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Adaptive optics (AO) systems take sampled measurements of the wave-front phase. Because in the general
case the spatial-frequency content of the phase aberration is not band limited, aliasing will occur. This alias-
ing will cause increased residual error and increased scattered light in the point-spread function (PSF). The
spatially filtered wave-front sensor (SFWFS) mitigates this phenomenon by using a field stop at a focal plane
before the wave-front sensor. This stop acts as a low-pass filter on the phase, significantly reducing the high-
spatial-frequency content phase seen by the wave-front sensor at moderate to high Strehl ratios. We study
the properties and performance of the SFWFS for open- and closed-loop correction of atmospheric turbulence,
segmented-primary-mirror errors, and sensing with broadband light. In closed loop the filter reduces high-
spatial-frequency phase power by a factor of 103 to 108. In a full AO-system simulation, this translates to a
reduction by up to 625 times in the residual error power due to aliasing over a specific spatial frequency range.
The final PSF (generated with apodization of the pupil) has up to a 100 times reduction in intensity out to
l/2d. © 2004 Optical Society of America

OCIS codes: 010.1080, 010.7350.
1. INTRODUCTION
In the general case, adaptive optics (AO) systems operate
by using sampled measurements of the phase, or a deriva-
tive of the phase.1 The Shack–Hartmann sensor is a
common method that samples the phase gradient every
subaperture width d in the pupil plane. The recon-
structed phase aberration is then applied as a correction,
typically in closed loop, with use of wave-front correction
devices that have discrete actuators. Because the wave-
front sensor (WFS) in the AO system takes sampled mea-
surements of the phase, which is not band limited in the
general case, aliasing will occur.

Aliasing is a phenomenon associated with sampling
that causes high-frequency signals to be measured as low-
frequency signals. An in-depth discussion will not be
provided here; please see a text such as Ref. 2 for a thor-
ough treatment. The most important result is that when
samples of a signal are taken at intervals of duration T,
the signal must be band limited at 1/2T (which is half the
sampling frequency) for perfect sampling and reconstruc-
tion to occur. If the wave front is sampled spatially with
period d (the width of a subaperture) in both x and y di-
rections in the pupil plane, the phase must have no
spatial-frequency content above 1/2d. This condition is
not met in most cases.

Aliasing will degrade the performance of most AO sys-
tems. Because aliasing causes high-frequency phase
components to be seen as low-frequency ones, the control
system will mistakenly try to correct these phase compo-
nents. This leads to excess error in the steady state.
The characteristics of this aliasing error depend on the
power spectrum of the input phase and the particulars of
the AO system itself. Analytic calculations have shown3

that in the infinite-aperture case that corrects atmo-
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spheric turbulence, the mean square error due to spatial
aliasing is one third of the mean square error due to fit-
ting [i.e., high-frequency phase errors that the deformable
mirror (DM) cannot correct].

In a more specialized scenario, aliasing is detrimental
in the astronomical high-contrast imaging case, i.e., the
search for faint objects close to bright stars. As discussed
in Section 2 and in recent work by Sivaramakrishnan
et al.4 and Perrin et al.,5 at high Strehl ratios when dif-
fraction has been controlled, the point-spread function
(PSF) outside the core approaches the power spectral den-
sity (PSD) of the phase. With perfect knowledge of the
phase, a deformable mirror should be able to sharply at-
tenuate the components of the phase that correspond to
spatial frequencies up to 1/2d, removing scattered light at
radii less than l/2d and producing a PSF with a (square)
dark region. This dark region is termed the ‘‘basin’’ of
the PSF. Real AO systems with pupil-plane sensors
never produce this effect, however, owing to aliasing that
fills in the basin. Aliasing of wave-front errors due to the
atmosphere or semistatic errors due to the telescope are
particularly damaging, since such errors result in slowly
evolving speckle patterns6,7 that can mask interesting
faint companions such as extrasolar planets. Removing
the aliased power can result in vastly greater sensitivity
to companions.

A simple solution to prevent aliasing is to low-pass fil-
ter the input signal before the samples are taken. This
low-pass filter reduces the power of the signal above the
frequency cutoff imposed by the sampling and reduces the
amount of aliasing. We propose to implement a nonideal
low-pass filter on the phase by using a field stop at a focal
plane before the wave-front sensor. This spatial filter
will reduce the power in the wave front at high spatial
2004 Optical Society of America
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frequencies and correspondingly reduce the error in the
wave-front correction due to aliasing. This configuration
will be termed the spatially filtered WFS (SFWFS).

In this paper we examine in detail the design and per-
formance of the SFWFS. The filter, in reasonable situa-
tions, can reduce the power of the phase at spatial fre-
quencies above the cutoff by factors of 103 to 108.
Integrated into a closed-loop, noise-free AO simulation,
this filtering translates to a reduction in power of the
phase residual at low spatial frequencies by a factor of up
to 625 times, just by preventing aliasing.

