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Abstract: This study focuses on the impact of the cosmological constant on hyperbolically symmetric
matter configurations in a static background. I extend the work of Herrera et al. 2021. and describe
the influences of such a repulsive character on a few realistic features of hyperbolical anisotropic
fluids. After describing the Einstein-Λ equations of motion, I elaborate the corresponding mass
function along with its conservation laws. In our study, besides observing negative energy density,
I notice the formation of a Minkowskian core as matter content is compelled not to follow inward
motion near the axis of symmetry. Three families of solutions are found in the Λ-dominated epoch.
The first is calculated by keeping the Weyl scalar to a zero value, while the second solution maintains
zero complexity in the subsequent changes of the hyperbolical compact object. However, the last
model encompasses stiff fluid within the self-gravitating system. Such a type of theoretical setup
suggests its direct link to study a few particular quantum scenarios where negative behavior of
energy density is noticed at the Λ-dominated regime.

Keywords: complexity; self-gravitating systems; anisotropy; non-spherical sources; interior solutions

1. Introduction

General relativity (GR) is a very remarkable and astonishing theory that has resolved
many issues since its birth. It is considered a pillar of modern physics and has revolu-
tionized the understanding of the universe. The gravitational red shift, precession of the
perihelion of Mercury, and light bending by the Sun are predicted by GR. Although it is no
exaggeration to say that GR is the most successful theory, many issues are still unresolved.
Some of the most important unresolved issues are the localization of energy and the singu-
larity problem, etc. In addition, the most fundamental and fascinating theoretical problem
of the 21st century is considered to be the current accelerating expansion of the universe or
dark energy problem. Initially, Einstein believed that the universe is neither expanding nor
contracting but static. In order to show this behavior of the universe, Einstein modified the
field equations by adding a cosmological constant, “Λ”. Later on (1929), Hubble performed
an experiment on more than twenty galaxies and observed that light coming from these
galaxies is red-shifted, which shows that the universe is expanding. After this, Einstein
admitted that his idea of the static universe was the largest blunder of his life. Consequently,
he removed Λ from the field equations.

Recent observations of astrophysics and modern cosmology, such as cosmic mi-
crowave background radiations, supernovae surveys, and large-scale structures of our
universe [1–4], indicate that, at present, the universe is expanding with acceleration. The
energy composition of the universe was found to be 4.9% of ordinary baryonic matter, 26.8%
of dark matter (DM), and 68.3% of dark energy (DE). The description provided by GR may
need to be modified to understand these observational data. There are several approaches
to describe the cosmic acceleration, among which the inclusion of the cosmological constant
in Einstein’s field equations is one of the primary models used for this purpose. The term
DM means a form of matter that is unknown and cannot be deducted by its radiation but
the gravitational force is exerted by it. Dark energy refers to unknown energy and an exotic
substance having large negative pressure. The cosmological constant is the primary and
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most relevant candidate of DE, which provides the most reasonable explanation of the
universe. The notion of Λ could be used to explain the inflationary era in the early universe.

Bowers and Liang [5] established a framework to study the effect of anisotropy on
self-gravitating stars by the observer. Herrera and Santos [6] considered the radial per-
turbation approach to analyze a few properties of anisotropic self-gravitating spheres. Di
Prisco et al. [7] found little but continuous variation in pressure anisotropy during the
phenomenon of cracking of the relativistic celestial spherical bodies. Abreu et al. [8]
checked the impact of local anisotropy on the existence of matter distributions in GR after
its departure from the state of equilibrium. They also analyzed the stability of stars with the
help of tangential and radial sound speeds. Bhar et al. [9] performed theoretical analysis on
static diagonally symmetric relativistic spheres in GR and found few stable stellar models
due to anisotropic pressure. Maurya and Govender [10] performed a physical analysis of
their calculated exact solutions in the formation of strange anisotropic stars. They found
anisotropic pressure as an additional force in sustaining the star’s stability against cracking.

Morales and Tello-Ortiz [11] calculated a few anisotropic solutions for the relativistic
spherical structures. After performing stability tests, they inferred that their anisotropic
solutions are well-behaved and well-posed. Chanda et al. [12] found that static irrotational
stellar models can be described well if such systems have a high level of anisotropic stresses
around the central region. Yousaf et al. [13–16] performed mathematical modeling of
radiating and non-radiating matter configurations in an environment of unequal principal
stresses and found stable fluid configurations under specific parametric choices. Raposo
et al. [17] described the modeling of anisotropic self-gravitating objects and found relatively
more massive and compact objects due to the presence of anisotropicity in pressure. Godani
and Samanta [18,19] found stable anisotropic wormhole solutions in modified gravity
through graphical representations. Gómez-Leyton et al. [20] explored a stable exact model
of locally anisotropic matter configurations. After computing a relation among anisotropic
pressure and matter variables, they found stable regimes for spherical stars.

