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Abstract. This paper gives an affirmative solution, in a large number of cases, to
the following problem. Let @ be a von Neumann algebra on the Hubert space JÍ",
let G be a topological group, and let a -*■ <p(a) be a homomorphism of G into the
group of *-automorphisms of ât. Does there exist a strongly continuous unitary
representation a -*■ U(a) of G on #P such that each U(a) induces <p(a) ?

0. Introduction. The following problem arises in quantum mechanics. Let 0t
be a von Neumann algebra on the Hubert space 2?, 'S a topological group, and
a -*■ <pia) a representation of G into the group of *-automorphisms of 01. When
does there exist a strongly continuous unitary representation a -> i/(a) of G on Jf
such that each i/(a) induces <p(a)? Roughly speaking, this question asks: Does a
Hamiltonian exist? The main result of this paper is to prove the following theorem,
which gives an affirmative answer to the above question under fairly general
hypotheses.

Theorem 0.1. Let ai be a semifinite von Neumann algebra on the separable
Hilbert space JF. Suppose that the commutant of (M has no finite portion. Let G be a
locally compact group whose topology is second countable, and let a -*■ f (a) be a
representation of G as a group of center-fixing * -automorphisms of ai. Suppose that
a -*■ <<p(a)(F)x, y y is continuous for all T in 0t and x, y in J?. Then there exists a
strongly continuous unitary representation a -> i/(a) of G on Jf such that <p(a)(F)
= Uia^Uia-1) (a in G, T in 01).

One cannot omit the hypothesis that the commutant of the properly infinite
portion of 01 is also properly infinite, for there exists all« factor Sf, with Sf"
finite, which possesses nonspatial *-automorphisms (see Kadison [6]). I do not
know if an analogue of Theorem 0.1 is true in case 01 has a portion of type Ilia,.

§1 contains a proof of Theorem 0.1 in case 01 is a factor. §2 and §3 are devoted to
preliminary topics in direct integral theory and Borel structure theory of various
objects. The proof of Theorem 0.1 is given in §4 by combining the results of the
previous three sections.
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See the two books by Dixmier ([2] and [4]) for the basic notation and facts about
von Neumann algebras and C*-algebras used in this paper. Use Mackey [7] and
Parthasarathy [10] as references for the theory of standard Borel spaces.

1. Some preliminary cases. We recall a few elementary facts about Hubert
algebras for the convenience of the reader. Let si be an associative algebra over
the complex numbers with an involutory anti-automorphism T-> T*. Let <•, •>
be a positive definite inner product on six si, and let JP be the Hubert space
completion of si. Suppose si also satisfies the following: (1) <5, T} = (T*, S*};
(2) <PS, F> = <A, P*P>; (3) the mapping T-+ST is continuous for each S in
si; (4) si2 is dense in si. An si with the above properties is called a Hubert
algebra.

One may easily check that T-*- TS is also continuous for each S in si. Let J be
the unique conjugate linear isometry of Jf which extends F-> T*. Let L(S) (R(S))
be the unique bounded operator on <3f which extends the mapping T ->■ ST
(T^TS) of si into si. The mappings S^L(S), S^R(S) are »-isomorphisms
of si onto their ranges. One also has that L(S)=JR(S)J (S e si).

Denote by L(si) (R(si)) the strong closure of the algebras generated by L(S),
Se si (R(S), Se si). L(si) and R(si) are von Neumann algebras, L(si)' = R(si),
R(si)'=L(si), and L(si)=JR(si)J.

Lemma 1.1. Let G be a topological group, and let a -> <p(a) ¿>e a representation of
G into the group of *-automorphisms of si. Suppose that a -*■ (cp(a)(Tx), F2> 15
continuous on G for all A, T2 in si, and that there exists a continuous homomorphism
a -> p(a) of G into the positive reals such that each p(ä)(p(a) preserves inner products
on six si. Then there exists a strongly continuous unitary representation a -*■ W(a)
of G on M such that W(a)L(T)W(a~1)=L(<P(a)(T)) (a e G, Te si).