2. PRINCIPLES OF THE SPATIAL FILTER
The basic design for the spatial filter is a hard-edged,
square field stop in the focal plane. Its width is l/d.
Given a 10-m telescope with a WFS using 800 nm light
and d 5 15.6 cm (D/d 5 64), the field stop of the SFWFS
is of size 1.05 arcsec. Using subapertures of size 56 cm
gives a field stop of size 0.29 arcsec. The filter is square,
not circular, because the expected WFS and DM actuator
configuration is on a square grid. On the basis of sam-
pling theory, the system should be limited to spatial fre-
quency 1/2d to prevent aliasing. Note that a different
configuration of WFS and DM (e.g., a hexagonal grid)
would have a different controllable region and hence a dif-
ferently shaped filter. This filter will act as a nonideal
low-pass filter on the phase. Low-spatial-frequency
(LSF) content below 1/2d will be passed, and high-spatial
frequency (HSF) content above 1/2d will be attenuated.
A similar concept for the Pyramid sensor has been
proposed8; however, it has a field stop (0.1 arcsec) small
enough that it rejects controllable spatial frequencies,
and no detailed performance analysis was given.

A. Relating the Phase to the Field
The spatial filter exploits the relationship between the
frequency content (or power spectrum) of the phase aber-
ration and the field intensity and PSF. This relationship
has been recognized for some time,9 and recent work was
been mathematically explicit.4,5 The latter two refer-
ences expand the pupil function as a Taylor series and ap-
proximate the PSF by several derived terms. This treat-
ment provides insight into both the design of the spatially
filtered wave-front sensor and the analysis of its perfor-
mance. We will briefly summarize the mathematical
treatment and then apply the results to the current sce-
nario.

The pupil function is represented by a real aperture
function a(x, y) and a real phase function f(x, y) in the
pupil plane. This complex exponential can be written as
a Taylor series such that

a~x, y !exp@ if~x, y !#
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where i is the imaginary number equal to (21)1/2. This
linearization provides direct access to the phase f(x, y)
and its spectrum in the equations. The field in the focal
plane is determined by taking the Fourier transform of
the above expression. The field E(X, Y) in the focal
plane is
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where d (X, Y) is the unit impulse function, A(X, Y) and
F(X, Y) are the Fourier transforms of the aperture and
the phase functions, respectively, and the * operator de-
notes convolution.

We will initially consider the monochromatic case for
the filter, so the specific wavelength l of light used will be
mentioned only as necessary in the equations. Equation
(2) can immediately be applied to the design concept of
the spatial filter. The following series of equations are il-
lustrated in Fig. 1. Consider a phase aberration that is a
pure cosine with spatial period in the pupil plane l, such
that

f~x, y ! 5 cosS 2py

l D . (3)

Such an aberration is shown in the top row of the figure.
The Fourier transform of the phase aberration is simply
two impulses at a distance determined by the spatial fre-
quency 1/l and the wavelength of light l,

F~X, Y ! 5 0.5FdS X, Y 2
l

l D 1 dS X, Y 1
l

l D G . (4)

The field in the focal plane is now the unaberrated field
due to diffraction A(X, Y) plus a series of weighted repli-
cations at distances that are integer multiples of l/l,
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l
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l

l D G
2 0.125FAS X, Y 2 2

l

l D 1 2A~X, Y !

1 AS X, Y 1 2
l

l D G 1 ... . (5)

The magnitude of the field in the focal plane is shown in
the second row of the figure. A ‘‘lump’’ in the field ap-
pears at the characteristic distance, with smaller lumps
appearing farther out. The magnitude of these lumps
falls off geometrically with distance away. If the spatial
frequency 1/l is greater than the band limit imposed by
sampling of 1/2d, all of the lumps will be cut off by a field
stop with a width of l/d, effectively suppressing the
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phase component. If the phase frequency is less than
1/2d, the first lump will be passed. The lumps farther
out (which have much less light) will be cut off, introduc-
ing small errors in the passed phase. The final column of
the figure shows the filtered magnitude and phase at the
next pupil plane. Note the suppression of most of the
power of the phase aberration.

The transition zone of the filter from passband to rejec-
tion is limited by the diffraction limit of the field A(X, Y).
For a circular aperture of diameter D, the FWHM of the
Airy disk is at radius 0.5l/D. This means that the pupil
size prevents phase errors at spatial frequencies from

Fig. 1. Illustration of how the spatial filter works, for a very-
large-amplitude $cos@2py(0.6/d)#% phase aberration. Top, mag-
nitude and phase of the field at the pupil plane, linear scale.
Middle, magnitude of the field at the focal plane, inverse log
scale. Note the large lumps at multiples of the frequency loca-
tion 0.6/d on the sides. The black square is the field-stop edge.
Bottom, magnitude and phase in the next pupil plane, same lin-
ear scale as top row. The magnitude is slightly reduced, owing
to the amount of light rejected at the field stop. The phase is
mostly cleaned up, though not entirely.
(1/2d 2 1/2D) to 1/2d from being cleanly passed and er-
rors from 1/2d to (1/2d 1 1/2D) from being cleanly re-
jected. For a high-order system this transition region is
very small: 64 subapertures across the pupil results in
nonideal behavior in the region of 1/2d 6 0.0156
3 1/2d, or 61.56% of the range.

