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Abstract

Networks of neurons in the cerebral cortex exhibit a balance between excitation

(positive input current) and inhibition (negative input current). Balanced network

theory provides a parsimonious mathematical model of this excitatory-inhibitory

balance using randomly connected networks of model neurons in which balance is

realized as a stable fixed point of network dynamics in the limit of large network size.

Balanced network theory reproduces many salient features of cortical network

dynamics such as asynchronous-irregular spiking activity. Early studies of balanced

networks did not account for the spatial topology of cortical networks. Later works

introduced spatial connectivity structure, but were restricted to networks with

translationally invariant connectivity structure in which connection probability

depends on distance alone and boundaries are assumed to be periodic. Spatial

connectivity structure in cortical network does not always satisfy these assumptions.

We use the mathematical theory of integral equations to extend the mean-field

theory of balanced networks to account for more general dependence of connection

probability on the spatial location of pre- and postsynaptic neurons. We compare our

mathematical derivations to simulations of large networks of recurrently connected

spiking neuron models.

Keywords: Balanced networks; Spiking neural network models; Excitatory-inhibitory

balance; Mean-field theory

1 Introduction

Balanced networks [1, 2] offer a parsimonious computational and mathematical model

of the asynchronous-irregular spiking activity and excitatory-inhibitory balance that

are ubiquitous in cortical neuronal networks [3–10]. Balanced networks can produce

asynchronous and irregular activity through chaotic or chaos-like spike timing dynam-

ics [2, 11]. Mean-field analysis of balanced networks reveals a stable fixed point that nat-

urally produces excitatory-inhibitory balance and weak pairwise spike train correlations

without fine tuning of model parameters. In early studies, this mean-field analysis was

performed in networks in which connection probabilities are homogeneous across the

excitatory and inhibitory populations [1]. Later work extended the mean-field analysis to

networkswithmultiple sub-populations and to spatially extended networkswith distance-

dependent connection probabilities [12–16], including models that combine physical and
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tuning space [17]. Previous work on spatially extended balanced networks assumed that

connection probabilities depended only on the distance between neurons measured with

periodic boundaries, rendering connection probabilities translationally invariant. This as-

sumption allows the Fourier modes of network activity to decouple, so the mean-field

equations can be easily solved in the Fourier domain. However, connectivity in cortical

neuronal networks is not so simple. While the use of periodic boundaries is justified for

modeling naturally periodic spaces like orientation tuning space, it is not necessarily real-

istic for models of physical space. Moreover, connection probabilities in cortical neuronal

networks can depend on neuron location in more complicated ways than a pure distance

dependence [18–20].

We use the mathematical theory of integral equations [21] to extend the mean-field the-

ory of firing rates in balanced networks, permitting a more general dependence of con-

nection probability on the spatial location of pre- and postsynaptic neurons. We derive

conditions on the spatial structure connectivity and external input under which networks

can maintain balance in the limit of large network size, derive the spatial profile of firing

rates in this limit when balance is maintained, and derive a linear approximation to firing

rates when balance is broken.We demonstrate our findings with simulations of large spik-

ing networks under a simple spatial connectivity structure that violates the translational

invariance of connection probabilities assumed by previous work.

2 Model and background

We consider recurrent networks of N model neurons, Ne = 0.8N of which are excitatory

andNi = 0.2N inhibitory. The membrane potential of neuron j in population a = e, i obeys

the exponential integrate-and-fire dynamics

Cm

dV a
j

dt
= –gL

(
V a
j – EL

)
+ gLDTe

(Va
j –VT )/DT + Iaj (t)

with the added condition that each time V a
j (t) exceeds Vth, it is reset to Vre, held for a re-

fractory period of τref , and a spike is recorded at the threshold crossing time. The synaptic

input current to neuron j in population a is given by

Iaj (t) =
∑

b=e,i

Nb∑

k=1

Jabjk αb

(
t – ta,kn

)
+

√
NFa

j , (1)

where t
a,j
n is the nth spike time of neuron j in population a = e, i and αb(t) = (1/τb)e

–t/τbH(t)

is a postsynaptic current waveform, and H(t) is the Heaviside step function.

