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Critical to the mitigation of parasitic vector-borne diseases is the development of accurate spatial

predictions that integrate environmental conditions conducive to pathogen proliferation. Species of Plas-

modium and Trypanosoma readily infect humans, and are also common in birds. Here, we develop

predictive spatial models for the prevalence of these blood parasites in the olive sunbird (Cyanomitra oli-

vacea). Since this species exhibits high natural parasite prevalence and occupies diverse habitats in

tropical Africa, it represents a distinctive ecological model system for studying vector-borne pathogens.

We used PCR and microscopy to screen for haematozoa from 28 sites in Central and West Africa. Species

distribution models were constructed to associate ground-based and remotely sensed environmental vari-

ables with parasite presence. We then used machine-learning algorithm models to identify relationships

between parasite prevalence and environmental predictors. Finally, predictive maps were generated by

projecting model outputs to geographically unsampled areas. Results indicate that for Plasmodium spp.,

the maximum temperature of the warmest month was most important in predicting prevalence.

For Trypanosoma spp., seasonal canopy moisture variability was the most important predictor. The

models presented here visualize gradients of disease prevalence, identify pathogen hotspots and will be

instrumental in studying the effects of ecological change on these and other pathogens.
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1. INTRODUCTION
An improved understanding of the environmental cor-

relates that give rise to the spread of infectious diseases

constitutes one of the key challenges in disease ecology.

With recent technological advances in satellite imagery,

computer modelling and molecular biology, we are now

capable of studying infectious diseases in an integrated

fashion over relatively large spatial scales. It is believed

that many infectious diseases originated in Africa [1],

yet relatively little is known about the environmental fac-

tors that affect the evolution and spread of its endemic

pathogens. Addressing the ecology of disease has taken

on a new urgency with both the current and predicted

rapid changes in climate and land use that are affecting

the African continent and the entire planet [2,3]. The

use of birds as a model system can provide important

data regarding the ecology of infectious diseases because
r for correspondence (sehgal@sfsu.edu).
authors contributed equally to this work.
t address: Station d’Ecologie Experimentale du CNRS,
9200, France.

t address: Department of Zoology, Edward Grey Institute,
ty of Oxford, Oxford, UK.

ic supplementary material is available at http://dx.doi.org/
/rspb.2010.1720 or via http://rspb.royalsocietypublishing.org.

10 August 2010
8 September 2010 1025
they represent natural ubiquitous populations, and can

be studied in both human-impacted environments, and

in pristine unaltered habitats where humans are largely

absent. In addition, they are infected by several vector-

borne pathogens, including malaria and trypanosomes.

Predictive spatial maps for infectious diseases of birds

can thus help visualize how natural ecological landscapes

and climatic variables are associated with parasite trans-

mission, and provide insight regarding the impacts of

environmental change on the patterns of pathogen

distribution.

Avian malaria is caused by species of Plasmodium that

use a variety of mosquito species as vectors [4]. Trypano-

somes, typically transmitted by simuliid and hippoboscid

flies, are also common blood parasites found in African

rainforest birds [5]. There is no evidence for the natural

transmission of these parasites to mammals, but the

study of avian malaria in particular has provided valuable

information on the basic life-history strategies of human

malaria parasites [6] and more recently on the evolution-

ary history of the disease (e.g. [7]). Infections of avian

hosts with malaria are generally not fatal in natural eco-

systems, but numerous exceptions have been

documented [4], and infections certainly can affect host

fitness [8,9]. Less is known about the impact of avian try-

panosomes on natural populations [5,10–12]. Recent
This journal is q 2010 The Royal Society
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work has advanced the understanding of the evolution

and ecology of these parasites [13–18]. But which eco-

logical factors may contribute to the widespread

distribution of avian blood parasites remain poorly under-

stood. Prevalence of these parasites can vary greatly

depending on location and host, but they are commonly

found in birds throughout Africa [19–22]. In West

Africa, several of these avian species are generalists that

can be found in a variety of habitats, including primary

rainforest, secondary forest and fragmented deforested

areas of the ecotone. One of these species, the olive sun-

bird (Cyanomitra olivacea; [23,24]), is non-migratory,

readily sampled and ubiquitous across the landscape,

therefore acting as an excellent model to study the ecol-

ogy of large-scale infectious disease patterns in Africa

[19,20,23,25]. It is clear that distribution of avian hae-

mosporidian parasites can vary on the local scale

[14,26], but little information is available regarding the

broad-scale environmental factors that can affect and

help predict their transmission.