A final note on the expansion of the field is worth mak-
ing. We can examine the PSF in terms of A(X, Y) and
F(X, Y). The PSF is simply the squared magnitude of
the field. This produces a matrix of terms, which have
been explored in detail.4,5 For our present purposes, the
most important term is uA(X, Y)* F(X, Y)u2, which is la-
beled the second-order halo term. This is simply the
PSD of the phase f(x, y) when the phase is windowed by
the aperture a(x, y). This should be the dominant con-
tributor to the halo of the PSF, especially when the aper-
ture is apodized. Here we see the direct, though approxi-
mate (since many higher-order terms have been
neglected), relationship between the PSD and the PSF.
This result will be examined in more detail in the follow-
ing sections.

B. Performance Characteristics
On the basis of the above analysis, the SFWFS will be-
have as a nonideal low-pass filter. Except when very
close to 1/2d, a HSF phase aberration produces scattered
light that is cleanly and virtually completely rejected.
The filter does not fully pass a LSF phase, however, be-
cause of the lumps that appear at multiples of the char-
acteristic frequency, as shown clearly in Fig. 1.

This fundamental nonlinearity is due to the way the
field is formed and places a limit on SFWFS performance.
Consider a phase aberration perfectly band limited to
1/2d. For low amounts of power, nearly all the scattered
light is contained within the l/2d radius of the field stop.
As the phase power increases, the scattered light begins
to bleed outside this area. By the time the phase aber-
ration is large (i.e., typical of open-loop atmospheric tur-
bulence), the phase has bled out to at least twice the size
of the field stop. Figure 2 compares the fields in the focal
plane as generated by two distinct components of full r0
5 20 cm atmospheric turbulence: the ideal LSF portion
and the ideal HSF portion. The LSF component is dra-
matically bled over the field stop. The HSF component is
almost entirely contained in the region outside the field
stop.

This bleeding has a significant practical impact on the
effectiveness of the spatial filter. When a pure LSF
phase aberration is passed through the stop, the light
scattered out beyond l/2d is rejected. When this new
field, which equals zero outside l/2d, is propagated back
to the pupil plane, the phase aberration gains HSF con-
tent. This new HSF content is necessary to form a field
that is zero outside the field stop. In the opposite sce-
nario, when a pure HSF phase aberration is passed
through the stop, virtually no HSF phase aberration re-
mains after filter. In short, the SFWFS rejects all the
HSF phase components of the true aberration. The large
amount of power in the LSF components cause new HSF
phase aberration to appear after the field stop. In the at-
mospheric case, this level of HSF power is lower than in
the original phase aberration but is still significant. The
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best way to reduce this bleeding, and to improve the re-
jection of HSF phase power by the SFWFS, is to run the
AO system in closed loop. In closed-loop operation, the
total LSF power is significantly reduced, mitigating the
bleeding phenomenon to a substantial degree.

C. System Size and Pupil Illumination
The size of the WFS subapertures (the sampling interval)
and the wavelength of light set the size of the field stop.
For a fixed aperture size, as the number of subapertures

Fig. 2. Magnitude of the field at the field stop for r0 5 20 cm
atmospheric turbulence. The field out to 2l/d from the center is
shown, inverse log scale. The field-stop cutoff edge is shown by
the black square. The atmospheric phase aberration was split
into ideal low-pass and ideal high-pass components at the spatial
frequency 1/2d. Top, field due to the low-frequency portion,
which bleeds significantly out beyond the field stop. Bottom,
field due to the high-frequency portion, which scatters light al-
most exclusively beyond the field stop. This bleeding leads to
reduced spatial filter performance, which is ameliorated by
closed-loop AO operation.
decreases, the field stop gets smaller. For the spatial fil-
ter, this has two important consequences.

First, the size of the atmosphere-degraded spot can be
on the order of the field-stop size. If the spot is signifi-
cantly larger than the field stop, large amounts of light
will be removed from the system. This results in a lower
overall signal-to-noise ratio. A reasonable case is r0
5 20 cm on an 8-m telescope with WFS at l 5 800 nm.
If the AO system has 32 subapertures (d 5 25 cm) across
the aperture, the SFWFS will pass only 64% of the total
light, measured as total magnitude of the pupil function
in the pupil plane. Increasing the system size to 48 sub-
apertures (d 5 16.7 cm) increases this throughput to
81%. A 64-across system (d 5 12.5 cm) has throughput
of 92%. These numbers will improve in closed loop, ow-
ing to the suppression of the bleeding. A typical AO-
corrected case for D 5 8 m would see throughputs of 32
subapertures, 87%; 48 subapertures, 93%; 64 subaper-
tures, 96%. Note that this throughput affects only the
WFS leg of the system.