We consider a network on the compact domain [0, 1] with neuron j = 1, . . . ,Na in popu-

lation a = e, i located at x = j/Na. Connection strengths are defined by

Jabjk =

⎧
⎨
⎩
jab/

√
N with probability pab(x, y),

0 otherwise,
(2)

where x = j/Na ∈ Ω is the location of (postsynaptic) neuron j in population a and y =

k/Nb ∈ Ω is the location of (presynaptic) neuron k in population b. We assume that jae > 0

and jai < 0 with all jab constant with respect to N . The model and mean-field theory
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are easily extended to the case where connection strength and neuron density are spa-

tially inhomogeneous (see below). The 1/
√
N scaling of synaptic weights is a defining

feature of balanced networks which naturally captures excitatory-inhibitory balance and

asynchronous-irregular spiking activity observed in cortical recordings [1, 2, 22]. Recent

work in cultured cortical populations shows that similar scaling laws emerge naturally and

produce network dynamics consistent with the balanced state [23]. Feedforward external

input to the network is modeled by

Fa
j = Fa(x),

where x ∈ Ω is the location of neuron j in population a. This models the input fromO(N)

neurons with synaptic weights that scale like O(1/
√
N). Indeed, external input can be

replaced by a population of generated spike trains without affecting the mean-field the-

ory [17].

We consider a simple example in which Ω = [0, 1] and

pab(x, y) = 12pab
(
min(x, y) – xy

)
, (3)

where pab =
∫∫

pab(x, y)dxdy is the network-averaged connection probability from b to a.

Note that we use the convention that pab, jab, etc. refer to connection probabilities and

strengths from presynaptic population b to postsynaptic population a. Note that, unlike

spatial balanced networks considered in previous work [12, 17], pab(x, y) is not transla-

tionally invariant and cannot be written in terms of x – y. Specifically, neurons near the

center of the domain send and receive more connections than neurons near the edges.

We first simulated this network with N = 5000 neurons and

Fa(x) = Fa sin(πx), (4)

where Fa > 0.Our simulation produced asynchronous, irregular spiking activity (Fig. 1(A))

and excitatory-inhibitory balance (Fig. 1(B)) that are characteristic of the balanced net-

work state [1, 2] and of cortical neuronal networks [3–10]. Note that the simulations are

entirely deterministic once the random network connectivity and initial conditions are

specified, so irregular spiking is driven by chaotic or chaos-like dynamics [2, 11], not noise.

Firing rates were peaked near the center of the domain and decayed toward zero near the

edge for various values ofN (Fig. 1(C)–(E)). Firing rates that are peaked at the center of the

spatial domain are not unexpected, given the structure of our connectivity kernel and in-

put, and are common across many models of spatially extended networks [12, 24, 25]. We

next derive a mean-field theory for computing firing rates in spatially extended balanced

networks like this one.

Parameters for all figures are Cm/gL = 15 ms, EL = –72 mV, VT = –60 mV, Vth = –15

mV, Vre = –72, Vlb = –100, τref = 1 ms, �T = 1.5 mV, τe = 8 ms, τi = 4 ms, jee/Cm = 25

mV, jei/Cm = –150 mV, jie/Cm = 112.5 mV, jii/Cm = –250 mV, Fe/Cm = 0.06 V/s, F i =

0.05 V/s, and pee = pei = pie = pii = 0.05. Matlab and C code for running all simulations

and generating all figures is publicly available at https://github.com/RobertRosenbaum/

SpatialBalNetNonTransInvar/.

https://github.com/RobertRosenbaum/SpatialBalNetNonTransInvar/
https://github.com/RobertRosenbaum/SpatialBalNetNonTransInvar/
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Figure 1 Example of a spatial balanced network without translational invariance and with simple sinusoidal

external input. (A) Raster plot of excitatory neuron spikes from a simulated network with N = 5000 neurons,

recurrent connectivity given by Eqs. (2) and (3), and external input given by Eq. (4). (B) External input (green),

mean recurrent excitatory input (red), mean recurrent inhibitory input (blue), and mean total input (black) to

excitatory neurons as a function of neuron location for the same simulation as A. Currents were averaged over

time (500 ms) and over the ten neurons nearest to each plotted location. Currents are computed with Cm = 1

so are units V/s. (C)–(E) Firing rates of excitatory (red) and inhibitory (blue) neurons as a function of distance

for N = 1000, 5000, and 20,000 respectively. Light solid curves are from simulations, dotted curves are from

