are sheltered from the

wind coming from the sea. Erosion by ice and water also

prevent shrub colonization of the sandy beach running

along the coast, which explains this effect of elevation on

transition to shrub dominance on sand cover.

We expected to find a conspicuous positive effect of topo-

graphic wetness index (TWI) on probabilities of transition

to shrub dominance for both study areas, since this variable

has been linked to shrubification in a previous study (Naito

and Cairns 2011) and shrub performance is related to water

availability (Tape et al. 2012, Cameron and Lantz 2016,

Curasi et al. 2016), but a significant effect of TWI was only

observed on lichen and spruce cover in the valley. However,

a weak effect of TWI does not mean that shrub growth and

recruitment does not depend on moisture conditions in our

study system. TWI is a measure of soil moisture potential

based entirely on topography, but soil moisture content

depends on other factors such as soil physicochemical con-

ditions and vegetation structure and community (Ben Wu

and Archer 2005). The effects of slope and aspect found by

our models, on the other hand, do support a role of water

availability in shrub cover increase. An interesting pattern

revealed by the valley multinomial model was an increase in

the probability of transition to shrub dominance on moder-

ate slopes (10–30°) dominated by herbs. Binomial models

for the coast also found a higher probability of shrub domi-

nance on slopes steeper than 10°. Both in the valley and on

the coast, such conditions are mostly found in the vicinity of

drainage features characterized by high water and nutrient

availability while being well drained. Moreover, these

depressions probably accumulate more snow in the winter,

enabling deeper permafrost thaw and moisture availability

from snowmelt in the spring and summer while also protect-

ing shrubs from winter frost damage (Ropars et al. 2015a).

In the valley, the higher probability of shrub dominance on

FIG. 7. Long-term predictions of the proportions of different
land cover classes over time near Umiujaq for (a) the Tasiapik Val-
ley and (b) the Umiujaq coast as estimated from spatially explicit
binomial and multinomial model predictions. Values for 2010
(dashed vertical line) and earlier represent actual data, whereas data
points after 2010 represent predictions generated from deterministic
realizations of the models for five time steps of 16 yr (valley) or
20 yr (coast). Variables that changed with the spatial configuration
of the data (e.g., surrounding and shrub edge) were dynamically
updated after each time step to take into account the new spatial
configuration of land cover.

TABLE 9. AICc table of the models relating spatially explicit
predictions to field observations in the valley and coast near
Umiujaq, Qu�ebec, Canada.

Data and model K AICc ∆AICc wAICc LL

Valley, binomial predictions

Margin 3 �9.5 0.0 0.90 7.93

Global 5 �5.1 4.5 0.10 7.93

Null 2 5.0 14.6 0.00 �0.43

Cover 4 8.7 18.3 0.00 �0.10

Valley, multinomial predictions

Margin 3 15.3 0.0 0.89 �4.49

Global 5 19.7 4.5 0.10 �4.47

Null 2 24.6 9.3 0.01 �10.20

Cover 4 28.6 13.3 0.00 �10.02

Coast, binomial predictions

Global 5 �69.1 0.0 0.94 39.82

Margin 3 �62.8 6.4 0.04 34.48

Cover 4 �61.2 7.9 0.02 34.76

Null 2 �42.0 27.2 0.00 23.03

Coast, multinomial predictions

Global 5 �92.9 0.0 0.75 51.72

Cover 4 �90.6 2.3 0.24 49.50

Margin 3 �83.5 9.4 0.01 44.87

Null 2 �70.6 22.4 0.00 37.33

Notes: Predictions for the valley were generated for 2026 whereas
predictions for the coast were generated for 2030. The global models
are models including both margin and cover, whereas null models
included the intercept only. K, number of parameters in the model;
AICc, Akaike’s information criterion corrected for small sample
size; ∆AICc, difference in AICc from the best model; wAICc, weight
(model probability) associated with the model; LL, log-likelihood of
the model.
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herbaceous and rock slopes exposed to the northeast is also

likely due to higher moisture and snow accumulation on

these slopes because of lower exposure to sunlight.