The second problem that occurs is peculiar to small
field stops. When the phase aberration is large and the
field stop is small (approximately d > 1.5r0) the loss of
light results in significant fluctuations in field magnitude
across the pupil. In extreme cases, portions of the pupil
can have as little as 20% illumination. This means that
some Shack–Hartmann lenslets will not be able to make
correct phase measurements. The primary reason for
this is that the low field amplitude leads to a low number
of received photons and hence a lower level of signal in
that subaperture. A secondary effect is that variations in
field intensity in a subaperture can lead to spots of abnor-
mal shape, which reduces centroiding accuracy.

3. SIMULATION DETAILS
A. Strategy
In even the simplest cases the integrals describing the fil-
tering process do not have closed form. We have there-
fore relied on numerical techniques to estimate SFWFS
performance. There are two key issues to be addressed.
First, how well does the SFWFS reject HSF phase power?
Second, when integrated into an AO system, how does
this translate into a reduction in aliasing error?

This first question is addressed by studying the SFWFS
in isolation. Phase aberrations of specific PSDs are fil-
tered, and the phases before and after the SFWFS are
compared. This allows a direct measurement of how ef-
fective the filter is. As shown above, the spatial filter
performs poorly when there is substantial power at low
spatial frequencies; it is important to verify and charac-
terize this behavior.

The second question is addressed by incorporating the
spatial filter into a complete closed-loop end-to-end AO
simulation. This provides an estimate of how phase-
rejection performance translates into aliasing-
suppression performance. Furthermore, it allows com-
parison of phase residuals and PSFs of regular WFS and
SFWFS operation.

B. Numerical Methods
The spatial filter is simulated with Fourier optics. Given
a complex field (which contains the phase aberration) in
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the pupil plane of the telescope, the field is Fourier trans-
formed to the focal plane. The field stop is then applied,
which makes the field zero outside the edge of the stop.
The field is then Fourier transformed back to the pupil
plane. Phase unwrapping is conducted, if necessary.
For examination of the filter alone, the phase of the field
is analyzed. In the end-to-end simulation (see below),
the field is then passed along the WFS.

Twice-Nyquist sampling of the PSF is used. The use of
8 3 8 samples per subaperture in the pupil plane results
in a maximum spatial frequency of 4/d for the phase.
The input phase can be either a deterministic signal or a
realization of noise from a specific PSD. In both cases
the spatial-frequency content of the phase signals before
and after the field stop are analyzed and compared. Do-
ing so correctly can be a fairly subtle endeavor. For a de-
tailed discussion of the spectrum estimation issue, see a
standard text such as Ref. 10.

The are two key steps to estimating the filter response.
First, the frequency content of the signals must be deter-
mined. Second, these PSDs need to be used correctly to
estimate the filter response. In all cases we seek to ana-
lyze the phase only within a circular aperture (see Fig. 1).
Simply Fourier transforming the apertured phase directly
leads to artifacts, which include substantial leakage of
power from its true frequency to other frequencies. This
is conceptually similar to the diffraction of light from the
core to large radii in a PSF when the aperture is hard
edged. These artifacts are substantially reduced with
use of a radially symmetric Blackman window. The for-
mula for this window is, with use of the variable r 5 (x2

1 y2)1/2,

b~r ! 5 0.42 2 0.5 cosF2pS r

D
1

1

2 D G
1 0.08 cosF4pS r

D
1

1

2 D G , (6)

for uru , D/2 and equal to zero elsewhere. This produces
a window that smoothly tapers off to zero at the edge of
the aperture. This window greatly reduces leakage but
at the cost of lowering the resolution of the PSD estimate.
Again drawing a parallel with optics, this is similar to the
fact that apodization of a pupil leads to both suppressed
diffraction and a broader core of the PSF. The output
PSDs can have a very large dynamic range, and even
given the leakage-suppressing window, some artifacts do
still occur. We have carefully determined when leakage
obscures the true dynamic range of the PSD and noted
this in the text and figures.

In the deterministic case, we have direct access to the
Fourier transforms of the input and output signals. The
filter response function H is simply the ratio of output to
input. The magnitude squared uHu2 of the filter is then
determined from the complex response. For the stochas-
tic case we estimate the PSDs of the input and output
phase random processes over many realizations with the
averaged modified periodogram method. The peri-
odogram is the magnitude squared of the discrete Fourier
transform of the random signal. The term ‘‘modified’’ re-
fers to the fact that the signal is windowed, in our case by
multiplication with the Blackman window. The peri-
odograms are averaged over many independent realiza-
tions of the noise to produce the averaged modified peri-
odogram estimate of the PSD of the random process. The
magnitude squared uHu2 of the filter response is then ob-
tained directly by the ratio of the estimated PSDs of the
output and input processes. We confirmed the efficacy of
this method by estimating the PSD of the input noise and
comparing it with the known PSD used to generate the
noise.