Eq. (14), and dashed curves from Eq. (15). Rates were averaged over all neurons in 200 evenly spaced bins and

additionally averaged over 4× 105/N simulations each with duration 10 s. (F) Firing rate versus mean total

input current for all excitatory neurons with N = 5000. Dots are from simulations and solid curve is the

rectified linear fit used to derive the gain. (G) Same as F, but for inhibitory neurons

3 Mean field theory of balance in spatially extended networks without

translational invariance

The mean-field theory is developed by considering the large N limit and defining the

mean-field firing rates

r(x) =

[
re(x)

ri(x)

]
,

where ra(x) is the expected value of the firing rates of a neuron in population a at location

x ∈ Ω . The mean total input I(x) = [Ie(x)Ii(x)]
T and the feedforward external input F(x) =

[Fe(x)Fi(x)]
T are defined analogously. We assume that Fa ∈ L2(Ω).
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The following equation gives a heuristic approximation to neurons’ input as a function

of firing rates in the network [12, 17]:

I =
√
N[Wr + F]. (5)

Here,W is an integral operator defined by

Wr =

[
Weere +Weiri

Wiere +Wiiri

]
, (6)

where

[Wabrb](x) =

∫

Ω

wab(x, y)rb(y)dy, (7)

wab(x, y) = pab(x, y)jabqb ∼O(1) is themean-field connectivity kernel with qe =Ne/N = 0.8,

and qi =Ni/N = 0.2.We assume thatwab ∈ L2(Ω2) so thatWab andW areHilbert–Schmidt

integral operators and are, therefore, compact [21]. We further assume that wab(x, y) =

wab(y,x) so that Wab is a Hermitian integral operator (see Discussion for comments on

relaxing some of these assumptions).

Note that W and F do not depend on N , but r and I do depend on N . In the balanced

network theory below, we derive expressions for r that must be satisfied for ‖r‖ and ‖I‖ to

be finite in the N → ∞ limit (where ‖ · ‖ is the L2 norm).

Equation (5) quantifies how firing rates are mapped to mean synaptic input in the net-

work. A closed form approximation in Eq. (5) is possible in this case because the mapping

is linear. However, themapping from synaptic input to firing rates is necessarily nonlinear,

depends on the details of the neuron model, can depend on higher moments of the input

currents, and is generally not amenable to a closed-formmathematical approximation for

the spiking network model considered here. Some studies use a diffusion approximation

and Fokker–Planck formalism to account for the dependence of neurons’ firing rates on

the first two moments of their input currents [26–28]. This approach can yield accurate

approximations in practice, but makes the assumption that synaptic input is accurately

approximated by Gaussian white noise, which may be inaccurate in some settings.

The mean-field theory of balanced networks offers an alternative approach to analyzing

firing rates in which the mapping from synaptic input statistics to rates does not need

to be known. This theory is developed and applied by analyzing Eq. (5) and the integral

equations implied by it, which serves as a heuristic approximation to our spiking network

model. We then compare the results of our analysis to simulations of the spiking network

model. For balanced network theory, we do not need to specify the exact mapping from

I to r. Instead, the only necessary condition for the analysis of balanced networks is that

the mapping does not converge to zero or diverge with N , more specifically that

r, I ∼O(1) (8)

as N → ∞, where all orders of magnitude expressions (expressions of the form U ∼
O(F(N))) should be interpreted in the N → ∞ limit under the L2 norm, so the expres-

sion above means limN→∞ ‖r‖,‖I‖ < ∞, where ‖ · ‖ is the L2 norm onΩ . From Eq. (5), one
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can see that satisfying Eq. (8) implies that the network produces large O(
√
N), excitatory

and inhibitory synaptic currents that cancel or “balance” each other to produce O(1) to-

tal synaptic input. Hence, networks that satisfy Eq. (8) condition are said to be “balanced

networks” or to operate in a “balanced state.”