A number of studies have mapped the prevalence of

human malaria using satellite-based techniques. Detailed

risk maps based on environmental predictors of vector

density and parasite incidence have been developed to

estimate disease burden, and to aid in the control and pre-

vention of human malaria (e.g. [27–29]). These

predictive maps based on environmental correlates are

valuable in understanding the ecology of the disease,

and can inform studies concerning avian pathogens.

Unlike birds, however, the prevalence of malaria in

humans may be affected by socio-economic conditions

[30]. In addition, little is known about the transmission

of malaria parasites in human uninhabited rainforest

regions. Thus, studying avian malaria can provide a base-

line for the prevalence of Plasmodium parasites in general,

and it is valuable to determine the environmental vari-

ables associated with parasite prevalence to provide

unbiased and ecologically grounded models of disease

distribution.

In order to better understand the ecology and trans-

mission risks of infectious diseases, we sought to

identify the environmental correlates of parasites of

two important genera of avian haematozoa, Plasmodium

and Trypanosoma, in Central and West Africa. Our

objectives were to (i) empirically determine the para-

sites’ prevalence at numerous rainforest sites, (ii)

determine, using remote sensing, the ecological corre-

lates associated with parasite prevalence, and (iii) use

these correlates to develop flexible models and maps

that accurately predict prevalence over a large scale.

To accomplish these objectives, we first estimated para-

site prevalence through analyses of blood samples using

molecular methods and microscopy from an African

bird species, the olive sunbird, across 28 sampling

locations in Cameroon, Equatorial Guinea, Ghana and

Côte d’Ivoire. This is a unique and unprecedented

sample base from one rainforest bird species collected

over 20 years. We then used a comprehensive environ-

mental dataset comprising satellite-based and ground-

based measurements of climate, land surface and

vegetation characteristics and a random forest modelling

framework to identify the underlying ecological factors

that explain parasite prevalence and predict their

broad-scale spatial distributions.
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2. MATERIAL AND METHODS
(a) Field sampling and parasite screening

The olive sunbird is a resident solitary sunbird that occurs

across Central Africa, and feeds on both nectar and insects

[31]. Using this species as a representative of generalist

avian species within Central Africa, we captured and took

blood samples from 622 individual olive sunbirds (C. olivacea,

family: Nectariniidae) across 28 sites in Cameroon, Equatorial

Guinea, Côte d’Ivoire and Ghana, and recorded site coordi-

nates, dates and habitat type (primary forest, secondary

forest and ecotone) in these sampling efforts (electronic

supplementary material, figure S1 and table S1).

At each site, mist nets (12 m, 30 � 30 mm mesh) were

erected to capture birds. Blood (20–30 ml) was collected

from the brachial vein and stored in lysis buffer (10 mM

Tris–HCL pH 8.0, 100 mM EDTA, 2% SDS). After

sampling, all birds were released unharmed. Parasite screen-

ing was performed using molecular and microscopy

approaches (see electronic supplementary material,

methods). We used traditional estimates of parasite preva-

lence, defined as the percentage of individuals infected by a

given parasite as compared with the total number of samples

tested. We isolated 18 lineages of Plasmodium from the olive

sunbird but were not able to develop statistically significant

analyses with any of the individual lineages; as a result,

we do not differentiate among the many possible species of

Plasmodium or Trypanosoma in this study.

(b) Environmental variables

We compiled a set of ground-based climate data and satellite-

based measurements and derived products to describe the

ecology of two host–parasite systems across West and Central

Africa. The satellite observations stem from both optical pas-

sive as well as microwave active sensors, and capture a diverse

range of surface parameters including vegetation density,

canopy moisture and roughness and topography (see elec-

tronic supplementary material for a complete description).

The target spatial resolution is 1 km, close to the native

grain size of a number of the used satellite data.