Hyperbolically symmetrical spacetimes (HSS) are thought to be capable of explaining
many unresolved cosmological puzzles. Harrison [21] considered HSS and obtained the cor-
responding analytical models through the separation of variable method. Malik et al. [22]
described the distribution of hyperbolically symmetric matter over the cylindrical geometry
and presented a few numerical solutions after solving the corresponding differential equa-
tions. Gaudin et al. [23] calculated exact analytical models of the GR equation of motion
with massless scalar space and described a few characteristics of the hyperbolic metric
in a vacuum. Maciel et al. [24] explored locally isotropic solutions of interior spacetime
and claimed that such an incompressible spherical solution could be treated as a unique
one with a HSS background. Herrera et al. [25] presented a HSS version of LTB geometry
and explored its less complex exact solutions. Miguel [26] studied a few characteristics of
HSS and found the non-convex Cauchy temporal function for the conformal families of
solutions. Cao and Wu [27] considered the metric version of f (R) gravity and discussed
the occurrence of strong hyperbolicity under some specific gauge constraints. Recently,
Herrera et al. [25] carried out a brief study on HSS after calculating conformally flat and
zero complexity solutions. They also described the physical applications by adopting a
general approach in solving analytical solutions. Bhatti et al. [28] described conformally
flat solutions of HSS in static charged medium. Yousaf et al. [29] calculated the Tolman
mass of HSS and then explored the occurrence of core formation by taking the constant
energy density of the matter distribution.

Structure scalars are the scalars that are obtained from the orthogonal splitting of the
Riemann tensor introduced by Bel [30]. They are related to the fundamental properties
of the fluid directly. Timelike vectors are useful in order to perform orthogonal splitting
of a tensor, which gives rise to three tensors, namely Xµν, Yµν, and Zµν. The scalars
corresponding to these, i.e., YT , XT , Z, YTF, and XTF, are called structure scalars [31]. Here,
YT appears to be proportional to the Tolman mass density for systems in equilibrium [32,33].
It also controls the evolution of the expansion scalar; XT gives the energy density of the
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fluid and Z deals with dissipation fluxes for non-spherical systems. Because of these
scalars, it is easy to deal with complex systems (as compared to vectors and tensors).
This single tool deals with different aspects of the system, providing a lot of information
about the evolution of the system, e.g., shear and expansion evolution, inhomogeneity,
complexity, etc., can be dealt with through these structure scalars [34–36]. Yousaf and
his collaborators [16,37–41] computed the modified version of these scalars by invoking
extra curvature terms and described their influences in understanding the evolutionary
mechanisms of adiabatic and non-adiabatic relativistic structures. Herrera [42] introduced
a new concept of complexity factor in terms of one of these scalars for the static anisotropic
spherical objects. He concluded that YTF plays a role in the fixing of the complexity of
relativistic systems. Applications of these results were then provided for various cosmic
and stellar backgrounds, first by Herrera et al. [43–45] and then by their followers [46–48].

This paper aims to study the effects of the cosmological constant on HSS analysis
by following the procedure initially presented by Herrera et al. [25]. After describing
the metric as well as its gravitating source, I shall describe the total matter quantity of
the HSS through two well-known formalisms at the Λ-dominated epoch in Section 3. A
few important relations among these with the matter variables will also be specified in
the same section. Section 4 is devoted to the calculation of structure scalars from the
decomposition of the curvature tensor. Three different families of exact analytical models
will be established for Einstein-Λ gravity in Section 5. The last section will summarize our
results and discussions.

2. Spatially Hyperbolic Geometry and Matter Content

I assume two different types of boundary surfaces, i.e., external and internal ones. I
shall represent these with Ωe and Ωi, respectively. The hypersurface Ωe demarcates the
static anisotropic fluid with the external de Sitter vacuum spacetime, while Ωi keeps the
matter configuration from the central vacuole. This type of mathematical model gives rise to
the formation of the central Minkowskian cavity. Such types of cosmic configurations could
be effective to discuss cosmological voids and other aspects of mathematical cosmology.

I take the following form of line element as

ds2 = eλ(r)dt2 − eν(r)dr2 − r2dω2, (1)

where dω2 = dθ2− r2 sinh2 θdφ2, and metric variables are dependent on r only. I assume the
Eckart frame; this would keep the system’s fluid in a rest state. The above system is assumed
to be coupled with the locally anisotropic fluid, which can be written mathematically as

Tνµ = (µ + P)VνVµ − Pgνµ + Πνµ, (2)

where µ is the eigenvalue of the energy momentum tensor with respect to the eigenvector
Vν, P is the pressure, and Πνµ is the anisotropic tensor. These can be defined through the
projection tensor hνµ as

Πνµ = hβ
νhα

µ(Tβα + Phβα), P = −1/3× Tνµhνµ.