Remarkably, this condition alone is enough to derive a linear, closed form expression for

firing rates in the N → ∞ limit even if the mapping from I to r is unknown. To see this,

note that Eqs. (5) and (8) can only be realized when firing rates satisfy

Wr + F = 0 (9)

in the N → ∞ limit. In other words, if r∞ = limN→∞ r exists and is finite, then it must

satisfy Wr∞ + F = 0. Note that W and F do not depend on N . Hence, firing rates in the

N → ∞ limit in balanced networks are determined by a linear integral equation of the

first kind [21] despite the nonlinearity of the mapping from I to r.

To better understand how this works, consider a commonly used integro-differential

equation model for firing rates [24, 25] τ ṙ = –r + g(I), where g is a monotonically in-

creasing function. Any fixed point of this system satisfies Wr + F = g–1(r)/
√
N . As long

as g–1(r)/
√
N → 0 as N → ∞ at the fixed point, any fixed point approaches the solution

to Eq. (9) as N → ∞.

Since Eq. (9) is a Fredholm integral equation of the first kind, it does not generically

admit a solution. More specifically, for any integral operator W , there necessarily exist

external input profiles F(x), for which there is no solution r(x) to Eq. (9). When this oc-

curs, the network cannot satisfy Eq. (8). Therefore, any spatially extended network can

be imbalanced by some external input profiles. Moreover, solutions to Eq. (9) must be

nonnegative and stable for the balanced state to be realized (see Discussion).

When Eq. (9) does not admit a solution, a linear approximation provides an approx-

imation to firing rates at finite N [12, 17]. This approximation is obtained by making

a rectified linear approximation to the mapping from mean input to mean firing rates

ra(x) = ga[Ia(x)]+ for a = e, i, where ga > 0 is the neurons’ gain and [·]+ denotes the positive
part. For spiking network models, ga can be approximated heuristically [12] or by fitting

simulation results to a rectified linear function [17]. In the examples considered below,

we use the latter approach. When firing rates are positive, this gives the following integral

equation for firing rates:

Wr + F = ǫDr, (10)

where ǫ = 1/
√
N is a small, positive number and

D =

[
1/ge 0

0 1/gi

]
.

This equation is a finite N correction to Eq. (9). Since it is an integral equation of the

second kind, it generically admits a unique solution for any F (unless ǫ is an eigenvalue of

W). Therefore, even when Eq. (9) does not admit a solution, Eq. (10) will generally admit a

solution. However, the solution to Eq. (10) can diverge as N → ∞ (i.e., ǫ → 0), indicating

networks for which Eq. (9) does not admit a solution.
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A common approach to solving Fredholm integral equations like Eqs. (9) and (10) is to

expand the equations using an orthonormal basis of eigenfunctions for the integral oper-

ator [21]. However, the integral operator is not guaranteed to have orthogonal eigenfunc-

tions if it is not Hermitian. Because we assume wab(x, y) = wab(y,x), the integral operators

Wab are Hermitian. However, the integral operator W that comprises our integral equa-

tions is not Hermitian because wei �= wie. Hence, even thoughWab have orthogonal eigen-

functions,W does not. We extended the standard theory of integral equations to account

for this case in which a non-Hermitian integral operator is composed of multiple Hermi-

tian operators. Our extension is summarized by the following theorem. All convergences

in the theorem and proof should be interpreted in an L2 sense.

Theorem 1 Suppose that W is defined as in Eqs. (6) and (7) where wab(x, y) = wab(y,x),

wab ∈ L2(Ω2), and all four operators Wab share the same orthonormal basis of eigenfunc-

tions {φm ∈ L2(Ω)}m with associated eigenvalues {μab
m }m.When ǫ �= 0 and ǫD– W̃m is non-

singular for all m,

r(x) =
∑

m

[ǫD – W̃m]
–1
F̃mφm(x) (11)

converges to a solution to Eq. (10) where

W̃m =

[
μee
m μei

m

μie
m μii

m

]
, F̃m =

[
〈Fe,φm〉
〈Fi,φm〉

]
,

and 〈·, ·〉 is the L2 inner product on Ω . When the series in Eq. (11) converges at ǫ = 0, it

converges to a solution to Eq. (9).