(c) Modelling approach

Our modelling approach consisted of three steps, used to

(i) define the geographical distribution of the host–parasite

system, (ii) identify and interpret the relationships between

parasite prevalence and ecological predictor variables, and

(iii) use these relationships to build a statistical model that

can be used to project disease prevalence across the defined

host/parasite distribution. In the first step, we used the

Maxent species distribution algorithm [32] to predict the

potential geographical distribution of the host-parasite

system across West Africa based on presence of localities of

infected birds and the corresponding environmental vari-

ables. The spatial output of the Maxent distribution model

consists of a continuous range indicating relative probability

of presence of, in the case of this study, the host–parasite

system. A presence/absence map of the host–parasite

system was obtained by applying an optimized threshold

(balance threshold [32]) on the continuous Maxent pro-

bability distribution. This distribution was then used to

define the spatial limits for all prevalence predictions.

In the second step, we used tree regression (as

implemented in TREE v. 1.0–26; [33]) in the R statistical fra-

mework [34] to determine the ecological variables associated

with variation in both Plasmodium and Trypanosoma
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prevalence across the host–parasite distribution. While tree

regressions are straightforward to interpret (they include

indications of directionality, strength and location along

a response where predictors are important), they are poor

predictors, as they make only a single statement about

the relationships between response and predictors.

To make more robust predictions, in the third step,

we grew a series of tree regressions (n ¼ 2000), also known

collectively as a random forest (as implemented in

RANDOMFOREST v. 4.5–30 [35] in the R statistical framework;

[34]), to predict the prevalence of each blood parasite genus

in the olive sunbird within its geographical distribution deter-

mined from the first step. This non-parametric algorithm

method was used instead of a more traditional data model-

ling technique (such as linear regression or ANOVA)

because random forest procedures (i) do not require the

use of any particular model (which might be difficult to

assign given a complex response such as disease prevalence),

(ii) do not require normalized data, and (iii) have consistently

outperformed traditional regression procedures on a number

of datasets [36–38]. The advantage of random forest models

is their ability to predict a continuous (in this case, preva-

lence) rather than categorical (presence/absence) variable

across a landscape, and their ability to model complex inter-

actions among predictor variables [37]. Further details on

the modelling approach are provided in the electronic

supplementary material.
3. RESULTS
(a) Parasite prevalence and environmental

correlates

The prevalence of malaria parasites and trypanosomes in

olive sunbird populations was estimated across 28

sampling sites in West Africa. Across regions, prevalence

varied substantially, ranging from 0 to 83 per cent for

parasites of the genus Plasmodium and 10 to 100 per

cent for Trypanosoma. Significantly higher prevalence of

each parasite genus was observed in West Africa (Ghana

and Côte d’Ivoire) as compared with Cameroon

(two-sided, two-sample test for equality of proportions,

Plasmodium, x2 ¼ 39.54, p ¼ 3.22e210; Trypanosoma,

x2 ¼ 22.01, p ¼ 2.71e26; electronic supplementary

material, figure S3).

Tree regressions performed using all continuous

environmental predictor variables for both Plasmodium

and Trypanosoma spp. indicate that variance in parasite

prevalence can be explained using relatively few predic-

tors (figure 1a). For Plasmodium spp., the maximum

temperature of the warmest month (as measured by

Bio5) at a given site best delineates levels of prevalence,

with higher temperatures associated with higher preva-

lence (figure 1a). At sites with relatively low Plasmodium

spp. prevalence (and lower temperatures), temperature

seasonality (Bio4) and annual mean surface moisture/

roughness (QSCATM) are important in further charac-

terizing prevalence. For Trypanosoma spp., surface

moisture seasonality (QSCATS) is the key ecological vari-

able distinguishing low and high prevalence, with higher

prevalence occurring at sites with lower seasonality

(figure 1a). At sites with relatively high trypanosome

prevalence, diurnal temperature range also appears to

affect prevalence levels, with highest prevalence levels

recorded at lower diurnal temperature ranges. At those
Proc. R. Soc. B (2011)
sites with relatively low trypanosome prevalence, mean

elevation plays a role in further separating different

levels of prevalence, with higher trypanosome prevalence

occurring at lower elevation sites (figure 1a).

When multiple randomly permuted tree regressions

were performed, the resulting random forest model indi-

cated that each of the two parasite genera had a unique

set of environmental predictors identified as most impor-

tant in explaining prevalence (figure 1b). Satellite-based

radar backscatter variables that relate to canopy moist-

ure/roughness (QSCATM) and canopy moisture

seasonality (QSCATS) were consistently important pre-

dictors for these parasites. In terms of bioclimatic

variables, temperature variables were repeatedly impor-

tant in the case of Plasmodium spp., whereas

precipitation during the driest quarter (Bio17) was a

strong predictor for Trypanosoma spp. (lower precipitation

in the driest quarter associated with lower prevalence).

