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Spatially Filtered Vibration
Control of Cylindrical Shells

Distributed actuators offer spatially distributed actuations and they are usually effec-
tive to multiple modes of a continuum. Spatially filtered distributed vibration controls
of a laminated cylindrical shell and a piezoelectric shell are investigated, and their
control effectivenesses are evaluated in this study. In general, there are two control
actions, the in-plane membrane control forces and the counteracting control moments,
induced by the distributed actuator in the laminated shell. There is only an in-plane
circumferential control force in the piezoelectric shell. Analyses suggest that in either
case the control actions are effective in odd natural modes and ineffective in even
modes. Spatially filtered control effectiveness and active damping of both shells are

studied. © 1996 John Wiley & Sons, Inc.

INTRODUCTION

Distributed sensors and actuators provide spa-
tially distributed sensing and actuation to elastic
continua-distributed systems. Unlike conven-
tional discrete sensors and actuators, these dis-
tributed devices are usually responsive to spa-
tially distributed phenomena; they are usually
effective in sensing and controlling multiple natu-
ral modes of distributed systems (Tzou, 1993).
There have been significant research and develop-
ment activities on new piezoelectric devices in
recent years (Baz and Poh, 1988; Hubbard and
Burke, 1992; Lee and Moon, 1990; Birman, 1992
Tzouetal., 1993; Tzou and Fu, 1993). Distributed
piezoelectric sensors and actuators are being in-
creasingly used in active intelligent structures
(Tzou and Anderson, 1992) and precision electro-
mechanical systems (Tzou and Fukuda, 1992).
However, detailed electromechanics and spatial
filtering characteristics of distributed actuators
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are still not well understood. This article is in-
tended to investigate the distributed vibration
control behavior of spatially distributed piezo-
electric actuators and their spatial filtering char-
acteristics in vibration controls of cylindrical
shells.

In general, distributed piezoelectric actuators
either expand or contract in their sensitive direc-
tions when external voltages or charges are ap-
plied, the converse piezoelectric effect. Depend-
ing on the placement of the actuators on an elastic
continuum, in-plane membrane control forces
and/or counteracting control moments can be
generated. In addition, because control voltage
is also spatially distributed, this voltage can be
surface averaged, resulting in a filtering effect to
a few specific natural modes. This spatial filtering
behavior is particularly significant for symmetri-
cal geometries with symmetrical boundary condi-
tions (Tzou, 1993). In this study, these spatially
distributed control characteristics are discussed
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and demonstrated in two cylindrical shells, a pi-
ezoelectric laminated cylindrical shell and a pi-
ezoelectric cylindrical shell. Mathematical mod-
eling of these two cylindrical shells are presented
first, followed by analyses of spatially filtered dis-
tributed control behavior of these two shells. Spa-
tially filtered distributed controls of cylindrical
shells are investigated in case studies.

MODELING AND ANALYSIS

Spatial filtering behaviors of two cylindrical shells
were studied. The first cylindrical shell is a lami-
nated composite in which an elastic cylindrical
shell is sandwiched between two piezoelectric
layers. One layer serves as a distributed sensor
and the other as a distributed actuator that intro-
duces control actions when external voltages are
applied. The second cylindrical shell is made
solely of a piezoelectric material and its control
action is introduced via in-plane membrane
forces. Detailed electromechanics and modeling
are discussed in this section; spatially filtered con-
trol characteristics and effectiveness are dis-
cussed in the next section. Note that symmetrical
hexagonal piezoelectric materials (Tzou, 1993;
Tzou and Zhong, 1993) are used in both cases in
this study.

Laminated Cylindrical Shell Composite

It is assumed that a spatially distributed piezo-
electric actuator layer (with thickness 42) is lami-
nated on the top surface of an elastic cylindrical
shell (with thickness A; Table 1). The other dis-

Table 1. Dimensional and Material Properties of
Laminated Cylindrical Shell

Properties Steel PVDF
L 1.00 X 107! m 1.00 X 1072 m
R 5.00 X 1072 m
h 1.00 x ' m 2.500 X 10> m
B 60°, 90°, 120°
p 7.80 x 10% kg/m? 1.800 x 10° kg/m3
Y 2.10 x 10" N/mm? 1.600 X 10° N/mm?
I 0.300 0.290
dy, 6.000 x 10712 C/N
dsy 6.000 X 10~12 C/N
dy 13.000 x 10712 C/N
ele 10

8.85 x 107" F/m

Thin
Piezoelectric
Layers
Elastic

Cylindrical

Shell

(Not to scale)

FIGURE 1 A cylindrical shell laminated with piezo-
electric actuators.

tributed sensor layer is laminated on the bottom
surface of the cylindrical shell. Active directions
of the symmetrical hexagonal piezoelectric layers
are aligned with the coordinate axes x and 6 of
the cylindrical shell (Fig. 1). The cylindrical shell
is assumed to be simply supported on all edges.