Proof All convergences should be interpreted in the L2 sense. Note that, since wab(x, y) =

wab(y,x) andwab ∈ L2,Wab is a self-adjointHilbert–Schmidt integral operator and is there-

fore a compact operator; therefore {φm}m is a complete basis for L2(Ω) and μab
m ∈ R by the

spectral theorem.

We first show that the series converges when ǫ �= 0. Note that μab
m → 0 asm → ∞ by the

completeness of {φm} so that ǫD– W̃m → ǫD asm → ∞ when ǫ �= 0. Therefore, the series

in Eq. (11) converges only if the series
∑

m[ǫD]
–1̃
Fmφm converges. The completeness of

{φm} implies that
∑

m F̃mφm converges since
∑

m〈Fa,φm〉φm converges. We may conclude

that the series in Eq. (11) converges.

We next show that the series in Eq. (11) converges to a solution to Eq. (10). Let r(x) =

[re(x)ri(x)]
T be defined by Eq. (11). Then

〈r,φm〉 ≡
[
〈re,φm〉
〈ri,φm〉

]
= [ǫD – W̃m]

–1
F̃m.

Multiplying both sides by [ǫD – W̃m] gives

ǫD〈r,φm〉 – W̃m〈r,φm〉 = F̃m,

which gives

〈ǫDr,φm〉 – 〈Wr,φm〉 = 〈F,φm〉



Ebsch and Rosenbaum Journal of Mathematical Neuroscience            ( 2020)  10:8 Page 8 of 14

for all m. Since φm is a complete basis, this implies that ǫDr – Wr = F and therefore r

satisfies Eq. (10).

Now assume that the series in Eq. (11) converges at ǫ = 0. Repeating the argument above

with ǫ = 0 shows that it converges to a solution to Eq. (9) whenever it converges. �

Note that the convergence of Eq. (11) when ǫ > 0 is implied by the assumptions of the

theorem, but the convergence when ǫ = 0 needs to be assumed separately. Hence, Eq. (10)

admits solutions under relatively general assumptions, whereas the solvability of Eq. (9) is

less general and requires that ‖̃Fm‖ converges to zero faster than ‖W̃m‖.
While the assumption of symmetric convolution kernels assures that Wab have or-

thonormal bases of eigenfunctions with real eigenvalues, we additionally assumed that

these eigenfunctions were the same for all four combinations of a,b ∈ {e, i}. This would
be satisfied, for example, if wab(x, y) = wabk(x, y) for some wab ∈ R, but also applies to

other settings. For example, if wab(x, y) = wab(x – y) are periodic or “wrapped” convolu-

tion kernels as in previous work [12, 15, 17], then the Fourier basis functions provide an

orthonormal basis of eigenfunctions even when the four convolution kernelswab(x–y) are

notmultiples of each other. In this case, Eq. (11) is the Fourier series for r(x). InDiscussion,

we comment on how some of these assumptions could be weakened.

WhenWab do not share orthonormal bases of eigenfunctions, the analysis must be per-

formed directly on the spectrumofW instead of decomposing the analysis into the spectra

of each Wab. Specifically, if W , treated as an integral operator on L2(Ω) × L2(Ω), has an

orthonormal basis of eigenfunctions {φm}m where φm ∈ L2(Ω) × L2(Ω) with real eigen-

values {μm}, then r =
∑

m[ǫD – μm]
–1〈F,φm〉φm. However, note that W may not have an

orthonormal basis of eigenfunctions with real eigenvalues even when kernels are spa-

tially symmetric (wab(x, y) = wab(y,x)) because a Hermitian W would also require that

wei(x, y) = wie(y,x), which is generally not true for excitatory-inhibitory networks. Solv-

ing Fredholm equations with non-Hermitian integral operators is generally more difficult

as diagonalization methods cannot be applied directly. Hence, our derivation of Eq. (11)

extends standard diagonalization methods because it solves a Fredholm equation with a

non-Hermitian kernel, albeit one with a special structure in whichW is composed ofmul-

tiple Hermitian kernels. This structure arises naturally in spatial neural network models

with excitatory and inhibitory populations.