After analyzing the SFWFS alone on inputs of different
types of noise, we integrate the filter into our end-to-end
AO simulation code. AO is applied to static phase errors
with no noise to isolate the effects of the AO control sys-
tem on the output phase of the spatial filter. The base-
line design for this is based on a proposed high-order AO
system for direct imaging of extrasolar planets.6 In this
case we chose the upper end of the number of subaper-
tures, with D/d 5 62 across a 10-m mirror. The phase
aberration is assumed to be pupil conjugate, and the field
at the pupil is created from the aperture function and the
phase aberration. This field is sent through the spatial
filter code (see above) and then on to the WFS. The WFS
is a Shack–Hartmann with 4 3 4 pixels per subaperture.
WFS detector pixel values were created with Fourier op-
tics, and the slope was estimated with a centroid calcula-
tion. No Poisson or read noise was added to the pixels on
the WFS. The WFS nominally uses 800-nm light.
Given the WFS measurements, the phase estimation was
done with the Fourier transform reconstructor,11 and the
commands to send to the DM were determined by one-
pole control with gain 0.3 and integrator 0.999. The cor-
rection was applied to the DM (which has an influence
function of a sinc function times a Gaussian) and then to
the phase aberration with a single-step delay.

The simulation was run until the error reached a
steady state. This residual contains fitting error and
aliasing error (when the SFWFS is not used) but does not
capture WFS noise error or temporal errors due to phase
evolution. Because the SFWFS does not perform as well
when there is significant LSF power (see above) a single-
step correction of the phase aberration will not fully cap-
ture the performance enhancements that it provides.
This multistep approach was done solely to reduce open-
loop power to closed-loop levels in a self-consistent man-
ner.

After loop convergence the residual error of the system
was compared with the input phase to reveal how well the
AO system corrected inside the 1/2d cutoff. In this case
the comparison is between regular WFS operation and
the SFWFS. The PSDs of the residual phases and the
PSFs generated from these residuals are compared. Dif-
fraction must be suppressed, so the pupil is apodized by
using the Blackman window as the aperture in PSF gen-
eration. Use of the same function for both windowing
and apodization allows easy comparison of the PSFs and
PSDs. The science wavelength is 1.6 mm.

4. VERIFICATION OF THE BLEEDING
EFFECT
The preceding analysis has shown that when large
amounts of power are present at low spatial frequencies,
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the filter suppression of HSF power will be poor. To
verify this, we conducted simulations of the SFWFS by
using random realizations of input phase based on atmo-
spheric turbulence. To generate the phase realizations,
we used the spectral factor method for generating von
Kármán turbulence.12 In particular, the shaping filter in
this case is proportional to

r0
25/6~ fx

2 1 fy
2!211/12, (7)

where r0 is the atmospheric coherence length and the fil-
ter has radial symmetry. Realizations were produced by
filtering white noise through the appropriate shaping fil-
ter.

For this trial, r0 5 20 cm (at 500-nm wavelength) was
used for a 10-m telescope with 32 subapertures across the
pupil. In open loop, the SFWFS reduced HSF power by
less than a factor of 10. See Fig. 3, where the solid curve
is this filter response.

To test the supposition that simply reducing LSF power
will improve filter performance, we reduced LSF power as
if AO had been applied. We did this by modifying the at-
mospheric PSD by a parabolic filter up to 1/2d to simulate
AO correction.13 The maximum power reduction due to
AO for this case was 1000 times for the lowest spatial fre-
quencies. Such a filter was used to show clearly the ef-
fects of reducing the phase power, without any added
complications of using a full simulation on an AO system.
This allowed isolation of the SFWFS from the effects of
the AO component models.

Given this new PSD for closed-loop AO, the filter per-
formance was again examined. The improvement in per-
formance is dramatic. Curves for closed-loop SFWFS
performance are shown in Fig. 3 for 15, 20, and 25 cm r0 .
In all the AO-corrected cases the performance is drasti-
cally better. In closed loop the filter suppresses HSF
phase power by a factor of 103 to 107, with slight varia-
tions given r0 . The numerical limit imposed on the esti-
mate by the windowing and dynamic range of the PSD is
shown as the ‘‘numerical limit’’ curve in the figure.

Fig. 3. Response of the spatial filter to atmospheric turbulence,
as a ratio of input and output phase power spectra at the spatial
filter. For open-loop operation, the filter performs poorly.
Closed-loop operation was simulated by application of a parabolic
filter to the input phase. For r0 ranging from 15 cm to 25 cm (at
500 nm), the filtering suppresses HSF phase by a factor of 103 to
107. As LSF power is reduced, either by AO or by an increase in
r0 , the performance of the spatial filter improves.
5. SPATIALLY FILTERED WAVE-FRONT
SENSOR INTEGRATED WITH ADAPTIVE
OPTICS PERFORMANCE
Numerical simulations, as described above, have estab-
lished that in open loop, SFWFS performance can be poor.
But in closed loop, the SFWFS achieves rejections of HSF
phase power by factors of greater than 103. In this sec-
tion we examine whether the SFWFS can still achieve
these levels of performance when integrated in a reason-
able end-to-end AO simulation. We consider the atmo-
spheric turbulence case discussed above as well as the
case of a segmented primary mirror with phase disconti-
nuities.