Although this variable was not identified using tree

regressions, this probably points to cross-correlation

with other predictor variables, such as QSCATS (there

is a significant inverse relationship between QSCATS

and Bio17, and together, these variables capture the sea-

sonality in canopy moisture) revealed under random

forest criteria, and suggests the importance of comparing

predictor variables under particular regression frame-

works when attempting to understand the relationship

of prevalence to environmental conditions.
(b) Spatial predictions of parasite prevalence

Using the point localities of infected birds, a set of

environmental predictors and the Maxent algorithm, we

first estimated the geographical distribution of the host–

parasite system. Inspection of the Maxent predictions

shows that infected birds generally reside in the humid

forests and ecotones of Western Africa, consistent with

the habitat requirements of the olive sunbird (figure 2).

The most important environmental variables in the

Maxent predictions were temperature and rainfall vari-

ables, as well as the percentage of tree cover (electronic

supplementary material, table S2). Since at most

sampling sites both parasite groups (Plasmodium and

Trypanosoma) were detected (electronic supplementary

material, table S1), the distribution of the host–parasite

system was nearly identical for the two blood parasites.

We then projected the parasite prevalence–environ-

ment relationships (identified in the random forest

models) onto unsampled regions defined by the Maxent

distribution of the host–parasite system (see above).

The resulting two predictive maps for blood parasites of

two genera in the olive sunbird, however, showed a

number of marked differences (figure 2a,b). For

Plasmodium spp., regions of high prevalence were typically

found along the coastal forested regions of Côte d’Ivoire,

Ghana and Nigeria, with lower predicted prevalence in

the dense humid forests of Cameroon, Gabon and Equa-

torial Guinea. For Trypanosoma spp., this trend was nearly

the opposite, with higher prevalence in the dense humid

forests of Equatorial Guinea, southeastern Cameroon

and northeastern Gabon. For both parasite groups, preva-

lence exhibited decreases across the south-to-north

rainforest–ecotone gradients, one of which is particularly

prominent in Cameroon [39].
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(c) Model spatial accuracy

In order to assess the spatial accuracy for our predictions,

prevalence levels at all sample sites were predicted and

compared with actual observed prevalences at these sites

(figure 3). Predictions generally closely match observed

prevalence, despite the fact that the number of field-

sampling sites was relatively small (n ¼ 28). When the

training data were also used for cross-validation under

random forest models (figure 3), more than 90 per cent

of the variance in each parasite’s prevalence was

explained, with a root mean square error of 0.091 for

Plasmodium spp. and 0.101 for Trypanosoma spp. Predic-

tions from random forest algorithm models were
Proc. R. Soc. B (2011)
consistently accurate for sites with intermediate preva-

lence levels, while for sites with either extreme high or

low detected prevalence, the predictions were character-

ized by higher variances (figure 3 and electronic

supplementary material, figure S4). This is largely due

to the fact that only a limited number of sites with pre-

valence levels within these lower and upper ranges

were available to ‘train’ the algorithm.
4. DISCUSSION
In this study, we present the first macroecological study

predicting the prevalence of avian blood parasites. While
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much attention has been given to the ecological correlates

of human malaria and the impact that future conditions

might have on this disease [40,41], the blood pathogens

of avian species in West and Central Africa represent an

informative ecological model system to study vector-

borne diseases for several reasons. Olive sunbirds are

non-migratory, relatively sedentary [23] and occupy a

range of habitats including humid dense rainforests and

ecotone habitats, thus providing an accurate indication

of parasite prevalence under a broad range of ecological

conditions. This model system also allows the simul-

taneous detection and analysis of multiple parasites, in

this case, species of Plasmodium and Trypanosoma. Finally,
Proc. R. Soc. B (2011)
we capitalize on a unique blood sample base of the olive

sunbird obtained from over two decades of fieldwork in

geographically distant and often relatively inaccessible

areas [42]. Our results prioritize the importance of cli-

mate and satellite-based data on habitat structure in

explaining the observed prevalence of parasites and, in

particular, reveal that environmental predictors differ

between different parasite genera of the same host species

in explaining distribution patterns.