Spatial arrangement of land cover as a driver of shrubification

Previous research has documented that the rates of shrub

cover and growth increase depended on the type of environ-

ment or vegetation in which they grow. Patterns emerging

from aerial photography analysis commonly show an increase

in shrub cover at the expense of lichen-dominated areas

(Ropars and Boudreau 2012, Fraser et al. 2014), an observa-

tion consistent with the decreases in lichen cover expected

with climate change (Cornelissen et al. 2001, Elmendorf

et al. 2012a). On the other hand, shrubs usually perform

poorly in tussock tundra, where inadequate drainage, acidity

and a shallow active layer inhibit the development of a verti-

cal structure (Tape et al. 2012, Swanson 2015).

We found strong support for effects related to land cover

type and the spatial arrangement of vegetation. Land cover

type at a given time was an important predictor of the land

cover type at a later time in both study areas. Land cover type

identifies which state a given cell is most likely to remain in as

well as how likely different transitions are. In the valley, most

of the low-elevation (as opposed to those found on the pla-

teau) lichen expanses occur on permafrost mounds that, upon

thawing, create moisture and microtopographic conditions

favorable to shrub growth (Schuur et al. 2007, Provencher-

Nolet et al. 2014) whereas on the coast, shrub encroachment

on lichen-dominated areas appeared to result mainly from

clonal propagation of shrubs on well-drained sites. Model

results also supported some degree of shrub encroachment

on herbaceous vegetation, although identifying the reasons

for these shifts is more complex as there is considerable

heterogeneity in this land cover class. It seems likely that

herbs in well-drained sites will progressively yield to shrub

dominance, but the fate of poorly drained areas is less clear.

Observations of large numbers of shrub seedlings in the field

indicate high recruitment in moist areas dominated by grasses

and sedges (Marc-Andr�e Lemay, personal observation),

although their low height raises questions as to whether

shrubs will reach dominance in these sites.

FIG. 8. Validation of the land cover models from field data near Umiujaq, Qu�ebec, Canada. (a) Predicted probabilities of transition to
shrub dominance estimated from binomial and multinomial model predictions in the Tasiapik Valley according to whether the field survey
quadrats were located at the margin of a shrub patch or not. (b) Predicted probabilities of transition to shrub dominance estimated from
binomial and multinomial model predictions on the Umiujaq coast as a function of the percentage of shrub cover in the survey quadrats.
Boxplot horizontal bars represent the first quartile, median, and third quartile. Whiskers extend to the minimum/maximum values, except
where outliers are found and represented as dots.
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The proximity of shrub-dominated cells was closely asso-

ciated with transition to shrub dominance in binomial mod-

els, while the major surrounding land cover type was a

relatively important predictor of land cover transitions in

the multinomial model of the valley. The link between these

variables and transition probabilities underline the impor-

tance of neighborhood effects in the prediction of vegetation

change. Repeat photography studies consistently show shrub

cover increases in the vicinity of existing patches (Sturm

et al. 2001, Myers-Smith et al. 2011b, Lantz et al. 2013) and

Tape et al. (2012) observed that expanding shrub patches

tend to adopt a clumped configuration. These neighbor-

hood effects could result from the clonal propagation of

shrub patches or preferential recruitment near mature

patches, such that sites are more easily colonized by shrubs

when expanding patches are found in their surroundings.

Another explanation (which does not exclude the former) is

that environmental conditions (soil properties, wind expo-

sure, exposure to sunlight, topography, etc.) are more likely

to be similar in neighboring cells, so that areas adjacent to

shrub patches may be more suitable for shrub growth than

would be randomly picked sites elsewhere in the landscape.

The effect of edge ratio, which was an important predictor

of binomial models of the valley, is similarly related to land

cover change, as it is a measure of the exposure of a vegeta-

tion patch to other land cover types. Smaller and more irreg-

ularly shaped patches (i.e., patches with a higher edge ratio)

will likely be more liable to colonization by shrubs since they

are more exposed to shrub edges, although it might also be

that they were irregular because they were more liable to

shrubification in the first place.

Overall performance of the models

The models generated in our study were satisfactory in

their explanatory power. AUC values over 0.7, such as those

computed for our binomial deterministic models, indicate

that models can prove useful for “some purposes” (Swets

1988; we can take this to include highly complex ecological

systems) and although such values could not be computed

for multinomial models, these showed similar performance to

binomial models based on kappa coefficients and disagree-

ment values. Predicted binomial and multinomial probabili-

ties also showed good visual agreement with their respective

shrubification maps over the same time periods (Fig. 5). Our

results indicate that our models performed much better at

predicting the fraction of land cover dominated by different

classes than at predicting the class that will dominate a given

pixel later in time. This is likely to be the case for models like

ours since allocation disagreement can result both from pre-

dicting change in pixels that did not change between 1990/

1994 and 2010, and from predicting stability for pixels that

did change. These results suggest that our deterministic mod-

els are likely to be an accurate representation of changes that

are likely to happen in the future, although they are limited in

their fine-scale predictive capacity.