Proof. Let W(a) be the linear operator on si defined by W(a)(T) = p(a)<p(a)(T).
Since || W(a)(T) || = ||F||, W(a) extends to an isometry of 3tf, which we also denote
by W(a). W(a) is actually unitary since W(a)W(a'1)= W(a~1)W(a)=I. It suffices
to show that a -*■ W(a) is continuous in the weak operator topology, for the weak
operator topology and the strong operator topology coincide on the group of
unitaries. Easy estimates show that it suffices to prove that a-> (W(a)x, y} is
continuous for all x, y in some dense linear submanifold of Jt. But if x—Tx esi
and y=T2esi, (W(a)x,y}=p.(aX<p(a)(Tx),T2y, which by assumption is a con-
tinuous function of a. Finally, if S and T are in si, W(a)L(S) W(a ~ ̂ (T)=<p(a)(S)T
=L(ç>(fl)(5))(F).    Q.E.D.

Lemma 1.2. Let 0t be a factor with a semifinite, normal trace p. Let G be a topo-
logical group, and let a -* <p(a) be a representation of G into the group of *-auto-
morphisms of Si. Suppose that a—>- (,<p(a)(T)x, y~) is continuous for all Teâl and
x, y e $P. Then there exists a continuous homomorphism a -*■ A(a), of G into the
positive real numbers, such that p ° 95(a) = A(a)p.
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Proof, p o 95(a) is a semifinite, normal trace on 0¿. Hence [4, p. 90, Corollaire to
Théorème 3] there does exist a positive scalar A(a) such that p ° 93(a) = A(a)p. Let
ß be a nonzero finite projection in 0t. Then T-> p(TQ) is a positive normal linear
form on 0¿ [4, p. 91, Proposition 5]. Therefore, as a-> e,

0^Pii<PÍa)iQ)-Q)Q) = (A(a)-l)p(ß«p(a-1)(ß)) + p(ß(«P(a-1)(ß)-ß))
since <p(a)(ß)-s- ß in the weak operator topology. But p(ß(<p(ß_1)(ß)-ß))-*0
and p(ô«p(a"1)(ô))-> p(ß)>0 as a-> 0. Hence, A(a) -^laso^e.   Q.E.D.

Proposition 1.3. Let 0¿ be an infinite, semifinite factor on the separable Hubert
space 3t such that 01' is infinite. Let G be a topological group, and let a -> 93(a) be a
representation of G into the group of *-automorphisms of 01. Suppose that
a -> (<pia)iT)x, y y is continuous for all T in 0¿ and x, y in ¿F. Then there exists a
strongly continuous unitary representation a -> ¿7(a) of G on 2? such that <pia)iT)
= Uia)TUia~1).

Proof. Let p be a semifinite, normal trace on 0¿. Let sé be the algebra over the
complex numbers generated by the finite projections in 01. If S, T e s/, let (S, T>
= piT*S). The pair s/, < •, • > is a Hubert algebra. Since <pia)iP) is a finite projection
if P is a finite projection, each 93(a) defines a *-automorphism of sJ. \{TX and T2 are
in s/, then a -> piT^ia)^)) is continuous on G [4, p. 91, Proposition 5]. Finally,
it is known that the mapping 93: T^-LÇT) extends to a *-isomorphism of 01 onto
Lis/). But this *-isomorphism is spatial since ¿f is separable and 0¿' is properly
infinite [4, p. 321, Corollaire 7]. The theorem now follows from the previous
remarks and from Lemma 1.1, by letting p{d) = A(a) "1.   Q.E.D.