I take the following vacuum solution of the field equation outside Ωe with de Sitter–
Schwarzschild hyperbolic spacetime as

ds2 =

(
ΛC2

3
+

2M
C
− 1
)

dt2 −
(

ΛC2

3
+

2M
C
− 1
)−1

dC2 − C2dθ2 − C2 sinh2 θdφ2, (3)

where Λ, C, and M are the cosmological constant, radial distance, and constant mass,
respectively. I am interested in performing our analysis in the region 6M > 3C−ΛC3. It is
worth noting that the space inside the black hole horizon can be well discussed through
the above metric. However, the outer manifold to the black hole horizon can be described
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with the usual de Sitter–Schwarzschild metric. The matching of the above metric with
the interior fluid requires the fulfilment of the Darmois junction conditions [49]. These
conditions facilitate the smooth joining of both the exterior and interior manifolds at Ωe.
These constraints after calculations are found as below:

eλ Ω(e)
=

ΛC2

3
+

2M
C
− 1, eν Ω(e)

=
1

ΛC2

3 + 2M
C − 1

, Pxx
Ω(e)
= Λ. (4)

Next, I adopt the Bondi approach [50] to obtain HSS from the generic formulation
of the axial static symmetric manifold. I define the locally Minkowskian frame (LMF)
associated with the tetrad field as

dτ̆ = eν/2dt; dx̆ = eλ/2dr; dy̆ = rdθ; dz̆ = r sinh θdφ.

Here, I use the breve notation to indicate that the terms are estimated by an observer
residing in LMF. Then, the associated stress–energy tensor is described through principal
stresses Pyy, Pxx, Pzz, Pyx, and µ as follows:

T̆νµ =


µ 0 0 0
0 Pxx Pxy 0
0 Pyx Pyy 0
0 0 0 Pzz

.

Such a type of configuration is found to produce axially symmetric gravitational
geometry. It is noticed that the HSS experienced Pxx 6= Pyy = Pzz along with the null
contribution of Pxy. In the environment of the Minkowskian frame, the four vector are
defined as below:

V̆η = (1, 0, 0, 0), K̆η = (0,−1, 0, 0), L̆η = (0, 0,−1, 0), S̆η = (0, 0, 0,−1).

With the help of these vectors, one can elaborate the fluid distribution mathematically
as

T̆νµ = (µ + Pzz)V̆νV̆µ − Pzzηνµ + (Pxx − Pzz)K̆νK̆µ.

Thus, the back-transformation to (t, r, θ, φ) in LMF provides the following form of
matter content for HSS as

Tαξ = (µ + Pzz)VαVξ − Pzzgαξ + (Pxx − Pzz)KνKµ, (5)

where Vξ = (eν/2, 0, 0, 0), Kη = (0,−eλ/2, 0, 0) in the comoving reference frame and
Π = Pxx − Pzz. The smooth joining of locally anisotropic HSS matter content with the
Minkowski metric at the internal boundary can be dealt with using Darmois conditions [49].
These are found after a few calculations as below:

eν Ω(i)
= 1, eλ Ω(i)

= 1, m(t, r) Ω(i)
=

ΛC3

6
, Pr

Ω(i)
= Λ. (6)

Here, the matter content is compelled not to follow inward motion near the axis of
symmetry. This gives rise to a Minkowskian core.

Now, the equations of motion for Einstein-Λ gravity are described as

Gνµ ≡ Rνµ −
1
2

Rgνµ = κTνµ −Λgνµ, (7)

where R, gγδ, Rγδ are the Ricci scalar, gravitational potential, and the Ricci tensors, respec-
tively. These equations for the set of system (1) and (5) are found to be
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8π

(
ρ +

Λ
8π

)
= −1 + e−ν

r2 +
ν′e−ν

r
, (8)

8π

(
Pxx −

Λ
8π

)
=

1 + e−ν

r2 +
λ′e−ν

r
, (9)

8π

(
Pyy −

Λ
8π

)
=

e−ν

2

(
λ′′ − λ′ν′

2
+

λ′2

2
− ν′

r
+

λ′

r

)
. (10)

I shall use Pxx = Pr and Pyy = Pzz = P⊥ in the coming equations. The law of
conservation at the Λ-dominated regime for the static, locally anisotropic, relativistic
spherical interiors are found as below:

P′r +
λ′

2
(µ + Pr) +

2Π
r

= 0. (11)

The Misner-Sharp formalism [51] provides the following configurations of the mass
function:

m(r) =
r
2
(
1 + e−ν

)
, (12)

which can be rendered after using the field equation as

m(r) = −4π
∫ r

0

(
µ +

Λ
4π

)
r2dr. (13)

It is interesting to note from Equation (12) that the mass of the spatially hyperbolic
object is positive. In order to maintain this logic, one can deduce from the above equation
that the energy density should be negative. This leads to the breaching of weak energy
conditions by the HSS. To avoid negativity of energy density, I shall use µ instead of −|µ|
in our calculations. It follows from Equation (13) that

m(r) = 4π
∫ r

rmin

∣∣∣∣µ +
Λ
4π

∣∣∣∣r2dr.