Comparing results of predictions among studies is diffi-

cult because they are interested in different phenomena, spa-

tial scales, time intervals, and change rates. Moreover,

models used in land cover change prediction vary largely

from one study to another, and different authors usually

report different statistics to assess the performance of their

models. Nonetheless, the performance of our models can be

considered in the range of that obtained in other studies

interested in similar processes. Pueyo and Beguer�ıa (2007),

in a study modeling secondary succession following farm

abandonment in Spain, generated binomial models with

AUC values ranging from 0.76 to 0.83 and an overall predic-

tion accuracy of 67.8%. Rutherford et al. (2007), in a study

modeling similar transitions in Switzerland, obtained AUC

values ranging from 0.50 to 0.78. Upshall (2011), who

reported results from a Markov-cellular automaton model

also interested in shrubification, reported an overall predic-

tion accuracy of 70.8% and a kappa coefficient of 0.66. We

suggest that future studies of land cover change modeling

should report at least AUC values since these are indepen-

dent of outcome frequencies (Swets 1988) and are thus more

easily compared among studies. As discussed in Rutherford

FIG. 9. Sample of normalized difference vegetation index
(NDVI) trends over the period 2010–2016 as a function of binomial
(y = 0.01x + 0.01, R2

= 0.07) or multinomial (y = 0.01x + 0.01,
R2

= 0.06) predicted shrubification probabilities for 2030 on the
Umiujaq coast.
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et al. (2007), prediction accuracies and kappa coefficients

remain useful for model performance interpretation, and we

suggest authors to also report these statistics along with

quantity and allocation disagreement when describing the

results of land cover change models.

Stochastic vs. deterministic modeling

Deterministic models performed better than stochastic

models when translating statistical model predictions into

actual predictive maps, based on both overall accuracy

values and kappa coefficients. Stochastic predictions also

resulted in unrealistically pixelized maps, a well-known

problem in spatial modeling (Weaver and Perera 2004) that

could not be corrected in our modeling exercise by variables

taking the spatial context into account (e.g., shrub edge and

surrounding). Deterministic model realizations were simi-

larly found by Carmel et al. (2001) to generate predictive

maps that match observed maps better, although stochastic

realizations might outperform deterministic ones when pre-

dicting proportions of different cover classes, as was the case

here for maps arising from stochastic multinomial models.

Binomial vs. multinomial modeling

We tested both binomial and multinomial models of vege-

tation change in the Umiujaq region in order to assess

whether land cover transitions could be represented merely as

a shrubification process (conceptualized as a binomial model)

rather than the whole spectrum of land cover transitions

(conceptualized as a multinomial model). It appears from

our results that the small increase in performance obtained

from modeling a multinomial process instead of a binomial

one does not justify the approximately fivefold higher number

of parameters used in multinomial models. Moreover, long-

term predictions generated from binomial and multinomial

models were largely similar to one another. Our results thus

indicate that neglecting changes other than transition to

shrub dominance does not result in a reduction of prediction

accuracy, which lends strong support for the significance of

the shrubification process currently observed at the circum-

polar scale. This reaffirms shrubification as the major compo-

nent of land cover change in subarctic regions and reinforces

the importance of understanding the impacts of this phe-

nomenon on feedbacks to climate due to changes in energy

fluxes between the ground and atmosphere, permafrost

degradation and reduction of lichen and moss cover, among

others. Multinomial models generated in our study still

enabled us to reveal ecologically meaningful patterns related

to the effects of slope and aspect in the valley and elevation

on the coast that would have remained concealed had we only

generated binomial models. Thus, although multinomial

models were not essential to generating accurate predictions

of land cover changes, they were still useful in order to gain

understanding about the shrubification process.