A. Segmented-Primary-Mirror Phase Aberration
A segmented primary mirror (or ‘‘primary’’) provides an
interesting test case for the spatial filter. Edge disconti-
nuities between the segments (due either to phasing or in-
ternal segment shape aberrations) have significant high-
frequency content. These aberrations are static or quasi-
static, perhaps changing slowly as a result of flexure.
Because they persist, the aliased phase errors from the
segments will fundamentally limit the sensitivity of the
PSF. For our simulations we have created a reasonable
model based on the actual errors of the segmented pri-
mary mirror of the Keck telescopes.14

For this model we use the same hexagonal segment ge-
ometry as in the Keck. Each segment has internal aber-
rations, primarily from focus and astigmatism, but also a
slight dimpling in the center that has been measured ex-
perimentally on real segments.15,16 The segments also
have a small amount of tip and tilt. These phase aber-
rations produce an average rms surface error of 60 nm on
each segment. The segment edges do not line up cor-
rectly. On the basis of experimental analysis,14 the set of
78 edge-height differences between the center of the seg-
ment edges in the pupil has an rms value of close to 80
nm, with a maximum difference of magnitude of ;170
nm. This profile for the edge differences is consistent
with the simulation results. Accounting for the factor of
2 in the phase error due to reflection off the primary, the
rms phase error across the entire mirror surface is 110
nm. This amounts to a Strehl ratio at the science wave-
length (1.6 mm) of 0.83 and a Strehl ratio at the sensing
wavelength (0.8 mm) of 0.47.

B. Segmented Primary Mirror with Adaptive Optics
The same phase aberration was studied for a varying
number of subapertures, with sampling adjusted appro-
priately. In the first step of correction, the SFWFS did
poorly at reducing the phase power at HSF. As shown in
Fig. 4 by the light dotted curve, the response of the SF-
WFS to the segmented-primary-mirror phase error is
slight. (The response is obtained from the discrete Fou-
rier transform of a single deterministic signal, hence the
fluctuations in the curve.) After letting the end-to-end
AO simulation converge (see above for more details) the
performance of the SFWFS improved dramatically, as ex-
pected. For all three cases (30, 50, and 62 subapertures
across the 10-m primary) the HSF phase power was sup-
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Fig. 4. Response of the spatial filter to segmented-primary
phase errors, as a ratio of input and output phase power spectra
at the spatial filter. For open-loop operation, the filter performs
poorly. End-to-end closed-loop AO operation with no noise (for a
varying numbers of subapertures D/d 5 30, 50, and 62) results
in significantly better spatial filter performance.

Fig. 5. Comparison of regular WFS with SFWFS after end-to-
end AO simulation (D 5 10 m, d 5 16 cm, D/d 5 62). The
input-phase aberration is a static segmented-primary-mirror er-
ror of 110 nm rms, and there is no WFS noise. (a) PSD compari-
son. Reduction of aliasing results in 250 times less power in the
controllable range in the phase residual. (b) PSF comparison
(radial average, diffraction suppressed). This becomes a reduc-
tion of PSF intensity in the basin by a factor of 50.
pressed by a factor of 104 to more than 108. This shows
that in this case the AO components do not limit the SF-
WFS performance.

Using the end-to-end AO simulation, we produced a re-
sidual phase. The PSDs of the two residuals are shown
in Fig. 5(a). The prevention of aliasing results in 250
times less residual phase power at LSFs. The residual
phase is converted into a PSF by use of apodization to
suppress diffraction (see above for details). The PSFs
generated by the two residuals are compared directly in
Fig. 5(b). The basin is formed in the PSF by the SFWFS,
as expected. The intensity in the basin is up to 50 times
lower than in the regular WFS case.

C. Atmospheric Turbulence with Adaptive Optics
To confirm that the closed-loop operation on full atmo-
sphere is likely to work, this case was tested in the end-

Fig. 6. Comparison of regular WFS and SFWFS after end-to-
end AO simulation (D 5 10 m, d 5 16 cm, D/d 5 62). The
input-phase aberration is static 20 cm r0 atmospheric turbu-
lence, and there is no WFS noise. (a) PSD comparison. Reduc-
tion of aliasing results in 625 times less power in the controllable
range in the phase residual. (b) PSF comparison (radial aver-
age, diffraction suppressed). This becomes a reduction of PSF
intensity in the basin by a factor of 100. The gain in perfor-
mance in this case is larger than that in the segmented-primary-
mirror case (Fig. 5), because there is more power to prevent in
HSF aliasing.
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to-end AO simulation. The same system parameters as
in the segmented-primary case were used, except that the
phase aberration was static atmospheric turbulence with
r0 5 20 cm. After AO operation, the residuals both with
and without the SFWFS were compared. As shown in
Fig. 6(a), use of the SFWFS to reduce aliasing leads to a
625-times reduction in power at LSFs. The radially av-
eraged PSFs, as shown in Fig. 6(b), exhibit the same dif-
ferences as in the segmented-primary-mirror case. In
this case the basin has intensity reduced by a factor of
100 out to the control limit set by 1/2d.