A corollary gives a simpler expression for the solution to Eq. (9) when the spatial shape

of the connectivity kernels and external input are the same for excitatory and inhibitory

neurons.

Corollary 1 Suppose, in addition to the assumptions of Theorem 1, that wab(x, y) =

wabk(x, y) and Fa(x) = FaF(x) for some wab,Fa ∈ R. Then a solution to Eq. (9) exists and

is equal to

r(x) = –W
–1
F

∑

m

F̃m

μm

φm(x) (12)

if the series converges. Here,

W =

[
wee wei

wie wii

]
, F =

[
Fe

F i

]
,
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F̃m = 〈F ,φm〉, and μm is the eigenvalue of the integral operator [Kr](x) =
∫
Ω
k(x, y)r(y)dy

associated with eigenfunction φm.

Note that the first product in Eq. (12) (before the sum) is a vector (it has an excitatory

and inhibitory component), but is not a function of x. On the other hand, the second term

(the sum) is scalar, but depends on x. Hence, the solution is broken into its spatial and

excitatory-inhibitory components.

IfK has a nontrivial nullspace, then some of the eigenvalues μm will be zero. For Eq. (9)

to be solvable in this case, F̃m = 〈F ,φm〉 must be zero for all suchm and the corresponding

terms in the series in Eq. (12) should be interpreted as zero.

The same separation of terms cannot be applied to solving Eq. (10), i.e., Eq. (11) cannot

be simplified in the sameway when ǫ �= 0. However, the evaluation of Eq. (11) when ǫ �= 0 is

simplified to some degree by noting that W̃m =Wμm and F̃m = FF̃m under the assumptions

of Corollary 1 and therefore

r(x) =
∑

m

[ǫD –Wμm]
–1
FF̃mφm(x). (13)

Since all the examples we consider satisfy the assumptions of Corollary 1, we hereafter

focus on Eqs. (12) and (13) in place of the more general Eq. (11). The analysis of specific

networks with specific external input profiles can proceed as follows: The convergence of

the series in Eq. (12) should be checked first. If it does not converge, then the network can-

not maintain balance as N → ∞ and Eq. (13) must be used at finite N instead. Even when

Eq. (12) does converge, Eq. (13) can be used as an alternative to Eq. (12) for approximating

firing rates in spiking network simulations. We next compare Eqs. (12) and (13) to results

from large spiking network simulations.

4 Comparison of mean-field theory to spiking network simulations

We first consider the simulations discussed above and shown in Fig. 1. For this example,

we can write wab(x, y) = wabk(x, y) where wab = 12pabjabqb and k(x, y) = min(x, y) – xy, and

we can write Fa(x) = FaF(x) with F(x) = sin(πx). Therefore, we can apply Corollary 1. It

is easily checked that the integral operator [Kr](x) =
∫
Ω
k(x, y)r(y)dy has eigenvalues and

orthonormal eigenfunctions

μm =
1

m2π2
and φm(x) =

√
2 sin(mπx)

form ∈N. Since F(x) = sin(πx) is itself an eigenfunction, its expansion in the eigenfunction

basis has only one nonzero term F̃1 = 〈F ,φa〉 = 1/
√
2 and F̃m = 0 for m �= 1. Therefore, the

series in Eq. (12) has only one nonzero term and reduces to

r(x) = –W
–1
Fπ2

sin(πx), (14)

which represents the N → ∞ limit of firing rates in the balanced state. The finite N cor-

rection in Eq. (13) similarly has only one term and is given by

r(x) =
[
π2ǫD –W

]–1
Fπ2

sin(πx). (15)
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Figure 2 A second example of a spatially extended balanced network. (A)–(E) Same as Fig. 1 except external

input is given by Eq. (16) with c = 0.15, the dotted lines in (C)–(E) are given by Eq. (17), and the dashed lines

are given by summing Eq. (13) numerically up tom = 20

Comparing these expressions to firing rates computed from simulations shows that

Eq. (15) provides a noticeably better approximation atN = 1000 (Fig. 1(C); dashed is closer

than dotted to solid), but both equations agree very well at larger values of N (Fig. 1(D),

(E); dashed and dotted are close to solid), as expected.