The laminated actuator layer introduces two
control actions: in-plane membrane control
forces and counteracting control moments. The
effective axes of the actuator are aligned with the
coordinate axes. One in-plane control force is in
the x direction and the other is in the 8 direction,
the circumferential direction. Furthermore, be-
cause the actuator layer is surface laminated,
these in-plane control forces multiplied by the
moment arms (distances from the neutral surface
to the midplane of the actuator layers) yield coun-
teracting control moments. A transverse electro-
mechanical equation of the laminated cylindrical
shell with distributed piezoelectric layers can be
derived as (Zhong, 1991; Tzou, 1993)
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where R is the radius of the cylinder, p is the
mass density, & is the shell thickness, and Fj; is
the transverse excitation force. Resultant forces
N; and moments M; can be defined by deforma-
uons on the neutral surface
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where K is the (elastic) membrane stiffness, K =
[YR/(1 — u?)]; D is the (elastic) bending stiffness,

= [YH3}/12(1 — u3)]; Yis Young’s modulus; and
w is the Poisson ratio. N§,, M5, , and Mg, (with
a superscript e) are the electrically 1nduced con-
trol force and moments. Note that N§, disappears
from the equation because the curvature of the x
axis is zero or the radius is infinite. Controlled
(forced) vibrations of cylindrical shells are de-
rived using the modal expansion method. A ve-
locity feedback control with spatially distributed
control forces (the full state feedback) was pro-
posed and its corresponding governing modal
equations formulated.

Based on the modal expansion method, dis-
placements in the three axial directions can be
expressed in the modal expansion forms,
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where A,,,, B,,,, and C,,, are the relative oscilla-
tion amplitudes of the mnth mode; 0, is the
modal participation factor; m and » are the half-
wave numbers; L is the shell length; and 8 is the
shell curvature angle. Note that there are three
component natural frequencies for each mn
mode. The relative modal amplitude ratios A4,,,,
B,,, and C,,, of the ith component natural fre-
quency are defined as

Aimin _ kls(Phw imn — k22) = kppkas
C. ” 2’ (4a)
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where ),, is the ith component natural fre-
quency, and k; are constants defined by the mem-
brane stiffness, bending stiffness, Young’s modu-
lus, Poisson’s ratio, radius, length, and half-wave
numbers m and n (Tzou, 1993). Because the trans-
verse oscillation usually is more important than
the other two in-plane oscillations, only the trans-
verse vibration

us(x, 0,1) = 2 E nm,,(t)C sin mTrxSinn_wB
m=1n=1 L B

is considered in the later analysis.

Using the modal expansion method and consid-
ering a viscous damping, one can derive the trans-
verse modal equation for the simply supported
laminated cylindrical shell with distributed actua-
tor filters as

c
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where ¢, is the damping constant and N,,, for a

simply supported cylindrical shell is defined by
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It can be observed that all electric force/mo-
ment components are lumped on the right side
of the modal equation and these force/moment
components can be used to control the shell dy-
namics. Recall that the actuator layer is laminated
on the surface of the cylindrical shell. Accord-
ingly, the electric membrane force N§, and bend-
ing moments (M$, and M§,) can be calculated
when control voltages are known (Tzou, 1991).
Distributed filtering characteristics of actuator
actions, i.e., control forces and moments, are
evaluated in the next section.