Lemma 1.4. Let 01 be a finite factor with trace vector z. Let G be a topological
group, and let a -> 93(a) be a representation of G into the group of *-automorphisms of
¿%. Suppose that a -*■ (<f{d)iT)x, y y is continuous for all T in 01 and x, y in JP. Then
there exists a strongly continuous unitary representation a -+ £/(a) of G on ^f such
that <pia)iT) = Í7(a)rt/(a ~1){Te0¿).

Proof. For T in 0t, let C/(a)(7z) = <pia)ÇT)z. This is a well-defined linear mapping.
Furthermore,

\\Uia)iTz)\\2 = ||?>(a)(7>||2

= trace i<pia)iT*T))

= trace {T*T) = \\Tz\\2.
Hence, each Uia) extends to an isometry of M?, which we again denote by i/(a).
[/(a) is actually a unitary operator since

UiaWia-1) = Uia-^Uia) = I.
That   a ->■ {/(a)   is   strongly   continuous   follows   from   the   assumption   that
a -> (<pia\T)x, yy is continuous. Finally,

Uia)TUia-x)z = (7(a)7z = <p(a)(7>.

Hence, ç)(a)(r)= ¡7(a)rf/(a_1) since 2 is a separating vector ¿%.   Q.E.D.
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Proposition 1.5. Lei (% be a finite factor on the separable Hubert space ¿f such
that £%' is infinite. Let G be a topological group, and let a -*■ <p(a) be a representation
of G into the group of *-automorphisms of 3%. Suppose that a—?- (<p(a)(T)x, y} is
continuous for all T in 3R, and x, y in atf. Then there exists a strongly continuous
unitary representation a-+U(a) of G on tf such that <p(a)(T)=U(a)TU(a~1)
(Teâl).

Proof. There exists a finite factor Sf with a trace vector on a Hubert space Jf
and a »-isomorphism <\>: 3% -*■ if. Then a -> <\> ° <p(a) ° </>_1 is a representation of G
into the group of »-automorphisms of ¥, and a-> <</< ° 99(a) ° i/i'^^x, y} is
continuous for all T in if and all x, y in the Hubert space X. By Lemma 1.4 there
exists a strongly continuous unitary representation a -> lf(a) of G on JT such that
</j o <p(d) o </t-1(T)=W(a)TW(a-1) {Je Sf). Let / be the identity on an infinite-
dimensional separable Hubert space. Let *¡>'(T) = >/j(T) ® I (Te St). Then <\> is a
»-isomorphism of St onto Sf ® I, and

f ° 9<a) of-\T)m( W(a) ® I)T( W(a-1) ® I)       (Te S? ® I).

But (£r° ® 1)' is properly infinite. Hence, </<' is spatial [4, p. 321, Corollaire 7].
Q.E.D.

2. A Borel structure on the spatial »-automorphisms of a von Neumann algebra.
Let £f be a von Neumann algebra on the separable Hubert space JC Throughout
this section the following notation will be in effect: S^x is the unit ball of Sf, L(Jf)
is the algebra of all bounded operators on Jf, U(£f) is the unitary group of Sf,
U(£f, JT) is the group of unitary operators on Jf which induce »-automorphisms
of £f, and Spaut (if) is the group of spatial »-automorphisms of £?. The purpose
of this section is to show that Spaut (Sf) is a standard Borel space with respect
to a natural Borel structure, that U(£f, Jt) is a polonais subgroup of U(L(Jf)),
and that there exists a Borel cross-section for Spaut (¿f) in U(6r", Jf ).

Lemma 2.1. Let Tm(m^l) be a sequence in yx which is strongly dense in £fx. Let
xn («^ 1) be a sequence in JT which is strongly dense in 3T. Let

"T =   H   U  Pi ft/e C/(X<JO) I iit^c/^fc-r^n < ¿1.
i.m.Tiïl 161 lSkSn L m\

Then U(Sf,X) = iV nW*.

