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Space–time Hawkes point process models for the conditional rate of
earthquake occurrences traditionally make many parametric assumptions
about the form of the triggering function for the rate of aftershocks following
an earthquake. As an alternative, Marsan and Lengliné [Science 319 (2008)
1076–1079] developed a completely nonparametric method that provides an
estimate of a homogeneous background rate for mainshocks, and a histogram
estimate of the triggering function. At each step of the procedure the model
estimates rely on computing the probability each earthquake is a mainshock
or aftershock of a previous event. The focus of this paper is the improve-
ment and assessment of Marsan and Lengliné’s method in the following ways:
(a) the proposal of novel ways to incorporate a spatially inhomogeneous back-
ground rate; (b) adding error bars to the histogram estimates which quantify
the sampling variability in the estimation of the underlying seismic process.
A simulation study is designed to evaluate and validate the ability of our
methods to recover the triggering function and spatially varying background
rate. An application to earthquake data from the Tohoku District in Japan is
discussed at the end, and the results are compared to a well-established para-
metric model of seismicity for this region.

1. Introduction. Hawkes point process models [Hawkes (1971)] of earth-
quake seismicity usually rely heavily on parametric assumptions about the trig-
gering function for the spatial-temporal rate of aftershock activity following an
earthquake. Some important examples are the parametric forms of the Epidemic
Type Aftershock Sequences (ETAS) model of Ogata (1998). Marsan and Lengliné
(2008) proposed a more flexible nonparametric approach for estimating Hawkes
process models of seismicity which makes no a-priori assumptions about the
shape of the triggering function, and provides a data-driven estimate instead. Their
method, named Model Independent Stochastic Declustering (MISD), is an itera-
tive algorithm that alternates between the following: first, estimating the probabil-
ity each earthquake in the catalog is either a mainshock or aftershock; and second,
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updating a homogeneous background rate for mainshock activity and a probability
weighted histogram estimate for the triggering function.

Nonparametric methods for estimating point process models have shown a wide
range of applications, especially in situations where the form of the intensity func-
tion is unknown and difficult to determine. Brillinger (1998) described a tech-
nique using wavelets for estimating the conditional intensity and second order in-
tensity with applications to neurophysiology and seismology. Adelfio and Chiodi
(2013, 2015) considered a semiparametric estimation procedure that simultane-
ously estimates a nonparametric background rate and parametric triggering func-
tion for a space–time Hawkes process model of seismicity. Marsan and Lengliné
(2008) applied the fully nonparametric MISD method to a Southern California
earthquake catalog to estimate the spatial-temporal rates of aftershock activity fol-
lowing an earthquake of given magnitude. They also demonstrated the applica-
tion of their routine to stochastically decluster earthquake catalogs to isolate main-
shocks and remove aftershock clusters. In an application to criminology, Mohler
et al. (2011) developed a Monte-Carlo based nonparametric method similar to
MISD to estimate a space–time point process model for the occurrence rate of
burglaries in a Los Angeles district. They demonstrated that this approach leads to
improved hotspot maps for flagging times and locations where burglaries are likely
to occur. An interesting result of this study is that crimes spur other crimes nearby
in space and time, much as earthquakes trigger local aftershock sequences. Nichols
and Schoenberg (2014) used MISD as a diagnostic tool to evaluate the dependency
between the magnitude of an earthquake and the magnitudes of its aftershocks. By
repeatedly applying the MISD algorithm to stochastically assign earthquakes as
either mainshocks or aftershocks, they created confidence intervals for the average
magnitude of aftershocks following an earthquake of given magnitude.

The focus of this paper is the improvement and assessment of the nonparametric
method of Marsan and Lengliné (2008) for estimating space–time Hawkes point
process models of earthquake occurrences. Along these lines, our primary goals
are as follows:

1. The proposal of novel ways to incorporate a spatially inhomogeneous back-
ground rate into the MISD algorithm.

2. Adding error bars to the histogram estimates of the triggering function which
quantify the sampling variability in the estimation of the underlying seismic
process.

Note that in this paper we are interested in modeling spatial variations and not
temporal variations in the background rate.