Piezoelectric Cylindrical Shell

In this case, the cylindrical shell is made entirely
of a piezoelectric material. The inherent electric
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components in the system equation are intended
to counteract the mechanical components such
that the shell is actively controlled. The inherent
electric components, €.g., membrane forces and
moments, that are externally activated can be
used for structural actuation and control. In the
electromechanical equation of transverse oscilla-
tion, the electric membrane forces are divided by
radii such that these terms vanish when the radii
are infinite, e.g., plates, etc. Thus, structural con-
trol with the electric membrane forces is only
effective for shell-type structures with nonzero
curvatures. Again, it is assumed that the piezo-
electric cylindrical shell is simply supported on
all four edges (Fig. 2). Damping control of the
piezoelectric cylindrical shell via distributed in-
plane membrane forces was investigated.

It is assumed that the thin piezoelectric cylin-
drical shell is made of a symmetrical hexagonal
piezoelectric material, i.e., class Cg, = 6 mm,
which has 10 material constants (Tzou, 1993;
Tzou and Zhong, 1993). The top and bottom sur-
faces are covered by thin electrodes with negligi-
ble material properties. A transverse electric field
E, is applied across the electroded surfaces. The
transverse piezoelastic equation of the piezoelec-
tric cylindrical shell is
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FIGURE 2 A piezoelectric cylindrical shell.

where D' is the piezoelastic bending stiffness and
K ' the piezoelastic membrane stiffness. They are
defined as

2
I
D =D+, (8a)
€33
2 h
K=K+ 582 (8b)
€33

where e, is the piezoelectric constant, £, is the
dielectric constant, and [ is the area moment of
inertia. As defined previously, K is the elastic
membrane stiffness, K = [YA/(1 — n?)]; D is the
elastic bending stiffness, D = [YA*/12(1 — u?)].

Note that the terms inside the first parentheses
of the piezoelastic cylindrical shell equation are
contributed by the bending effects and those in-
side the second parentheses are related to the in-
plane membrane effects. Because the radius of
curvature R of the 0 axis (the circumferential di-
rection) is not infinite, an in-plane electric mem-
brane force N, is left in the piezoelastic equation
and this force can be used to control shell dynam-
ics. In addition, there is no counteracting control
moment, because the membrane control force is
on its neutral surface. The externally induced
control force can be defined as

Ngy = f ey Eydas, )

a3

where the electric field E; can be determined by
either an open-loop or a closed-loop control. The
electric field E; can be made as a function of either
displacement or velocity in a closed-loop control
system. In this study, a velocity feedback control
was considered and its effect on damping control
evaluated. Note that the feedback voltage is nor-
malized with respect to the modal oscillation am-
plitudes in the later analysis.

Similar to the first case, the natural modes
U/ x, ), Uy(x, 6), and Us(x, ) of the simply
supported piezoelectric cylindrical shell in three
axial directions are

mwx . nwo

U/lx,8) =A,,cos T smF, (10a)
_ . mmTXx nwt

Uyx, 0) = B,,,sin i2 cos 5 (10b)

Us(x, 8) = C,,sin 7% sin ™0 (10¢)
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where A, B,.., and C,,, are constants, i.e., am-
plitudes of modal oscillations; and m and n are
integers, the half-wave numbers.

SPATIALLY FILTERED DISTRIBUTED
CONTROL

As discussed previously, electrically controlled
membrane control forces and bending moments
are used to influence the shell dynamics. In the
laminated shell case, there are two control ac-
tions: membrane control forces and control mo-
ments. In the piezoelectric shell case, the control
action comes from an in-plane electric circumfer-
ential force. A generic closed-loop control sche-
matic of piezoelectric systems is illustrated in Fig-
ure 3. In this section, spatially distributed control
of these two cylindrical shells is discussed.

Laminated Cylindrical Shell Composite

As defined previously, a fully distributed piezo-
electric actuator layer covers the whole top sur-
face of the cylindrical shell and a feedback volt-
age ¢} is injected into the distributed actuator.
Using the modal expansion technique and the
equivalent control moment approach (Tzou and
Fu, 1993), one can derive the control forces and
moments in the modal domain.
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FIGURE 3 A closed-loop control schematic of piezo-
electric systems.
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Note that the resultant control force and mo-
ments are zero for all even modes. Thus, this
fully distributed actuator is only effective on odd
natural modes; control actions for even modes
are filtered out due to voltage cancellations of
antisymmetrical modes. Substituting the resul-
tant forces and moments into the modal equation
and imposing the full state velocity feedback, i.e.,
3 = —Gif - M,,,(1), one can derive the closed-
loop modal equation,

1
+_

Timn oh
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N + O n M = 0, (13)

where ‘Qﬁf is the system feedback gain including
the sensor sensitivity S, , the amplifier gain 4,
and the gain of a differentiator circuit ¢, i.e.,
G¥ = 8:%,m%e. . An equivalent controlled modal
damping ratio ¢,,, is written as

;o + 8es
gmn - émn LR,@phw,,,,,
(14)
LB 1 h+ha<mBR nL) "
=2+ + GYS s
{772 mn 2 nL ~ mBR fp™mn
and the initial damping ratio ¢, = ¢,,,/2pho,,, .