Proof. An element U of U(L(Jf)) is in U(£f, X) if and only if £/^£/*ç«S^ and

Let U e U(£f, Jf),j^ l,m£ 1, andn& 1. Then UT¡U* is in Sr\. Since the sequence
Tm (m 2: 1) is strongly dense in «9^, there exists some P, such that

sup   \\UTjU*xk-T,xk\\ < -■
lgfcgn "I
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Since this holds for every j »> 1, m ̂  1, and « ̂  1, U e iV. But U e U{Sr°, Jf ) implies
U*eU(Sr\jr).   Hence,   U* eW,   or   UeW*.   Therefore,   UeUTniT*,   or
uçsr] jr)£ir n w*.

Conversely, suppose that UeW n tT*. We must show that USr\U*^Sr\. It
suffices to show that UTjU* e £r"x for all 7^ 1, or, since Sr\ is strongly closed, that
UTjU* lies in the strong closure of ¡fx. But simple estimates show that this last
statement holds if, for all m 2£ 1 and n ä 1, there is some T in

irelpf)     sup   \\UTjU*xk-Txk\\ < -]■

But this holds for all;«>l, m% 1, and ««> 1 if and only if £/ is in #:   Q.E.D.

Corollary 2.2. C/(^ Jf ) is a Gô in t/(L(Jf )).

Proof. UiLLif)) is a polonais space with respect to the strong operator topology.
The corollary now follows from Lemma 2.1.   Q.E.D.

Corollary 2.3. £/(<S^ cf) is a polonais space with respect to the strong operator
topology.

Proof. This follows from the previous corollary plus [1, Théorème 1, p. 123].
Q.E.D.

UiSr"') is a closed, normal subgroup of C/(^ Jf"). We make the following
observation.

Lemma 2.4. The quotient group UiSf, ôf)/U(Sr") is a polonais group.

Let 77: Ui£f, c€) -> UiSf, X)/Ui¡/") be the natural quotient mapping, n is open
and continuous.

Lemma 2.5. There exists a Bor el cross-section for the left cosets of Ui£f") in
UiSf, Jf).

Proof. This follows immediately from [3, Lemme 3, p. 279].    Q.E.D.
Let <p:Uiy,Jf)IUi£f")-^S\->auti£f) be the natural algebraic isomorphism,

Endow Spaut (5^) with the unique topology and Borel structure such that </> is a
topological and Borel isomorphism. Then Spaut i¡f) is a polonais space and a
standard Borel space.

Lemma 2.6. Let T e Sf and x,yectf~. Then ç3(-)->- (<pij)x, _y> is continuous on
Spaut iST).

Proof. The mapping/: U^ (UTU*x, j>, of C/(^ ¿f) -+ C1, is continuous on
UiSf, Jf). Since (UTU*x, yy = (WTW*x, j> if U and W lie in the same [/(<?")
coset in Uiy, Jf), f gives rise to a continuous mapping,

g:Uii?,X)/Ui2")^V
where   girriU)) = (UTUifx,yy.   But   the   mapping   <pi:)-> (<p(T)x, yy   is  just
g o 0_1(ç3), and hence is continuous.    Q.E.D.
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Proposition 2.7. The Borel structure on Spaut (¿r") is the smallest such that the
mappings <p(-) -*■ (<p(T)x, y} (T in if andx, y in ¿f) are Borel.

Proof. Let SSX be our original Borel structure on Spaut (if) and let 3S2 be the
Borel structure on Spaut (if) generated by the mappings <p(-) -> (<p(T)x, y}.

^2^2 by Lemma 2.6. But SSX is standard and 3S2 is obviously countably
separated. Hence, 3§X=SS2 by [7, Theorem 3.3, p. 139].   Q.E.D.

3. Some direct integral theory. Let St be a von Neumann algebra on the sep-
arable Hubert space Jf. Recall that there exists a standard Borel space S, a a-finite
Borel measure p. on S, a separable Hubert space JT, and a Borel field | -*■ St(£)
of factors on Jf such that St=¡® 8t(Ç) dp.(Ç) and Cent St=Lw(E, p). This setup
describes the central, direct integral decomposition of St. Using this notation we
prove the following theorem in this section.