Consistency of model predictions with observed

patterns of change

Model consistency with actual land cover change would best

be assessed by comparing predictions to aerial photographs

revealing which changes are really happening in the area. This

is obviously not possible until some time has elapsed. Indeed,

few (if any) studies return to their model predictions in order

to compare them with real data collected later. In this study,

we strived to assess how model predictions were consistent

with current trajectories of change, an undertaking that seems

to be new for the field of land cover change modeling and is

thus necessarily imperfect. We evaluated current trajectories of

change at two different scales, first by identifying which sites

were most likely to undergo transition to shrub dominance

from field observations, and second by analyzing recent

(2010–2016) NDVI trends derived from 30-m resolution Land-

sat data.

Field-based model corroboration

Overall, model predictions both from binomial and multi-

nomial models were consistent with observations in the

field. In the valley, sites with a greater probability of transi-

tion to shrub dominance were associated with the presence

of shrub stands at the margin of the quadrats in the field,

but not with shrub cover. Assuming that colonization by

shrubs from clonal propagation is more likely when large

shrub stands are found in the vicinity of the plots, this lends

support to our model predictions. However, as shrubs are

ubiquitous in the valley, several sites where transition to

shrub dominance is possible probably will not be identified

as such by our models, as evidenced by the lack of a relation-

ship between shrub cover in the field and our model-derived

predictions. On the coast, contrarily, quadrats with higher

shrub cover, and to a lesser extent with the presence of shrub

stands at the margin, were associated with higher probabili-

ties of transition to shrub dominance. Whereas shrubs seem

to be able to grow almost everywhere in the valley, some

areas on the coast (e.g., the herbaceous areas along the

beach representing the first steps of a primary succession

and the large unvegetated rock outcrops) do seem totally

unsuitable for shrubs, thus distinguishing these sites using

models may be easier. Overall, our models are consistent

with patterns observed in the field, although we simply

expect our models to broadly represent the shrubification

process rather than accurately model vegetation changes at

finer scales or specific cells (as implied by high allocation

disagreement values).

Satellite-based model corroboration

Recent (2010–2016) trends in NDVI derived from Landsat

data only partly supported our model predictions. NDVI

trends derived for the coast supported (although weakly)

both binomial and multinomial shrubification probabilities,

whereas areas that showed the largest increases in NDVI in

the valley were not associated with increased probabilities of

shrubification according to our models. Although this does

raise questions about the consistency of the predictions with

ongoing changes, we do not think that our model predic-

tions should be dismissed based on these grounds. One of

the reasons for this is that recent NDVI trends have been

derived from only five years of data, which makes it diffi-

cult to know whether these trends will persist or are only

temporary.
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Another reason for the poor agreement between predic-

tions and recent NDVI trends is that the analysis of past

NDVI trends (1990–2010) showed a weak relationship with

shrubification, with R2 values of 0.11 for the valley and 0.20

for the coast. Despite this low explained variance, it appears

unlikely that the observed patterns (Appendix S1: Fig. S12)

represent random variation, and increase in shrub cover

likely remains the main driver of the observed NDVI

increases. This interpretation is supported by NDVI trends

derived for the period 1990–2010, that clearly showed higher

increases in initially herb- and lichen-dominated areas

(Appendix S1: Fig. S10), which we attribute to an increase

in shrub cover in these areas that have undergone massive

shrubification during this interval. The low explained vari-

ance could also be due to the fact that increases in shrub

cover can occur and contribute to an increase in NDVI with-

out a concurrent transition to shrub dominance.

Functional types other than shrubs could nonetheless

have contributed to increases in greenness. Recent (2010–

2016) trends indicated large NDVI increases irrespective of

the initial land cover type, which may either indicate an

increase in shrub cover in many different land cover types,

or an increase in greenness of other functional groups. Beck

and Goetz (2011) found that significant increases in NDVI

occurred in areas of lower shrub cover, suggesting that

other plant functional types also contribute to the greening

trend. McManus et al. (2012) similarly observed significant

greening trends in areas dominated by graminoid tundra,

and Fraser et al. (2011) linked some of the observed

increases in NDVI to an increase in herbaceous cover. In

our study area, observations in the field suggest a transient

increase in the abundance of Equisetum species and other

herbs on thawing permafrost mounds, perhaps as a conse-

quence of increased water availability caused by permafrost

thaw. From that point of view, it may be that the higher

homogeneity of land cover patches on the coast make it

easier to identify areas undergoing shrubification from

NDVI trends, whereas in the valley, both field observations

and recent NDVI trends support an ubiquitous large

increase in greenness, which may or may not be linked to an

increase in shrub cover.