Equations (9) and (12) give

λ′ = 2

4π
(

Pr − Λ
8π

)
r3 −m

r(2m− r)

. (14)

Upon making use of the above value, I obtain from Equation (11)

P′r +

4π
(

Pr − Λ
8π

)
r3 −m

r(2m− r)

(Pr − |µ|) +
2Π
r

= 0. (15)

This equation describes the state of hydrostatic equilibrium of the HSS within Einstein-
Λ gravity.

3. Active Gravitating Mass with Cosmological Constant

The well-known Weyl tensor can be written through its electric part, fluid four velocity,
and the Levi–Civita tensor (ηπλγδ) as

Cξνπλ = EβδVρVγ(gξνρβgπλγδ − ηξνρβηπλγδ),

where gξνρβ = gξρgνβ − gξβgνρ. The scalar associated with the electric part of the above
equation is calculated for the static spheres as
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E = −λ′′e−ν

4
− λ′2e−ν

8
+

ν′λ′e−ν

8
+

ν′e−ν

4r
− ν′e−ν

4r
− e−ν

2r2 −
1

2r2 . (16)

Thus, after making use of the equations of motion, Equations (12) and (16) give the
following form of the Misner-Sharp mass function:

3m
r3 = 4π

∣∣∣∣µ +
Λ
4π

∣∣∣∣+ 4πΠ− E . (17)

Equation (13), after using above expression, provides

E = 4πΠ +
4π

r3

∫ r

0

∣∣∣∣µ +
Λ
4π

∣∣∣∣′r3dr. (18)

Feeding back E from the above equation in Equation (17) gives

m =

∣∣∣∣µ +
Λ
4π

∣∣∣∣× 4πr3

3
− 4π

3

∫ r

0

∣∣∣∣µ +
Λ
4π

∣∣∣∣′r3dr. (19)

In this way, I have been able to relate the Misner-Sharp function with the system energy
density and cosmological constant. One can realize the effects of dark energy through Λ in
the static fluids from the above expression.

Now, I adopt another approach to calculate the quantity of matter ingredients of
the static relativistic compact bodies. In HSS, two types of boundary surfaces are likely
to appear. Therefore, at the outer surface, I can provide the generic formula for finding
the active gravitating matter quantity for HSS in the environment of the cosmological
constant as

mT =
∫ 2π

0

∫ π

0

∫ r

0
r2 sinh θe

ν+λ
2 (T0

0 − T1
1 − 2T2

2 )dr̃dθdφ,

which, after using the equations of motion at the Λ-dominated epoch, gives

mT = 2π(coshπ − 1)
∫ r

0
e

ν+λ
2 r̃2

(
−|µ|+ Pr −

2Λ
κ

+ 2P⊥

)
dr̃. (20)

Its solution is found as below:

mT =
cosh π − 1

4
λ′r2e

λ−ν
2 . (21)

After substituting the value of the metric coefficient from Equation (14), it follows that

mT =
cosh π − 1

2

[
4π

(
Pr −

Λ
4π

)
r3 −m

]
e

ν+λ
2 , (22)

thereby providing the repulsive nature (if 4πPrr3 −m < Λr3) induced by the gravitational
force within the locally anisotropic static metric. This also describes the importance of Λ
terms in the estimation of active gravitating static matter. Now, I wish to relate this mass
function in terms of the scalar corresponding to four acceleration (aν). One can easily check

aν = aKν with a = λ′e
−ν
2

2 . This can be re-expressed as

a =
2e
−λ
2 mT

r2(cosh π − 1)
.

The simultaneous use of Equations (20) and (22) provides
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m′T −
3mT

r
= −

(
cosh π − 1

2

)
r2e

ν+λ
2 (E + 4πΠ).

This is the first-order differential equation in mT . Its solution is found as below:

mT =
r3

Ωe
(mT)

r3
Ωe

+

(
cosh π − 1

2

)
r3
∫ rΩe

r
(E + 4πΠ)

e
ν+λ

2

r̃
dr̃.