Theorem 3.1. Let G be a separable locally compact group, and let a -*■ <p(a) be a
representation of G into the group of spatial, center-fixing *-automorphisms of St
such that a -*■ (<p(a)(T)x, y} is continuous for all T in St and x, y in X. Then there
exists a Borel set S'cS with p(£ — S') = 0 such that for f e S', there exists a repre-
sentation a -*■ <Pt(a) of G into the group of *-automorphisms of St(Ç) such that
a -*■ ̂ (aXP)*, y} is continuous for all T in St({) and x, y in Jf.

Many of the techniques used in this section are the same or similar to those used
in [11].

The proof of the following lemma is close to the proof of Theorem B, p. 68, of [5].

Lemma 3.2. Let G be a separable locally compact group, and let £ç G be a Borel
measurable subset of G of positive, finite measure. Then EE'1 contains a neighbor-
hood of the identity.

Proof. Let p. be left invariant Haar measure on 6. a-> p(E u a ■ E) is continuous
on G. Hence, the set V of a such that p(E u a-E)< 2p(E) is a neighborhood of e in
G. Now if a is in V, then E n a-E^ 0, for if this intersection were empty, then
p(Eua-E)=p(E)+p.(a-E) = 2p(E). Contradiction. Hence, V^EE'1.    Q.E.D.

Corollary 3.3. Let G be a separable locally compact group, and let E^G be a
Borel subset of G which differs from G on a Borel null set. Then the group (alge-
braically) generated by E equals G.

Proof. Since E differs from G only on a null set, E is dense in G. By Lemma 3.2,
this subgroup is open, and hence equals G.   Q.E.D.

Corollary 3.4. Let SS be a C*-algebra on the Hubert space Jf which generates
the von Neumann algebra £f. Suppose that a -*■ q>(a) is a representation of the
separable locally compact G into the group of *-automorphisms of SS. Suppose there
exists a Borel subset E of G, which differs from G on a Borel null set, such that a in
E implies f(a) extends to a *-automorphism of if. Then each <p(a) extends to a
*-automorphism ofif.
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Proof. The set D of elements of G which extend to ""-automorphisms of S?
clearly is a subgroup of G which contains E. But by Corollary 3.3, E algebraically
generates G. Hence, D = G.    Q.E.D.

Lemma 3.5. Let 01, G, anda^-cpia) be as in the hypotheses of Theorem 3.1. Then
there is a separable C*-algebra 0Í in 01 such that

(1) 3fi is dense in 0t in the strong operator topology;
(2) 0¡ is invariant under each 93(a) ;
(3) ifTis in 38, then ||<p(a)(T)-r| -> 0 ias a -> e);
(4) 01 n Cent 0t is strongly dense in Cent 0¿.

Proof. Let r(j') (/'^ 1) be strongly dense in Cent 0t. Let f(J) (JtZ 1) be a sequence
of continuous functions with compact support which are dense in L^G). Let
Sik) ik^l) be a sequence in 0¿ which is strongly dense in 0¿. Take 01 to be the
C*-algebra generated by T(i) (i> 1) and $afiJ)ia)<pia)iSik)) da (J, k^ 1). 0J is a
separable C*-subalgebra of 0¿ and (l)-(4) are immediate.    Q.E.D.

We will be working with this C*-algebra 0¡ from now on. Without any loss of
generality, we make the following assumptions. Given T in 38, there exists a Borel
mapping £-*T(i) of H into L(Jf) such that T=j® T{f) dpiO; \T(£)\ £\T\ for
each $ in E:T-+ TU) is a representation of 38 on ¿C for each | in H; the von
Neumann algebra generated by the T(<f) ÇT in J1) is 0¿i£), for each f in 5.

If Zs is a subset of a set S, Z(£) will denote the indicator function of E.