6. LIMITS ON PERFORMANCE WITH
ADAPTIVE OPTICS
The results in the two sections above show how very ef-
fective the SFWFS can be at reducing phase power and
PSF intensity due to scattered light. The exact perfor-
mance, however, is dependent on the metric used. Direct
examination of the phase PSDs before and after the filter
show that reductions up to 108 in HSF power can be
achieved (see Figs. 3 and 4). Comparisons of the phase
residuals after closed-loop AO operation with and without
the SFWFS demonstrate up to a 625-times reduction in
power at LSFs, which is a significantly lower level of im-
provement [see Figs. 5(a) and 6(a)]. Finally, the conver-
sion of those phase residuals to PSFs reduces the im-
provement even more, to a factor of only 50 to 100 times
[see Figs. 5(b) and 6(b)].

The first difference is between the phase rejection at
HSF as seen by the SFWFS and the level of LSF correc-
tion after measurement and correction with an AO sys-
tem. In the aliased AO case, the uncorrected power at
HSF (which is aliased in to LSF) is comparable with the
LSF residual. In the SFWFS case, the power at HSF is
so low that any aliasing that occurs is negligible com-
pared with the LSF residual. The exact level of the LSF
residual is due to the AO system itself. Despite the simu-
lation being noise free, it does capture the effects of the
Shack–Hartmann WFS spot formation and centroiding,
the phase reconstruction, and the DM response. These
factors, combined with the control loop, lead to the limit
on correction of LSFs. In this simulation the system per-
formance is solely AO limited, not SFWFS limited.

The second discrepancy is between the performance im-
provement in the residual PSD and in the PSF. In both
the atmospheric-turbulence and segmented-primary
cases, the SFWFS gives less of an improvement in the
PSF than it does in the PSD. This loss of performance is
due to the process of PSF formation. In the aliased WFS
case, where the residual power at LSF is comparable with
that at HSF, the approximation that the PSF halo equals
the PSD is a very good one. The second-order halo term
uA(X, Y)* F(X, Y)u2 is exactly the PSD since we used the
Blackman window for both PSD estimation and pupil
apodization. This term dominates the PSF in the halo.

However, as Figs. 5 and 6 show, when the SFWFS is
used the PSF basin is not as low as would be expected on
the basis of the PSD. The source of the extra light in the
basin is a fourth-order term in the PSF expansion:
uA(X, Y)* F(X, Y)* F(X, Y)u2. This was determined by
analyzing the individual terms in the PSF expansion and
determining the overall contribution of each to the true
PSF. This higher-order term becomes visible because of
the significant difference in power between the LSF and
HSF zones. The convolution of F(X, Y) causes phase
power from beyond the controllable region to move in to
the controllable region of the basin, where it can be larger
than the second-order halo term.

The above may be a special case that contradicts the
assertion4 that the second-order halo term places the ul-
timate limit on sensitivity of the PSF. The behavior of
the fourth-order term is similar in origin to a phenom-
enon noted by Give’on and Kasdin.17 We are currently
investigating the fundamental limits imposed by the
fourth-order term and mitigation strategies. The Black-
man window produced answers virtually indistinguish-
able from the Kaiser window, which is the approximation
to the mathematically optimal window.10 The optimality
rests on the assumption of no phase errors. It is possible
that the optimal apodization for the AO with SFWFS re-
sidual is different.

7. BROADBAND WAVE-FRONT SENSING
The most realistic configuration for the WFS is that it
uses a range of wavelengths of light to do wave-front
sensing. This poses a challenge for the SFWFS, since the
structure of the field is directly dependent on the wave-
length of the light forming the field.

Suppose a band of light is used, from shortest wave-
length ls to longest wavelength l l . For simplicity, the
spectrum of the AO guide star in the band is assumed to
be uniform. A nonuniform spectrum will simply change
the degree, but not the location, of the performance deg-
radation. The field stop in the SFWFS is designed for a
wavelength l f , which is as yet unspecified but is inside
the band. The short ls light will form a field that is nar-
rower than that of the filter wavelength. The field stop
will now let in spatial frequencies up to (l f /ls)/2d. This
unwanted HSF content will be aliased into the wave front
but only over a small range of spatial frequencies. Alias-
ing will occur down to (2 2 l f /ls)/2d. For the long l l
light, the field stop will be undersized and will have a
limit of (l f /l l)/2d. The top wavelength light will be
missing information at the high end of the LSF range.

Both of these properties reduce AO performance in the
range of frequencies close to 1/2d. If the goal is to mini-
mize the zone where phase information is corrupted by ei-
ther suffering from aliasing or missing information, the
best wavelength l f for which to design the filter is
2lsl l /(ls 1 l l). This will give an effective cutoff for the
filter of 2ls /(ls 1 l l) times the 1/2d desired cutoff.