The first term in the braces is associated with the
membrane control action and the other two are
associated with the bending control action. Ap-
parently, the velocity feedback can be used to
adjust the modal damping ratio. It should be
pointed out that the sensor signal is a modal signal
and it is directly contributed by strains and indi-
rectly contributed by displacements or deforma-
tions (Tzou, 1991, 1993; Zhong, 1991).
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Piezoelectric Cylindrical Shell

Using the modal expansion technique and consid-
ering the velocity feedback (Tzou and Fu, 1993),
one can derive the mnth modal equation as

.. 1 16€3; by > .
+ =l ¢,y + =228 +oln =0.
nmn ph (Cmn 3R7T2 8 (m’ n) T)mn wmn ’r’ﬂln 0

({15)

Again, 7, is the modal coordinate (the modal
participation factor); c,,, is the inherent viscous
damping factor; ¢, is the resultant feedback volt-
age; and

8'(m,n)=(—cosmm +1)-(—cosnm +1). (16)

Thus, the equivalent controlled damping ratio
¢, of the piezoelectric shell with the velocity
feedback becomes

. I 16e5; ¢, )
= — —+— —2 28
S 2phe <C'"" 3Rw? 3'(m, n)

1 <16931 b3
2phw,,, \ 3R>

(17)
)6’(m,n).

=L T

The initial mnth modal damping ratio ¢, is
defined as (c,,,/(2phw,,,)). It is observed that the
enhanced damping, the second term (16e4 ¢,/
3Rw? 8'(m, n), vanishes for all even m or » modes
because 8'(m, n) = 0. Thus, this distributed in-
plane circumferential control force is only effec-
tive to odd natural modes (both m and n are odd
numbers) of the piezoelectric cylindrical shell.
Substituting all material and geometry parameters
into the above equation, one can estimate the
damping changes influenced by the resultant feed-
back voltage ¢;.

RESULTS AND DISCUSSION

Theoretical analyses of the laminated cylindrical
shell composite and the piezoelectric cylindrical
shell presented above suggest that the fully dis-
tributed actuator layer only controls the odd natu-
ral modes of the laminated cylindrical shell, and
the in-plane circumferential control force also
only controls the odd natural modes of the piezo-
electric shell. All even modes are filtered out from
the control action, due to control signal cancella-
tions and modal symmetries. Detailed control ef-

Table 2. Dimensional and Material Properties

Properties Steel PVDF
p (kg/m3) 7.80 x 10° 1.80 x 10°
Y (N/mm?) 2.10 x 10" 1.600 x 10°
L (m) 1.00 x 107! 1.00 x 1072
R (m) 5.00 x 1072

h (m) 1.00 x 1073 2.50 x 1073
B 60, 90, 120

n 0.30 0.290

dy;, dyy (C/N) 6.00 x 10°12
dy; (C/N) 13.00 x 10712
g, (F/m) 8.85 x 10710
ele, 10

fectiveness, via numerical simulations, of these
two cylindrical shells is presented in this section.

Laminated Cylindrical Shell Composite

The elastic cylindrical shell was made of steel
with a thickness of 1 mm. The piezoelectric actua-
tor layer was made of a 25-um polymeric poly-
vinylidene fluoride (PVDF) material and its me-
chanical properties were neglected in the analy-
sis. Detailed material properties are listed in Ta-
ble 2. Note that there were three curvature angles
(60°, 90°, and 120°) considered in this analysis
from which the effect of shell deepness could be
evaluated. Filtered vibration (damping) controls,
via the fully distributed actuator, of the laminated
cylindrical shell with 60°, 90°, and 120° curvature
angles are presented in this section. Total control
effects resulting from the electric control mem-
brane force and bending moments of the first three
odd modes, (1, 1), (1, 3), and (3, 1), arc plotted
in Fig. 4-6, and their filtering characteristics are
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o 230 I
s -
S 220 4 -~
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Z 210 o
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g 200 A P JUTd
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o .
Z 180 A
S
2 70
a
160
150 s -