Lemma 3.6. Suppose that we have a mapping (a, <f) -* i/(a, f ) o/G x2-> £/(L(Jf))
ííVC« /«a/

(1) f -»■ Uia, f) is a Borel function for each fixed a;
(2) a->js(Uia, £)x,yyiiE)i¿;)dp,i¿;) is a Borel function on G, for each x,y

in Jf and Borel set E in E with piE)< +00. Then there exists a Borel mapping
(a, 0 -> Wia, f) of G x E ->- C/(Z.(Jf )) jhc« /«a/, exce/?? for possibly a Borel null
set, Uia, $) = Wia, f) for p-almost all |.

Proof. Choose an orthonormal basis x(l), x(2),... of Jf! Apply Lemma 3.1
of [9] to the functions (Uia, £)*(/'), xij)y. We obtain that there exist Borel func-
tions m¡jia, ¿j) on Gx E such that for all i,j^ 1 and almost every a,

(Uia, Oxii), xij)y = mijia, 0
for p.-almost every «f. Then there exists a null Borel subset N of G x E such that if
(a, <f) is in G x E - N, the matrix (/M(/a, £)) represents a unitary operator W'ia, |).
Let IT(a, £) = H"(a, ¿) for (a, f) in G x S-N and let IF(a, ¿=»/ for (a, £) in Tv'.
Then Wia, <f) is a unitary operator for each (a, £) in G x S and (a, £) -»■ ̂ (a, £)
is a Borel mapping. One may easily check that except for possibly a Borel null set,
Uia, 0 = Wia, 0 for /x-almost all £.   Q.E.D.

Now any center-fixing automorphism of a von Neumann algebra on a separable
Hubert space, whose commutant has no finite portion, is spatial [4, Corollaire 8,
p. 322]. Hence, by the results of §2, there exists a Borel mapping a -> Uia) of G
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into U(St) such that <p(a)(T) = U(a)TU(a)* for all a in G and Pin St. Now each U(a)
is in (Cent Sí)'. Hence, for each U(a) there exists a Borel field f -»■ U(a, £) of
unitaries such that

U(a) = J® í/(a, 0 dp({).
For any x, y in ¿f and any Borel subset E of H of finite positive measure,
j3 (U(a, $)x, y}I(E)(è) dp(Ç) is a Borel function of a.

Hence, we can conclude that there exists a Borel mapping (a, £) -> W(a, Ç) of
GxH^ U(L(X)) such that J"? If (a, |) a>(£) induces 93(a) except for a null set of a.

Lemma 3.7. If a is in G, there is a Borel null set N(a) of H such that for
t; e E — N(a), T($) -*■ (cp(a)(T))($) is well defined and is a *-automorphism of SS(£).

Proof. Choose a sequence T(j) (y'S: 1) which is dense in SS. Except for at most a
Borel null set N(j),

(<p(a)(T(j)))(0 = W(a, Ç)T(j)(Ç)W(a, 0*
and

(rta-'XTUMO = W(a, Ç)*T(j)(Ç)W(a, 0-
Let N(a) = {Ji±i N(j). Therefore, for | in E-N(a),

W(a, OmW(a, 0* = W£),       W(a, Ç)*@(i-)W{a, Ç) S 8§(Ç),
and

(<p(a)(T))(t) = W(a, OW)W{a, I).       Q.E.D.
Lemma 3.8. 7«ere ex¡5í5 a Borel null set N in 3 such that for feS—N,

<P((a) : T({) -> (<p(a)(T))(t;) is well defined and is a *-automorphism of SS(Ç) for each
a in G.

Proof. Choose a dense sequence ak in G, let N(ak) be as in the previous lemma,
andletA^UfcêiWfac)-

<pt(a) is well defined for feS—N. For suppose that 7Y£)=0. Then
(93(afc)(7T))(l)=0 for all k7> 1. Let ak| converge to a. Then

IKrfaXrjXöll = \\(<r<a)(T))(0-(<Kakl)(T))(m
= ||<p(a)(T) - rfaJÍT)II -► 0   (as / f + 00).