To demonstrate this performance, we ran complete
multiwavelength closed-loop AO simulations on the
segmented-primary-mirror case. Five wavelengths span-
ning the band from 700 to 900 nm were used in the simu-
lation. The field stop was set for the average wavelength
of 800 nm. On the basis of the above analysis, we would
expect aliasing to affect the phase down to 0.857/2d; in-
formation will be missing down to 0.889/2d. This trans-
lates into a PSF that should degrade in quality at 0.876
arcsec, in contrast to the monochromatic case, where deg-
radation occurs at 1.0 arcsec. As shown in Fig. 7, the
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PSF when sensed with broadband light has this pattern
of increased error near the cutoff.

Broadband light with the SFWFS produces a small
area of reduced performance that is confined to a region
just inside the cutoff frequency 1/2d. The size of this
area is determined by width of the band and the exact
wavelength of light for which the field stop is designed.
Care must be taken not to make the band too broad: A
band from 500 nm to 1 mm would have, in the best case,
an improved area in the PSD and PSF only two thirds as
far out from the core as the monochromatic case.

8. MODIFICATIONS TO BASIC FILTER
DESIGN
There are several details of implementation of the SF-
WFS that could be modified. In this section we focus on
changing the shape of the pupil as seen by the SFWFS
and on changing the shape of the edges of the field stop.

Changing the shape of the pupil as seen by the filter is
the most obvious choice, as diffractive effects are clearly
visible in the field at the stop (see Fig. 1). However, the
bleeding of the field out beyond the cutoff imposed by spa-
tial frequency is not due to diffraction—it is due to the
field-formation process. So apodization of the pupil will
not help in this regime. Where it will help is when the
overall phase power is low. Suppressing diffraction will
then reduce leakage from HSF content back inside the
field stop and improve suppression.

Simulations with the cases of both full atmospheric tur-
bulence and AO-corrected atmosphere confirm the above
finding. A slight smoothed-edge apodization of the pupil
was used. For any reasonable r0 , pupil apodization
makes no difference in the open-loop atmosphere case.
In the AO-corrected case, improvement in rejection was
seen for large r0 , corresponding to 40 nm or less of total
rms phase error. Apodization appears to be helpful only
in cases where overall phase aberration is already quite
small.

Fig. 7. Comparison of monochromatic (800 nm) and broadband
(700–900 nm) SFWFS after end-to-end AO simulation (D
5 10 m, d 5 16 cm, D/d 5 62). Same segmented-primary-
mirror errors as in Fig. 6. PSFs (radial average, diffraction sup-
pressed) are shown. The only significant difference in PSFs oc-
curs just inside the spatial-frequency cutoff, where the
broadband case has increased error owing to both aliasing and
incomplete sensing of frequencies near the cutoff.
A second option to reduce diffractive effects is to
apodize the field stop itself. The only significant effect of
smoothing the edge transition, however, is to make the fil-
ter transition from passband to rejection less sharp. In
no scenario did apodization of the field stop improve per-
formance.

9. CONCLUSIONS
Detailed analysis with the help of Fourier optics simula-
tions has shown that the spatially filtered WFS can sub-
stantially improve the performance of an AO system over
a specific range of spatial frequencies, resulting in an im-
proved PSF with higher sensitivity. The PSF will have a
dark basin in the controllable region that has been
cleaned out as a result of the removal of aliasing. The
field stop very effectively cuts off phase aberrations be-
yond 1/2d in frequency. Significant low-spatial-
frequency power, however, can reduce filter performance.
Owing to the nature of field formation, power from low-
spatial-frequency phase aberrations bleeds out beyond
the field stop and is converted into high-spatial-frequency
power. This behavior places a limit on the effectiveness
of the spatial filter when there is a significant amount of
low-spatial-frequency power, i.e., in open loop. Closed-
loop performance, however, solves this problem and pro-
duces substantial high-spatial-frequency power rejec-
tions. For both full atmospheric turbulence and a
segmented primary mirror, the SFWFS can achieve sup-
pression of phase power past 1/2d by 103 to 108. When
integrated into a full noise-free end-to-end AO simulation,
this translates up to a 625-times reduction in phase
power in the area affected by aliasing. With the use of
apodization, improvements of up to a 100-times reduction
in intensity can be obtained in the basin of the PSF. The
broadband WFS case has been analyzed. It has been
confirmed through simulation that the broadband of light
will reduce the practical cutoff frequency of the spatial fil-
ter, leading to smaller regions where full performance
benefits are obtained.

On large telescopes, small AO systems (e.g., those with
fewer than 16 subapertures across the pupil) may benefit
only slightly from use of the SFWFS. The proposed
4096-actuator eXtreme Adaptive Optics Planet Imager,6

however, will implement a spatial filter. In a future pa-
per, the authors will explore the effects of this approach
on high-contrast imaging sensitivity.
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