100 200 300 400 500 €00 700 BOG 900 1000
GAIN OF FEEDBACK SYSTEM (VS/MM) (M=1,N=1)

FIGURE 4 Damping control of the laminated shell
(1, 1) mode; (1-mm shell, 25-um actuator).
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FIGURE 5 Damping control of the laminated shell,
(3, 1) mode.

compared. (Comparisons of individual membrane
and bending control effects are presented later.)
Note that the fully distributed actuator (25 pm)
is only effective to odd modes and ineffective
to even modes. Control effects due to thickness
variations of the PVDF actuator layer and the
cylindrical shell were also evaluated.

In general, the controlled damping ratio in-
creases (linearly) as the system feedback gain in-
creases, although the increase is relatively small.
Note that the initial damping ratio was assumed
to be 1% for all natural modes. Control effect
from the electric membrane forces was larger than
that from the electric bending moments, but they
were in the same order. Figure 7(a, b) shows the
membrane and bending control effect to the first
mode (Fig. 4 illustrates the total control effects.)
It was observed that as the mode increases, the
membrane force contribution decreases more sig-
nificantly than the moment contribution.
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o
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= 200
<
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a PN ot
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100 200 300 400 500 600 700 800 900 1000
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FIGURE 6 Damping control of the laminated shell,
(1, 3) mode.
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FIGURE7 (a)Membrane control effects, (1, 1) mode.
(b) Bending control effects, (1, 1) mode.

Note that the resultant convergence of a modal
time history was determined by a product of the
modal damping ratio and the natural frequency,
i.e., e tm“nd!. Also, because there was a natural
frequency in the denominator of the equivalent
controlled damping ratio, shells with higher natu-
ral frequencies showed lower control effects,
e.g., the 120° shell in the (1, 1) and (3, 1) modes
(Fig. 4, 5) and the 60° shell in the (1, 3) mode
(Fig. 6). Other simulation results showed that a
thicker piezoelectric actuator contributes a better
control effect. Figure 8 illustrates the damping
controls of the laminated cylindrical shell with a
40-um piezoelectric actuator layer. Comparing
with Fig. 4, one can observe that the overall
damping control was slightly improved.

In addition, a thinner elastic shell (0.5 mm)
with 25-um piezoelectric actuators was also in-
vestigated (Fig. 9). Simulation results suggest that
the membrane control action remained identical
and the moment control action increased linearly
when the elastic shell became thicker. However,
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250 9..0.  ANGLE=60 L
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FIGURE 8 Damping control of the (I, 1) mode
(1-mm shell, 40-wm actuator).

the overall control effect decreased because the
elastic flexural rigidity was a cubic function of
the shell thickness and the moment was only a
linear function (Zhong, 1991; Tzou and Fu, 1993;
Tzou, 1993).

Piezoelectric Cylindrical Shell

The piezoelectric cylindrical shell was made of a
polymeric piezoelectric PVDF material with
ey = ey = 4.6 X 1072 C/m?, &5, = 1.026 X 107°
F/m, and a capacitance C = 3.8 X 107% F/m. The
shell dimension was 10 ¢cm long, 1 mm thick, and
the radius of curvature was 5 cm. Three different
curvature angles (60 °, 90°, and 120°) were studied
and effects of shell deepness compared. Note that
because the shell was made of the PVDF poly-
meric material, D' = D and K’ = K.
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240 J--=- ANGLE=90
—=— ANGLE=120 ’

200

190
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100 200 300 400 SO0 SO0 700 BOG 900 1000
GAIN OF FEEDBACK SYSTEM (VS/MM) (M=1,N=1)

FIGURE 9 Damping control of the (1, 1) mode
(0.5-mm shell, 25-um actuator).
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FIGURE 10 Damping control of the piezoelectric
shell, (1, 1) mode.

Recall that m denotes the half-wave number
in the x direction and » the 6 direction. The trans-
verse natural mode is

mmx . nwl
sin—.