This provides the expression of Tolman mass in terms of the cosmological constant,
tidal forces, and locally anisotropic pressure. The above equation after substituting E yields

mT =
r3

Ωe
(mT)

r3
Ωe

+

(
cosh π − 1

2

)
r3
∫ rΩe

r

[
8πΠ +

4π

r̃3

∫ r

0

∣∣∣∣µ +
Λ
4π

∣∣∣∣′ r̃3dr̃

]
e

ν+λ
2

r̃
dr̃. (23)

This relation has related Tolman spherical mass with the inhomogeneous energy
density with repulsive energy effects due to Λ terms and local anisotropic pressure. This
result reduces to GR upon substituting Λ = 0.

Herrera et al. [31,32] described the orthogonal decomposition of the curvature tensor
into two different tensorial objects. These can be found for our system in the context of the
cosmological constant as below:

Xαβ = ∗R∗αγβδVγVδ =
1
2

η
ερ

αγR∗ερβδVγVδ, (24)

Yαβ = RαγβδVγVδ, (25)

where R∗αβγδ, ∗Rαβγδ stand for the right and left dual of the curvature object. The trace (T)
and trace-less (TF) values of the above equations after using field equations become

XT = −8π

∣∣∣∣µ +
Λ
4π

∣∣∣∣, XTF = 4πΠ− E , (26)

YT = 4π(−
∣∣∣∣µ +

Λ
4π

∣∣∣∣+ 3P), YTF = 4πΠ + E . (27)

The second of Equations (26) and (27) after using E from Equation (18) turn out to be

XTF = −4π

r3

∫ r

0
r̃3
∣∣∣∣µ +

Λ
4π

∣∣∣∣′dr̃, (28)

YTF = 8πΠ +
4π

r3

∫ r

0
r̃3
∣∣∣∣µ +

Λ
4π

∣∣∣∣′dr̃. (29)

One can notice that XTF is trying to control the effects of the energy density inhomo-
geneity of the self-gravitating system in Einstein-Λ gravity, while the YTF not only takes the
effects of energy density but also the influences of pressure anisotropicity on the subsequent
changes within the static spherical bodies. The effects of pressure can be dealt with through
the trace-less parts of Equations (24) and (25) as

XTF + YTF = 8πΠ. (30)

Equations (20) and (23) transform the trace and trace-less components as follows:

mT =
r3

Ωe
(mT)

r3
Ωe

+

(
cosh π − 1

2

)
r3
∫ rΩe

r

YTF
s

e
ν+λ

2 ds, (31)

mT =
cosh π − 1

2

∫ r

0
s2YTe(ν+λ)/2ds. (32)
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The first of the above equations provides us with the means to study the non-complex
state of the system through Tolman mass. This equation has linked YTF with mT . Thus,
the combined analysis of Equations (29) and (31) states that YTF could be treated as a
complexity factor. The second of the above equations describes the direct connection of YT
with the gravitating passive static fluid mass of the relativistic system even in the presence
of Λ. This result is equivalent to the one obtained by Herrera et al. [25] in the absence of Λ.

4. Static HSS Fluids

In this section, I present an analytical solution of Einstein-Λ equations of motion for
the anisotropic HSS by following a general method presented by Lake [52] and Herrera
et al. [53]. The subtraction of Equation (10) from Equation (9) provides

8π(Pr − P⊥) =
1 + e−ν

r2 − e−ν

2

(
λ′′ +

λ′2

2
− λ′ν′

2
− λ′

r
− ν′

r

)
. (33)

To proceed forward for the sake of solutions, I define λ′
2 ≡ z− 1

r and a ≡ e−ν. After
this, the above equation becomes

a′ + a

[
4

r2z
+ 2z+

2z′

z
− 6

r

]
=

2
z

[
1
r2 − 8πΠ

]
.

This is a first-order partial differential equation in a. Its solution after substituting
back the definition of a gives

eλ(r) =
z2e
∫ (

2z+ 4
zr2

)
dr

r6
[

2
∫ {

z
(

1−8πΠr2

r8

)
e
∫ (

2z+ 4
zr2

)
dr
}

dr + C̄1

] . (34)

On can notice that the above model is presented in the form of two generating func-
tions (GF), i.e., z and Π. The corresponding matter variables for the locally anisotropic
HSS become

4π|µ| = m′

r2 −Λ, (35)

4πPr =
zr(2m− r)−m + r

r3 + Λ, (36)

8πP⊥ =

(
6m− 3r + Λr3

3r

)[
z′ +

1
r2 + z2 − z

r

]
+ z

[
m′

r
− m

r2

]
+ Λ. (37)

In the following subsection, I shall describe families of GR-Λ models for HSS under
some realistic backgrounds.