Hence, (<p(a)(T))(Ç) = 0. Hence, 9^(0) is well defined for each element of G. It is
clear that <p((a) is a »-homomorphism of S$(i;) into itself, <p((a) is a »-automorphism
since <pt(a~x) is its inverse.   Q.E.D.

In what follows, we toss out the Borel null set N. We may do this since S - A/ is
again a standard Borel space.

Lemma 3.9. Fix x and y in X and T in SS. Then (a, |) -* <(<p(a)(r))(f)x, y} is a
Borel mapping.
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Proof. For each fixed a, ¿f -> (i<pia)iT))ig)x, y y is a Borel mapping. For each
fixed f, a-> (iq>ia)iT))i¿;)x, yy is continuous. The lemma now follows from
[8, Lemma 9.2, p. 122].   Q.E.D.

Lemma 3.10. The set ofia, f) such that Wia, £) induces ç>?(a) is a Borel subset of
GxE.

Proof. For any T in 38 and x, y in Jf,

(a, i) -> < Wia, OHO Wia, ®*x, yy - <(9p(a)(T))(<í)x, j>

is a Borel mapping. This follows from the previous lemma plus the fact that
(a, <f) -» Wia, f) is a Borel mapping. Hence, if x(i) (z'ä 1) is a dense sequence in Jf
and Tij) (j'ä 1) is a dense sequence in 0J,

O   [ia,t)\(Wia,i)T(i)i£)Wia,i)*xU),xik)y = (^)(r(i))©x(j),4))]

is a Borel set. But this set is just the set of (a, £) such that Wia, £) induces <p?(a).
Q.E.D.

Lemma 3.11. Except for at most a Borel null set of è,9iia) extends to a *-
automorphism of 0¿iOfor every a in G.

Proof. Except for at most a null Borel set, Wia, <f) induces <ptia) for /¿-almost
every f. Fubini's theorem and Lemma 3.10 implies that there exists a null Borel
subset Nil) of G x E such that (a, Ç) in G x E — ZV(1) implies that Wia, ¿j) induces
93{(a). Fubini's theorem again implies that there exists a Borel null set 7^(2) of S
such that <f in E-ZV(2) implies that Wia, <f) induces C3{(a) for almost every a.
Therefore, Corollary 3.4 implies that <p¿a) is extendable to a *-automorphism of
0¿iC) for every a and every f in E —7^(2).    Q.E.D.

In what follows, toss out the Borel null set N(2). We may do this since E —7/(2)
is again a standard Borel space.

Lemma 3.12. a —*■ ((p(ia)iT)x, yy is continuous for all T in 0¿iO and x, y in Jf.

Proof. If T=SiO, where S is in 38, then

|<9,,(a)(7>, yy - (9¿b\T)x, yy\ Ú |??(a)(S(£))-?#)(S(f))|| ■ |x| -\y[
< ||93(a)(S)-93(è)(S)H|x|HI>i^O

as b -*■ a.

The lemma may now be concluded from the main theorem of [12].   Q.E.D.

4. Proof of Theorem 0.1.   We start by noting the following lemma.

Lemma 4.1. Let 0t=\% 0¿i£) o>(£) be the central decomposition of 01, as in §3.
Then there exists a Borel null set N^, E such that if | e E — N, then 3t(g) is a semi-

finite factor and 0¿iO)' is infinite.
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Proof, f -> St(Ç)' is a measurable family of von Neumann algebras, and
St'=l® St(£)' dp(t¡) is the central decomposition of St'. There exists a Borel null set
N(l) in E such that £ e 5 - N(l) implies that St(Ç)' is infinite [4, Théorème 2, p. 211].
There exists another null Borel set N(2) in H such that £ eE — N(2) implies St(Ç) is
semifinite. Let N=N(l) u N(2).   Q.E.D.