In recent studies, environmental factors have been

shown to be strong determinants of the dynamics of

human vector-borne parasitic diseases (e.g. [43,44]). A

key result of studies on human malaria is that temperature
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strongly influences malaria transmission [27,45]. For

example, it has been shown to increase with a rise in

the maximum monthly temperature [28]. Recent research

has shown that the variation in diurnal temperatures is

also a critical factor that affects the period of Plasmodium

sporogony in mosquito hosts [46]. Similar results have

been documented in studies of the effects of temperature

on the development of avian malaria in mosquitoes [47].

Our results corroborate the importance of temperature on

the prevalence of infection for Plasmodium parasites in the

olive sunbird, as the maximum temperature of the warm-

est month was the most important indicator for elevated

malaria prevalence. However, we did not examine parasite

development or sporogony, and therefore could not deter-

mine whether this relationship between maximum

temperature and disease prevalence is reflective of the

same ecological drivers responsible for the link between

diurnal temperature and disease development found in

previous studies.

In our analyses, we found that annual mean radar

backscatter (QSCATM) measurements are also strong

predictors for the prevalence of avian malaria. Since the

annual mean radar backscatter is sensitive to both

canopy moisture and roughness (see above), the

interpretation of these satellite microwave measurements

and how they relate to prevalence is not straightforward.

However, we found that the two radar metrics that we

constructed (annual mean backscatter and backscatter

seasonality) are correlated throughout the West African

study region, and depict differences in habitat structure

across the region (electronic supplementary material,

figure S1). Since the seasonal metric is linked predomi-

nantly to moisture variability in evergreen rainforest

systems, we are confident in our interpretation that the

annual mean metric is also largely a moisture signal.

Although relatively little is known about the ecology of

the mosquito vectors that transmit avian malaria parasites

[15,48–50], it is certain that mosquito larval stages would

require standing water [51]. In a recent study in Tanzania,

precipitation seasonality and precipitation of the coldest

quarter were the best predictors of mosquito prevalence

for Anopheles arabiensis and Anopheles gambiae, respect-

ively [52]. In the present study, the predicted prevalence

of Plasmodium spp. was highest in coastal wet rainforest

regions, especially of Nigeria (figure 2). While we have

limited confidence in our predictions at high parasite

prevalence levels in general, and for coastal Nigeria in

particular (since no sampling efforts took place in that

region, see also electronic supplementary material,

figure S4), these results do differ from the predicted trans-

mission intensity of human malaria by Gemperli et al.

[28], where coastal Nigeria showed relatively low preva-

lence of malaria. On the other hand, our predictions

closely concur with the human malaria study in

Cameroon [28], where we performed more extensive

sampling. In addition, it is clear that different mosquito

species have very different distributions, as is evident

among species of Anopheles mosquitoes in Cameroon

[53]. With avian malaria, mosquitoes of eight genera

transmit the parasites [4], and there is recent evidence

that mosquitoes of the genus Coquillettidia can act as vec-

tors in Africa [49]. Thus, it is probable that the

mosquitoes of different genera that transmit avian malaria

may also have varied distributions. It will be imperative to
Proc. R. Soc. B (2011)
initiate an extensive survey of the vectors of avian malaria

in these regions of Africa to disentangle the relationships

among Plasmodium parasites and their insect vectors.

Almost nothing is known about the identity and

ecology of the vector species that transmit avian trypano-

somes in Africa [5]. Whereas mammalian trypanosomes

are transmitted by Glossina tsetse flies, the vectors for

avian Trypanosoma are typically louseflies of the family

Hippoboscidae. However, avian trypanosomes may also

be spread by black flies or mosquitoes, and it is believed

that the parasite can be transmitted by ingestion of the

insect [10,12]. In this study, the seasonal variation in

canopy moisture, as inferred from satellite radar backscat-

ter, was the primary predictor for the prevalence of

trypanosomes infecting C. olivacea, with higher preva-

lence in areas exhibiting comparably low seasonality in

canopy moisture. These areas also coincide with regions

experiencing high rainfall totals during the driest quarter,

suggesting that year-round wet conditions are a prerequi-

site for high prevalence. Such conditions are typically

found along the coastal humid dense rainforests. The

fact that rainfall appears to affect the prevalence of

avian trypanosomes more significantly than temperature

is not entirely unexpected: there is evidence that avian try-

panosome development can occur in insect vectors at

temperatures as low as 12–138C [10]. Future research

will be vital to better understand the vector ecology of

avian trypanosomes, but the data presented here provide

a first analysis of the macroecological dynamics of avian

trypanosomes in Africa.