4.1. Conformal Flatness in HSS

When a Riemannian space is conformally related to a flat Riemannian space, it is
called a conformally flat spacetime. Thus, for a conformally flat spacetime, the Weyl tensor
vanishes equivalently, and every point has a neighborhood conformal to an open subset
of the Minkowski spacetime. As a result, a conformally flat spacetime possesses the local
conformal symmetry of the Minkowski spacetime, i.e., it has 15 independent conformal
killing vector fields. However, the global topology may not be the same as that of the
Minkowski spacetime. In order to present the solution of HSS in this context, I take E = 0.
Thus, Equation (16) becomes

1
2

∂

∂r

{
λ′e−ν

r

}
+

e−ν−λ

2
∂

∂r

{
λ′eλ

r

}
− ∂

∂r

{
1 + e−ν

r2

}
= 0, (38)
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which, after substituting a ≡ e−λ and ν′
2 ≡

ω′
ω , transforms Equation (38) into

a′ + 2

(
ω′′ − ω′

r + ω
r2

ω′ − ω
r

)
a+

2ω(
ω′ − ω

r
)
r2 = 0.

This is again a first-order differential equation, which gives

a = e−
∫

ξ(r)dr
(∫

e−
∫

ξ(r)drk(r)dr + C4

)
. (39)

After back-substitution, I obtain

λ′

2
− 1

r
=

eν/2

r

√
−1 + r2α1e−λ. (40)

In Equation (39), ξ and k are defined as

ξ(r) = 2
d
dr

[
ln
(

ω′ − ω

r

)]
,

k(r) =
−2ω(

ω′ − ω
r
)
r2 ,

while C4 is an integration constant, and α1 appearing in Equation (40) is also an integration
function. Its value after matching the interior region with de Sitter spacetime provides

α1 =
M(9M− 4r) + Λr4/3

r4 .

Equation (40) gives

eλ = α1r2 sin2

(∫ eν/2

r
dr + ζ

)
,

where

ζ
Ω(i)
= sin−1

r

{
2M

r − 1 + Λr2

3
M(9M− 4r) + Λr4/3

}1/2
− [∫ eν/2

r
dr

]
.

To proceed with our solutions, I take another constraint, i.e., Pr = 0, thereby consider-
ing the only non-zero component of pressure in the gravitating source of HSS. Against this
background, Equation (9) eventually provides

λ′ = −1
r

[
1 + eν

(
1 +

Λr2

8π

)]
. (41)

Upon using Equation (41) in Equation (16), the conformal flat model of our system
(after considering e−λ = 2g− 1) can be recast as

g
(

9g +
r2Λ
8π
− 4
)
− rg′

(
3g− r2Λ

16π
− 2
)
+

(
r2Λ
16π

)2

= 0. (42)

This is again a first-order differential equation. Its solution can easily be calculated
as below:

g =
∫ 4g

(
9g + r2Λ

8π − 4
)
+
(

r2Λ
16π

)2

4r
(

3g− r2Λ
16π − 2

) dr + C,
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where C is an integration function. By simultaneously making use of Equations (40) and (41),
one can find

eλ =
α1r2(2g− 1)(

3g + r2Λ
8π − 1

)2
+ 2g− 1

.

In this way, I have been able to find the unknown metric variable. Substituting this
into the corresponding Einstein-Λ equations of motion, I obtain structural variables as

|µ| =
24g(2g− 1) + r4Λ

κ2 + 2r2Λ
κ

16πr2
(

3g− r2Λ
16π − 2

) − Λ
κ

, P⊥ =
24g2 + r4Λ

κ2 + 2r2Λ
κ

32πr2
(

3g− r2Λ
16π − 2

) +
Λ
κ

. (43)

The associated GF are calculated as below:

z(r) =
Λr2 − g + 1

r(1− 2g)
, Π(r) = −

24g2 + r4Λ
κ2 + 2r2Λ

κ

32πr2
(

3g− r2Λ
16π − 2

) − Λ
κ

.

One can notice that the constraint g− 2/3 > 0 on the metric coefficient eλ will cause it
to lie in the positive region. This also distributes the system to occupy the minimum value
to the radial coordinate. Thus, the vacuum core can be expected to present within this HSS
at the hypersurface r = rmin even in the presence of the cosmological constant. It is worth
mentioning that this model describes the static solutions of conformally flat HSS, which is
assumed to be coupled with matter having only one non-zero component of pressure. This
model could be considered as a toy model for irrotational HSS cosmic bodies experiencing
zero tidal forces due to E = 0.