Figure 1(F), (G) shows individual neurons’ firing rates versus their time-averaged input

currents (dots) and compares them to the rectified linear fit used to estimate ge and gi (solid

curves). Note that the rectified linear fit is not highly accurate, especially for excitatory

neurons, because the true relationship between I and r is not a rectified linear function.

However, this rough approximation is sufficient because ge and gi only affect Eq. (15) at

order O(ǫ).

We next consider a more interesting example in which the series in Eqs. (13) and (12)

have infinitely many nonzero terms. In particular, consider the same recurrent network

with external input

F(x) = c sin
4(x) + (1 – c) sin(πx). (16)

Since we have not changed the network, μm and φm(x) are the same as above and the only

term that changes from above is

F̃m =
(1 – c)
√
2

δm,1 +

⎧
⎨
⎩

48c
√
2

(64m–20m3+m5)π
m odd,

0 m even,

where δ is the Kronecker delta. It is clear then that the series in Eq. (12) converges since

F̃m/μm ∼m–3 asm → ∞. Indeed, one can simplify the series in Eq. (12) to obtain

r(x) = –W
–1
F
(
(1 – c)π2

sin(πx)

+ 2cπ2
[
cos(4πx) – cos(2πx)

])
(17)
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Figure 3 Example of an imbalanced network. (A)–(E) Same as Fig. 1 except external input is given by Eq. (18)

with c = 0.15, dashed lines in (C)–(E) are given by summing Eq. (13) numerically up tom = 20, and dotted lines

are not shown because there does not exist a solution to Eq. (9)

as the firing rates in the N → ∞ limit in the balanced state. This is only a valid firing

rate solution when r(x) > 0 for all x ∈ [0, 1], which requires that c is sufficiently small.

Specifically, c must be small enough that (1 – c) sin(πx) + 2c[cos(4πx) – cos(2πx)] ≥ 0 for

all x ∈ [0, 1]. For the finiteN correction in Eq. (13), we were unable to obtain a closed form

expression for the series, but it can easily be summed numerically using the equations for

μm and F̃m derived above.

Network simulations show asynchronous-irregular spiking activity (Fig. 2(A)) and

excitatory-inhibitory balance (Fig. 2(B)). Comparing our theoretical equations to firing

rates from simulations shows that Eq. (13) is much more accurate than Eq. (17) even at

larger values of N , but the convergence of the two equations to each other (and to results

from simulations) is visible when comparing N = 5000 to N = 20,000 (Fig. 2(C)–(E)).

We finally consider the same recurrent network with external input

F(x) = c sin
2(x) + (1 – c) sin(πx). (18)

In this case,

F̃m =
(1 – c)
√
2

δm,1 +

⎧
⎨
⎩

4c
√
2

π (4m–m3)
m odd,

0 m even.

Therefore, Fm/μm ∼ m–1 as m → ∞ and the series in Eq. (12) diverges. This implies that

the network does not maintain excitatory-inhibitory balance as N → ∞ because Eq. (9)

does not admit a solution. Equation (10) still admits a solution for eachN , given by Eq. (13),

but this solution diverges as N → ∞ (ǫ → 0).

Despite the break in balance as N → ∞, network simulations still show asynchronous-

irregular spiking activity (Fig. 3(A)) and approximate excitatory-inhibitory balance
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(Fig. 3(B)) at finite N . Comparing Eq. (13) to firing rates from simulations shows that

it is still somewhat accurate for multiple values of N (Fig. 3(C)–(E)).

Interestingly, the break in balance is not highly apparent in Fig. 3(B), as the currents still

appear to be approximately balanced. Our mathematical analysis shows that the mean

total input current cannot remain O(1) for all x as N → ∞. However, we expect the di-

vergence to grow likeO(
√
N) when balance is broken [12], so very large values ofN could

be necessary for imbalance to become visible.