The original MISD algorithm assumes that the background rate for mainshocks
is a constant Poisson process in time and space. While an estimate of the mean
mainshock rate over an observation region is useful, the expansion of MISD to in-
corporate an inhomogeneous background component is an important next step and
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improvement by allowing for localized estimates of mainshock activity related to
variations in the underlying tectonic field and the locations of major faults. More-
over, an estimate of a spatially varying background rate can be used to identify
regions with a persistent and heightened incidence of large seismic events, inde-
pendent of aftershock clustering features which diminish over time.

Nichols and Schoenberg (2014) proposed a way to adjust MISD to incorpo-
rate inhomogeneity in the background process by initially kernel smoothing over
all events in the catalog and weighting each event by its corresponding kernel es-
timate. However, a main shortcoming of this approach is that kernel smoothing
over all events in a Hawkes process results in high variance and inaccuracy, as
triggered events influence the estimated background rate locally. Moreover, the
authors of this work were primarily interested in applying the method to evaluate
the dependence between the magnitudes of earthquakes and their aftershocks, and
the explicit assessment or validation of the proposed estimation technique was not
addressed.

In this paper, we propose two novel ways to incorporate a spatially varying
background rate into the MISD method. First, we discuss a histogram estimator
approach, which is a natural extension of the constant rate estimator of Marsan
and Lengliné (2008). Second, we apply the variable bandwidth kernel estimator,
used by Zhuang, Ogata and Vere-Jones (2002) for semi-parametric estimation, into
the context of MISD. We validate and assess this new methodology by simulating
earthquake catalogs from a space–time ETAS model and evaluating the ability of
each method to recover the true form of the inhomogeneous background rate and
triggering function governing the simulation.

For the second goal of this paper, uncertainty quantification for the histogram
estimators of the triggering function, we propose a bootstrap procedure. By repeat-
edly simulating and re-estimating a fitted nonparametric model, we can construct
error bars which quantify the sampling variability of the histogram estimators,
including the variability caused by the uncertainty of the mainshock-aftershock
assignment of earthquakes.

This paper is organized as follows: In Section 2, we provide an overview of
space–time point process models of seismicity. In Section 3, we describe our mod-
ified version of the MISD algorithm, and propose two new ways to incorporate an
inhomogeneous background rate. In Section 3, we also describe a bootstrap proce-
dure for computing error bars for histogram estimates of the triggering function. In
Section 4, we validate and assess our methods with simulation studies, and discuss
boundary issues. In Section 5, we apply our method to an earthquake dataset from
the Tohoku District in Japan. In Section 6, we summarize and speculate about our
results and suggest future directions for this research.

2. Space–time point process models. Consider a marked space–time point
process N(t, x, y) representing the times, locations and magnitudes, {(ti, xi, yi,

mi) : i = 1, . . . ,N}, of earthquake occurrences. Space–time point process models
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of seismicity are usually specified with a conditional intensity function which is
defined as the infinitesimal expected rate at which events occur around (t, x, y)

given the history of the process Ht = {(ti, xi, yi,mi) : ti < t}; that is,

λ(t, x, y|Ht)
(1)

= lim
�t,�x,�y↓0

E[N{(t, t + �t) × (x, x + �x) × (y, y + �y)}|Ht ]

�t�x�y
.

Conditional intensities are a natural way to model point processes, as all finite-
dimensional distributions of a simple point process are uniquely determined by its
conditional intensity [Daley and Vere-Jones (2003)].

In seismology, one typically models the conditional intensity in (1) as a Hawkes-
type self-exciting point process taking the following form:

λ(t, x, y,m|Ht) = J (m)λ(t, x, y|Ht ),
(2)

λ(t, x, y|Ht) = μ(x, y) +
∑

{i:ti<t}

ν(t − ti, x − xi, y − yi;mi).