Previous studies have shown that changes in microcli-

mate and the degree of disturbance can also significantly

affect the fitness and vectorial capacity of Anopheles mos-

quitoes [54] as well as the prevalence of avian malaria

[19,25]. In addition, there may also be substantial differ-

ences in distributions among the various species and

strains of Plasmodium and Trypanosoma [5,19,55]. In our

initial analysis, we did not find an influence of disturbance

on prevalence of the two groups of blood parasites in the

olive sunbird. Since our study is conducted at macroecolo-

gical (regional to continental) scales with a spatial grain

size at the kilometre level, it is likely that a more local dis-

turbance effect is not captured. One noteworthy result in

this context, however, is that the observed prevalence of

Plasmodium spp. in our target species in Ghana and Côte

d’Ivoire was higher than prevalences found in Cameroon

(electronic supplementary material, figure S3) and higher

than predicted by our models (figure 3). Several factors

may explain this result, including differences in vector

communities and overall biodiversity, but most strikingly,

both countries are subjected to generally much higher

levels of disturbance and deforestation when compared

with Cameroon [2].

Patterns of parasite prevalence are also concordant

with the forest–ecotone gradients, which have been

shown to contribute to avian divergence and potentially

speciation in Western and Central Africa [39,56].

Although future work is needed, the gradient in preva-

lence suggests that resistance and fitness may also vary,

adding another potential source of differential selection

on populations that occur across the forest–ecotone

gradient [39,42].

We expect our approach to be of significant value and

suitable for implementation in future studies. The
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approach makes use of host/vector distributions and tree

regression algorithms that do not require a priori func-

tions or assumptions (which may be difficult to derive

given the complex nature of infectious disease systems).

In this study, we present the first large-scale spatial pre-

dictions of the prevalence of avian blood parasites. As

such, these maps still require further validation to assess

their overall robustness, particularly in largely unsampled

regions. Future sampling efforts should include the very

humid Nigerian coastal rainforests, where we predicted

high prevalence of Plasmodium spp. (figure 2), as well as

more sites in West Africa where the sampling density

was relatively low. In addition, research should also con-

centrate on insect vectors of avian parasites in Africa

that are largely unstudied [49], and more thoroughly

assess factors such as deforestation, and other anthro-

pogenic changes that may critically impact pathogen

prevalence in these systems.

Impending global climate change may impact the

prevalence of avian blood parasites. Several reports have

suggested that the incidence of malaria and other infec-

tious diseases will increase with increased global average

temperatures (e.g. [3,27,45]). However, there is consider-

able debate regarding a direct link between malaria

prevalence and increasing temperatures in Africa (e.g.

[41,57,58]). Studies focused on the effects of climate

change on avian malaria, which would not be subject to

the confounding patterns of human movement and econ-

omics, would greatly contribute to our understanding of

the impacts of changing ecological conditions on natural

disease systems. In addition, it will be important to inves-

tigate whether areas of high prevalence are indicators of

an increased abundance of vectors, increased trans-

mission capacity or decreased host resistance/immunity.

Now with a baseline prevalence of blood parasites in the

olive sunbird, projections can be made to include possible

changes in temperature associated with climate change.

Our study also highlights the importance of canopy

moisture in this context, and further emphasizes the

importance of identifying the complete set of

environmental conditions that lead to proliferation of

vector-borne parasitic diseases. Such information will be

invaluable in assessing future effects of global change on

these and other pathogens.
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Bensch, S. 2007 Detecting shifts of transmission areas in
avian blood parasites—a phylogenetic approach. Mol. Ecol.
16, 1281–1290. (doi:10.1111/j.1365-294X.2007.03227.x)

17 Martinsen, E. S., Perkins, S. L. & Schall, J. J. 2008 A

three-genome phylogeny of malaria parasites
(Plasmodium and closely related genera): evolution of
life-history traits and host switches. Mol. Phylogenet.
Evol. 47, 261–273. (doi:10.1016/j.ympev.2007.11.012)

18 Ricklefs, R. E. 2007 Estimating diversification rates from

phylogenetic information. Trends Ecol. Evol. 22, 601–
610. (doi:10.1016/j.tree.2007.06.013)

19 Chasar, A., Loiseau, C., Valkiūnas, G., Iezhova, T.,
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