5 Discussion

We extended the mean-field theory of firing rates in balanced networks to account for

spatial connectivity structures in which connection probabilities depend on the spatial

location of pre- and postsynaptic neurons without the translation invariance assumed in

previous work. Any such network cannot maintain balance as N → ∞ for every exter-

nal input profile, and we derived conditions on the external input profile and connection

probabilities required for balance to be possible. We also derived a finite N approxima-

tion to the firing rates that is applicable even when strict balance cannot be achieved as

N → ∞. We compared our theoretical results to large simulations of randomly connected

integrate-and-fire neuron models. While the equations left some error at finite N , they

captured the overall shape of firing rates at large values of N .

For balance to be realized, the firing rate profiles given by Eq. (12) need to be positive

at all values of x ∈ Ω . While we did not derive explicit conditions on this positivity, the

solution in Eq. (12) can be checked for positivity and should only be interpreted as a valid

solution when rates are positive. When Eq. (12) gives negative rates for some x ∈ Ω , this

would lead to mean firing approaching zero as N → ∞ over some spatial locations. It is

possible that the remaining neurons in the network that have nonzero firing rates could re-

alize balance separately, forming a balanced sub-network. This possibility, which requires

a nonlinear analysis, will be explored in future work.

We parameterized feedforward input as a time-constant, deterministic function F(x). In

reality, cortical populations receive noisy, time-varying feedforward input fromneurons in

other cortical layers, cortical areas, and thalamus. These can bemodeledmore realistically

by generating the spike trains of these presynaptic populations and assigning feedforward

connectivity analogous to the recurrent connectivity considered here [15, 17, 22]. In the

mean-field theory, this gives F(x) = [WFrF ](x) where rF (y) quantifies the spatial profile of

firing rates in the presynaptic population, whichmight live on a different space y ∈ Ωy, and

WF is the mean-field connectivity kernel defined analogously to W . In this case, Eq. (9)

admits a solution, i.e., balance can be achieved, whenever the range of WF is contained

within the range of W . See [17] for a development of this idea for networks with transla-

tionally invariance connectivity profiles. This provides a way to test the spatial structure

of multi-layered cortical circuits for the ability to maintain balance.

In addition, balance requires that the fixed point realized by Eq. (12) is stable. Stability

of firing rate fixed points in networks of integrate-and-fire neurons can be very compli-

cated and is outside the scope of this study. Stability for integro-differential equations of

the form ṙ = –r + g(W + X) can be analyzed more easily, especially when g is assumed to

be linear at the fixed point. This approach to stability analysis can provide a heuristic ap-

proximation to stability in spiking networks, but instabilities can arise in spiking networks

that are not captured by the integro-differential equation due to the inherent resonance of
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spiking neurons [29]. An in-depth analysis of stability and the dynamics that arise when

the networks are destabilized would be an interesting direction for future studies.

We assumed that connectivity kernels are symmetric wab(x, y) = wab(y,x) and that all

four kernels share the same eigenfunctions. Extensions to this theory for asymmetric

kernels and distinct eigenfunctions could be achieved using more general numerical or

analytical approaches to solving integral equations that rely on singular value decom-

positions instead of eigenfunction decompositions (the two coincide under our assump-

tions) [21, 30, 31]. Such an extension would, for example, allow the analysis of visual cor-

tical network models with pinwheel-shaped orientation hypercolumns. This could poten-

tially be achieved analytically using methods to recast those networks in spherical co-

ordinates [32] or numerically using real imaging of hypercolumn geometry and neural

connectivity [18]. This could lead to studies that numerically or analytically probe which

visual stimuli break excitatory-inhibitory balance. Since imbalanced networks generally

lead to an amplification of firing rate responses [17], this would shed light on which visual

stimuli patterns should be more salient under a balance network formalism.

In summary, our study extends the theory of balanced networks tomore intricate spatial

topologies, which opens the door to a number of additional lines of inquiry that could

provide additional insights into the operation of cortical circuits.
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