4.2. Non-Complex HSS Model

Not only for static but also in the non-static case, the structure scalar YTF has been
identified as the complexity factor in GR [42,43]. This result has also been found applicable
in various modified theories of gravity [46,47]. One can study the non-complex Bondi as
well as axially symmetric solutions by keeping YTF = 0 [44,45]. It is easy to understand
that such solutions are many in number, even in the presence of the cosmological constant.
In order to specify them in a particular area field, I take a constraint, i.e., Pr = 0. Thus,
Equation (9) yields

λ′ =
−2

r(2g− 1)

(
g− Λr

8π

)
, (44)

where g is the same as in the previous subsection. The zero complexity condition, i.e.,
YTF = 0, gives

mT
Ω(e)
= (mT)

( r
r

)3
. (45)

Equations (21), (44), and (45) provide

eλ Ω(e)
=

4m2
T(2g− 1)r4

r6
(

g + Λr2

16π

)2
(cosh π − 1)2

.

For the non-complex HSS isotropic matter configurations, I obtain

rg′
(

Λr3

32π
− g + 1

)
+ g
(

Λr2

8π
− 2 + 5g

)
− r4Λ2

32π2 = 0,
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which further gives

C1 = g−
∫ (

r2Λ
κ

)2
− g
(

5g + Λr2

8π − 2
)

r
(

Λr3

32π − g + 1
) dr,

thereby providing the value of g by means of an integration function C1. The structural
quantities for relativistic HSS are found as below:

|µ| =
3g
(

r2Λ
48π + 2g− 1

)
+
(

r2Λ
4π

)2
. 1
4

4πr2
(

r2Λ
16π + g− 1

) − Λ
κ

, P⊥ =

g
[

3g
(

3r2Λ
32π + g− 1

)
+
(

r2Λ
4π

)2
. 1
4

]
8πr2(2g− 1)

(
r2Λ
16π + g− 1

) +
Λ
κ

. (46)

In this environment, the GF are computed as

z =
Λr2 − g + 1

r(1− 2g)
, Π = −

g
(

3r2Λ
32π + g− 1

)
+
(

r2Λ
4π

)2
. 1
4

8πr2(2g− 1)
(

r2Λ
16π + g− 1

) − Λ
κ

.

4.3. Stiff Fluid Configurations

In this subsection, I shall provide the solution of HSS obeying a stiff state equation.
This equation states that the difference between pressure and energy density should be
equal to zero, thus indicating it as |µ| = Pr. With this setup, Equation (15) reads

P′r = −
2Π
r

. (47)

This conservation equation could be applicable to the ultradense matter content that
is distributed over the region by maintaining the constraints of the stiff state equation. I
proceed with our analysis with these two assumptions. In the first case, I take P⊥ = 0,
and the second one keeps the non-complex state of HSS. Thus, the first condition reduces
Equation (47) to

Pr =
C3

r2 , ⇒ |µ| = C3

r2 ,

where C3 is an integration constant. In this context, the mass function and metric variables
of HSS are found as below:

m = Λr3 + 4πC3r, e−λ = 2Λr2 − 1 + 8πC3, ν = constant.

Then, the associated GF are calculated as

z =
1
r

, Π =
C3

r2 .

Now, I consider YTF = 0. With this environment, the non-complex phase of HSS
coupled with the matter obeying the stiff sate equation can be observed. Equations (29)
and (47) give

P′′r +
3P′r

r
= 0.

This is a first-order differential equation whose solution is an easy task. It provides

Pr =
D1

r2 −D2, (48)
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where D′i s are constants of integration. The corresponding matter quantity for HSS is

m = 4πr
(
D1 +

Λr2

3
− D2r2

3

)
.

With the help of this equation, one can obtain the values of the metric coefficient from
Equation (14). In HSS, the formation of a Minkowskian core appears to emerge. This gives
rise to the formation of two boundaries. At the outer hypersurface, i.e., Ωe, the associated
values of the radial component of pressure and mass function become

Pr = D1

[
1
r2 −

1
r2

Ωe

]
−Λ, m =

4πD1r
r2

Ωe

(
r2

Ωe −
r2

3

)
− 4π

3
Λr3 +

1
3

Λr3.

The difference between these expressions provides

4πPrr3 −m = −16π

3
Λr3 +

1
3

Λr3 +
−8πD1r3

3r2
Ωe

.

Eventually, P⊥ for the less complex HSS becomes

P⊥ = −D1

r2
Ωe
−Λ.

These solutions are presented in the presence of the cosmological constant.