L B

U,(x, 8) = Csin

Damping variations of the first three odd modes
for all three curvature angles are plotted in Figs.
10-12. Damping ratios of the first three odd
modes are controlled by the feedback voltages
and their control effect increases as the feedback
voltage increases. However, in practice, this volt-
ageis limited by a breakdown voltage of the piezo-
electric material. Figure 11 shows the control
effect to the (m = 3, n = 1) mode, i.e., sin
(3w x/L) sin(w6/8). Because the control forces
were circumferential, i.e., in the 6 direction, the

memi ANGLE=60
10. 5 ===« ANGLE=90
= ANGLE=120

DAMPING RATIO (X0.0001)

e 1'0 2.0 .'5.0 4.0 TE 6'0 7.0 5.0 9'0 'IC')O
VOLTAGE (V) (FOR M=3, N=1)
FIGURE 11 Damping control of the piezoelectric
shell, (3, 1) mode.
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FIGURE 12 Damping control of the piezoelectric
shell, (1, 3) mode.

control effect to the (3, 1) mode was limited. The
other two modes, (m = 1, n = 1) and (m = 1,
n = 3) (Fig. 10, 12), had relatively significant
circumferential oscillations. Accordingly, cir-
cumferential control effects to these two modes
were relatively significant.

Note that the modal damping ratio is inversely
proportional to the modal frequency as indicated
in the derived damping equation. For the first two
modes, im =1, n = 1) and (m = 3, n = 1), the
natural frequencies for the 8 = 120° shell were
higher than those of the 8 = 90° and 8 = 60° shells
(Tzou, 1993). Thus, the damping ratios were be-
low the other two in Fig. 10 and 11. However,
this is reversed for the (m = 1, n = 3) mode, as
shown in Fig. 12.

SUMMARY AND CONCLUSIONS

In this article spatially distributed active vibration
controls of a laminated cylindrical shell compos-
ite and a piezoelectric cylindrical shell were stud-
ied, and their spatial filtering characteristics in-
vestigated. It was observed that there were in-
plane membrane control forces and out of plane
counteracting control moments in the laminated
shell case, and there was only an in-plane circum-
ferential control force in the piezoelectric shell
case. Accordingly, the laminated shell was con-
trolled by both membrane control forces and con-
trol moments, and the piezoelectric shell was only
influenced by the circumferential force. In both
cases, the control action to a symmetrical distrib-
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uted and simply supported boundary condition
was limited to odd natural modes and ineffective
to even natural modes, due to symmetries of natu-
ral modes and also control signal cancellations.
Segmenting an actuator into patches can improve
the even mode controllability (Tzou and Fu,
1993). Furthermore, only the velocity feedback
was considered in both case studies.

Distributed filtering characteristics of the fully
distributed actuator laminated on the elastic cy-
lindrical shell were studied. Control actions in-
duced by the fully distributed actuator were pri-
marily for odd natural modes, and ineffective for
even modes. Analyses suggested that the in-plane
control forces are essential for controlling low
natural modes, and this control effect decreases
as the mode number increases. The control mo-
ment effects basically remained at the same level
for all modes calculated. The controlled damping
ratio increased linearly with the increase of feed-
back gains; it decreased as the mode number in-
creased. Note that the overall convergence of a
modal time history was determined by the com-
bined effect of the mode natural frequency and
the damping ratio. It was also found that the mem-
brane control action remained identical, and the
bending control action increased linearly when
the elastic shell became thicker. However, the
overall damping control decreased because the
flexural rigidity was a cubic function of the shell
thickness and the control moment was only a
linear function.

Damping control of the piezoelectric cylindri-
cal shell was also investigated. A distributed elec-
tric in-plane circumferential force, in the 6 direc-
tion, was kept in the piezoelastic equation and it
was used as a control force in distributed shell
controls. Simulation results suggested, in general,
that damping ratio was enhanced when the feed-
back voltage increased. Analytical solutions also
showed that this control action is only effective to
odd natural modes and ineffective to even modes.
Because this control force was primarily in the 6
direction, control effects to circumferential oscil-
lation modes were significant.

It should be noted that in practical applica-
tions, the maximum control voltage was limited
by a breakdown voltage of piezoelectric materi-
als. The actuation was rather limited, i.e., in sub-
micron strains, for current materials commer-
cially available. In addition, a high feedback
voltage could also heat up the piezoelectric actua-
tor or shell. This temperature effect was not con-
sidered in this study.
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