We toss out the null set N. We may do this since E — N is still a standard Borel
space.

Let 38 and <p(( • ) be as in §3.

Lemma 4.2. $ -*■ (<p((a)(T(Ç))x, y} is a Borel function on Efor each a in G, T in
38, and x, y in X.

Proof. For each s in Si and x, y in X, $ ->- (S(Ç)x, y} is a Borel function on 3,
If T is in 38, then <p(a)(T) is also in 33 and <p(a)(T)(0 = <p((a)(T(0).   Q.E.D.

Let Rep (G) be the set of strongly continuous unitary representations of G on
Jf. Rep (G) has a natural topology which makes it into a polonais space [2, pp.
315-316]. In this topology Ua( ■ ) -> U( ■ ) if and only if

sup || Ua(a)x— U(a)x\\ -+■ 0

for each xeX and compact subset C of G. As the reader may easily check, for
each ae G, the mapping [/(•)->■ U(a), of Rep (G) into i/(L(Jf)), is continuous.

The following lemma is a slight extension and modification of [8, Lemma 9.2,
p. 122].

Lemma 4.3. Let Sx be a Borel space and S2 a separable metric space. Let
f: SxxS2-+ C be such that sx ->/(si, s2) is a Borel function for each s2e S2, and
s2 -^-f(sx, s2) is continuous for each fixed sx e Sx. Then fis a Borel function on Sx x S2.

Proof. Let tn (m ä 1) be a dense sequence in S2. Let B(tn, e) be the closed ball of
radius e about i„. For m ä 1, inductively define

C(l, m) = B(tx, l/m),
C(k+l, m) = B(tk + X, l/m)-   H    (*('* + i, l/m) n C(i, m)).

IStSfc

Then C(j,m)nC(k,m)=0 if j^k, and \JkiXC(k,m) = S2. Define fm(sx, s2)
= 2fcssi/CJi> tk)I{C(k, m))(s2). One checks easily that/, (am = 1) is a Borel function
on Sx x S2, and/m(5l5 s2) ->f(sx, s2) (as m t +oo) for each (sly s2) e Sx x S2. Hence,
/is a Borel function on Sx x S2.   Q.E.D.

Lemma 4.4. Let A = [(£, U(-))eEx Rep (G) | i/(-) i«a"wce5 c>{(.) on 8t(Ç)]. Then
A is a Borel subset of Ex Rep (G).

Proof. Let ak (kt 1) be a dense sequence in G, let T, (/^ 1) be a dense sequence
in 38, and let xm (m = 1) be a dense sequence in JC Each of the mappings

(L U(-)) -* <[£/(a)r(|)C/(a-1)-9i(flXnö)l*», ^n>
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is a Borel function on E, for each fixed £/( • ) e Rep (G), and is continuous on
Rep (G), for each fixed feS. Hence, Lemma 4.3 implies that each of these func-
tions is a Borel function on E x Rep (G). But

A =     D     Kl. U(-)) | ([UiajnOUia^-^iaJiUmXm, *n> = 0].
fc,I,m,n61

Hence, A is a Borel subset of S x Rep (G).   Q.E.D.
Proof of Theorem 0.1. Let A be as in the previous lemma. Combining the

results of §3 with Lemma 3.1, we see that A n (£ x Rep (G)) is nonempty for each
«f e E. But by [7, Theorem 6.3, p. 143], there exists a null Borel set N in E and a
Borel mapping, | -*• U((-), of S-AT to Rep (G), such that (f, ¡7{(-)) e /I for each
ÇeE —N. Let Uia)=\f Utia) dpi!;). Then a -+ (7(a) is a strongly continuous
unitary representation oîGonJf, and C7(a) induces 93(a) for each a in G.   Q.E.D.

Remark added in proof. M. Henle has given a very elegant proof of the Type
III analogue of Theorem 0.1 in his 1970 Yale thesis.
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