5. Energy Conditions

The general form of the energy conditions can be obtained from the Raychaudhuri
equation for expansion [54]. One can analyze the nature of gravity (attractive/non-
attractive) from these conditions. The null energy conditions (NEC), weak energy condi-
tions (WEC), strong energy conditions (SEC), and dominant energy condition (DEC) can be
defined as follows:

• NEC : ρ + pr ≥ 0, ρ + pt ≥ 0
• WEC : ρ ≥ 0, ρ + pr ≥ 0, ρ + pt ≥ 0
• SEC : ρ + pr ≥ 0, ρ + pt ≥ 0, ρ + pr + 2pt ≥ 0
• DEC : ρ ≥ |pr|, ρ ≥ |pt|

Figure 1 indicates that the energy density of the hyperbolically symmetric static
solutions is negative, if I take Λ to be a positive quantity. This suggests the close connection
of our results with quantum field theory. Such analysis could be helpful in the examination
of virtual particles, squeezed vacuum particle states, and the Casimir effect. Next, I consider
three different strange star candidates, i.e., Her X-1, SAX J 1808.4-3658, 4U1820-30. I would
label these strange stars with SS1, SS2, and SS3, respectively. It is observationally seen that
SS1, SS2, and SS3 have 0.88M�, 1.435M�, and 2.25M� stellar masses, respectively [55,56]. I
shall graphically observe the behavior of energy conditions for the toy model mentioned in
Equations (34)–(37) with respect to stiff HSS generation functions. I can see from Figures 2–4
that the energy conditions are violated for the majority of the zonal parameters. Only a
few regions can be observed that support the viability of the energy conditions. It is worth
mentioning that the observable effects of dark energy are well known to violate the strong
energy conditions. Therefore, our results could be helpful to understand the dark energy
problem as well as quantum or cosmological scenarios [57–59].
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Figure 2. WEC and DEC for three different strange stars. I represent the analysis of SS1, SS2, and SS3
with the dot-dashed, dashed, and dotted lines, respectively.
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Figure 3. WEC and DEC for three different strange stars. I represent the analysis of SS1, SS2, and SS3
with the dot-dashed, dashed, and dotted lines, respectively.
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Figure 4. DEC for three different strange stars. I represent the analysis of SS1, SS2, and SS3 with the
dot-dashed, dashed, and dotted lines, respectively.

6. Conclusions

The present paper aimed to understand the modeling of hyperbolically symmetric
solutions in the presence of the cosmological constant. I have considered spatially hyperbol-
ical spacetime, which is assumed to be coupled with locally anisotropic fluid configurations.
Under a co-moving frame of reference and cosmological constant, I have presented field
equations and Bianchi identities. With the help of two formalisms (i.e., Misner-Sharp and
Tolman) for the calculation of the mass function, I have computed theoretical relations
between total quantity matter and structural variables. The orthogonal splitting is used to
decompose the curvature tensor into scalar variables. Four structure scalars are calculated.
This led us to understand the Tolman mass through YTF and YT .

Finally, I propose a generic framework that allows every diagonally symmetric hyper-
bolical fluid model with static backgrounds to be described by means of two generating
functions. I have described the stellar models under three main categories. The first cat-
egory gives cosmic solutions of hyperbollically symmetric spacetime in conformally flat
backgrounds. The second describes the diagonally symmetric hyperbolical solutions for
non-complex relativistic interiors. The last category is devoted to understanding the struc-
ture formation through equations of state. Thus, certain straightforward corresponding
solutions are discovered, along with their physical explanations. It is necessary to address
the fact that the violation of the weak energy condition (µ < 0) in our modeling represents
the negative attitude of Tolman mass under certain circumstances of cosmological constant
and matter variables, i.e., if 4Prr3 − m < Λr3. Despite the fact that I would anticipate
the energy density to be positive based on classical physics considerations, however, the
negative energy densities are frequently mentioned in extreme astrophysical and cosmic
events, notably in connection with quantum issues that could occur inside the horizon with
the cosmological constant.

The second-order set of partial differential equations were solved in order to describe
various physical properties of the hyperbolically symmetric objects in GR by Herrera
et al. [25]. The leading correction terms obtained in the present work are embodied with
Λr2 terms, stating that our solutions depend directly on the impact of generating functions,
r, and on the cosmological constant. This term could be interpreted as the non-attractive
connection among the matter variables of the locally anisotropic HSS. The cosmological
constant or vacuum energy density affect the impact of matter variables, introducing
corrections to the results produced by Herrera et al. [25], which could be of interest
for situations described in quantum and cosmological scenarios [57–59]. Corrections
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introduced by the cosmological constant produce variations in the metric coefficients as
well as the generating function due to their repulsive nature for all three fluid models.

I see that there exist some exact analytical solutions for the anisotropic HSS fluid
models with the introduction of a Λ term. Our study allows one to understand the
implications of a non-zero Λ towards the mathematical modeling of conformally flat,
non-complex as well as stiff matter HSS distributions. These results are of interest in
view of the recent observational claims about a non-vanishing cosmological constant.
The other consequence of introducing the cosmological constant, however, concerns the
mass definition. Herrera et al. [25] described the matter content within the HSS through
the Misner-Sharp and the Tolman mass functions. Irrespective of the inclusion of the
value of the Λ term, the positive and negative nature of the former and latter masses is
never disturbed.
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