It may also be the case, however, that our models are not

able to identify areas where shrubification is occurring and

that the lack of agreement between NDVI trends and model

predictions is a result of this. Visual comparison of the

1990–2010 and 2010–2016 NDVI trends for both the valley

and the coast suggests a shift in the areas undergoing the

most intense greening (Appendix S1: Fig. S11). This could

be due either to saturation in NDVI in areas that have

already undergone considerable greening (Blok et al. 2011b)

or to a real shift in the greening trends. Changing dynamics

would be a real concern for our modeling approach, as our

predictions rely on the assumption that land cover change

will continue on the trajectory followed between 1990/1994

and 2010. Although a thorough analysis of the link between

NDVI trends and changes in land cover was outside the

scope of this study, linking changes in NDVI and other

indices derived from remote sensing data to processes visible

on the ground clearly merits more attention in future studies

if one is to use remote sensing data for validation purposes.

Range of applications of the models

Land cover or land use change models can have applica-

tions other than the increased understanding of the phe-

nomena they are used to represent. In this study, we applied

these models to generate predictions of the proportion of

land dominated by different cover classes over time.

Although the extent to which models calibrated over 20 yr

of data can be used to generate predictions almost 100 yr

from now is certainly a matter of debate, such predictions

still represent our best guess as to the way vegetation may

change over the next decades. Whether the stabilizing pat-

tern observed in our predictions is merely a consequence of

our modeling approach or is a real ecological possibility is

an open question; are some sites completely unsuitable for

shrubs, or should we expect them to eventually take over the

whole tundra? Or might some sites have much lower colo-

nization rates, such that shrub occupancy would take place

at the scale of centuries rather than years or decades? Other

modeling approaches using lower-resolution data (Pearson

et al. 2013, Swanson 2015) suggest that some areas will

resist shrub encroachment in the short term, in accordance

with our predictions. From our experience in the field, it is

likely that shrubs will not colonize sites such as the large

rock outcrops on the coast in the near future, whereas we

deem most areas in the valley except from spruce stands to

be liable to colonization by erect shrubs. Another question

of interest relates to the increase of tree cover in tundra

areas. The timespan of our study was not long enough to

observe changes in the spruce-dominated area, but one

could expect tree cover to increase as climate gets milder in

the area (Harsch et al. 2009).

CONCLUSION

Our modeling of the land cover change near Umiujaq

over the last decades supports evidence that the expansion

of shrub species at the landscape scale is influenced by vari-

ables related to both topography and the spatial arrange-

ment of vegetation. The results of this study are in

agreement with observations made at other subarctic loca-

tions, while providing a finer understanding of the factors

and processes influencing transition to shrub dominance in

these regions. A similar approach could be used in other arc-

tic and subarctic areas in order to gain knowledge about the

land cover changes underway. More generally, our opinion

is that land cover change models have been largely under-

used in ecology given the increased understanding that they

can bring, especially in this era of important human-driven

ecological changes. Spatially explicit predictions generated

from land cover change models can also be used to inform

land management in the Arctic or other regions. For exam-

ple, the information gained from land cover change models

could be used to set the boundaries of ecological preserves

or identify areas that should be more closely monitored.

Moreover, the possibility of coupling land cover change

models with models representing other processes interacting

with vegetation, for example models of permafrost thaw or

snow cover, represents a step forward in the understanding

of the complex interactions of arctic environments.
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The validation of the modeling results from both field data

and remote sensing data is a novel aspect of our study.

Indeed, land cover change studies very rarely (if at all) put as

much effort into the validation of their models. The validation

results and methods presented here were our best attempt at

rooting our models in ecological reality, but we are aware that

significant improvements could be made to these methods.

We ask for future research on the topic to build upon the vali-

dation methods proposed here and for gold standards to be

set for the validation of land cover change modeling results

over the next years. Future research should pay particular

attention to how satellite data can be used to complement

information obtained from aerial photography or other

sources of higher-resolution data, such as that obtained from

unmanned aerial vehicles. Since such data should become

more and more common over the next decades, it is impor-

tant to set solid bases for the use of these data in ecology.
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