For example, models of this type, referred to as Epidemic Type Aftershock Se-
quences (ETAS) models, were introduced by Ogata (1988) for the description
of earthquake catalogs. Such models categorize earthquake occurrences into two
types: mainshocks and aftershocks. The rate of mainshocks occurring over a spa-
tial region is modeled by the background intensity μ(x, y), which is assumed an
inhomogeneous Poisson process in space and constant in time. The rate of after-
shock activity following an earthquake occurring at (ti, xi, yi) with magnitude mi

is modeled by the triggering function ν, which is often assumed Gaussian or power
law in parametric models. The summation term gives the contribution of all pre-
viously occurring events in the catalog to the overall rate of seismicity at time t

and location (x, y). The distribution of earthquake magnitudes J (m) is typically
assumed independent of all other model components, and follows an exponential
distribution according to the well-known magnitude frequency law of Gutenberg
and Richter (1944). Note that model (2) specifies a space–time branching process
since any earthquake occurrence (including an aftershock) is capable of triggering
its own aftershock sequence.

Ogata (1998) considered many parameterizations of the response function of
(2) which take the following standard form:

ν(t − ti, x − xi, y − yi;mi) = κ(mi)g(t − ti)f (x − xi, y − yi;mi).(3)

Here κ(mi) is the magnitude productivity function which gives the expected num-
ber of aftershocks following an earthquake of magnitude mi . The temporal compo-
nent g is a probability density function governing the rate of aftershocks following
an earthquake at time ti . The spatial component f is a probability density function
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for the spatial distribution of aftershocks occurring around an earthquake with epi-
center (xi, yi). The dependence of the spatial response function on the magnitude
mi is built into some models.

One example of a parameterization of the triggering function for ETAS is given
by

κ(m) = Aeα(m−mc),(4)

g(t) = (p − 1)c(p−1)(t + c)−p,(5)

f (x, y) =
(q − 1)dq−1

π

(

x2 + y2 + d
)−q

,(6)

where mc is the magnitude cutoff for the catalog, t > 0, and (A,α,p, c, q, d) are
parameters to be estimated. Here g corresponds to the modified Omori formula
[see Utsu, Ogata and Matsu’ura (1995) for details], and f is isotropic (rotation
invariant) with a long-range power-law decay rate.

The parameters of model (2) can be estimated by maximizing the log-likelihood
function [Ogata (1998)] with respect to the parameters of the model:

log(L) =
N

∑

i=1

log
(

λ(ti, xi, yi |Hti )
)

−

∫ T

0

∫ ∫

S
λ(t, x, y|Ht) dx dy dt,(7)

where S × [0, T ] is the space–time observation region. In practice, (7) can be
maximized using the EM algorithm [Veen and Schoenberg (2008)] or numerical
routines [Schoenberg (2013)] that optimize an approximation to (7). The inhomo-
geneous background component, μ(x, y), is often estimated with nonparametric
techniques. For instance, Musmeci and Vere-Jones (1992) and Zhuang, Ogata and
Vere-Jones (2002) employed a kernel smoothing estimator. Alternatively, Ogata
(1998) used bi-cubic B-splines on mainshock events identified by the magnitude-
based clustering algorithm, an iterative procedure the places space–time windows
around the largest events in the catalog and then removes all other events (after-
shocks) inside those windows. In this paper we opt to focus on the weighted kernel
method of Zhuang, Ogata and Vere-Jones (2002) since it provides a way to incor-
porate the estimated probability that each event is a mainshock.

Marsan and Lengliné (2008) proposed the MISD algorithm to nonparamet-
rically estimate the triggering function ν and homogeneous background rate
μ(x, y) = μ for the space–time Hawkes process model (2). Marsan and Lengliné
(2010) showed that their method is an EM-type algorithm under the assumption
that the background rate is constant and the triggering rates are piecewise con-
stant. For the E-step, the branching structure of the process is estimated by com-
puting the probabilities, for each pair (i, j) of earthquakes, of earthquake i having
directly triggered earthquake j , as well as the probability of being a mainshock
for each observed earthquake. For the M-step, the estimated branching structure
is used to update an estimate of the homogeneous background rate and triggering
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function with probability weighted histogram estimators. The two-step procedure
is repeated until the algorithm converges. A similar method is discussed in Mohler
et al. (2011) using a Monte Carlo-based approach that alternates between sam-
pling a realization of the estimated branching structure and updating estimates of
the background rate and triggering function using kernel density estimation on the
sampled data.

3. Nonparametric methods. This section discusses the nonparametric
method of Marsan and Lengliné (2008) to estimate the space–time Hawkes pro-
cess model (2) using histogram estimators. We make the following modifications
to the original algorithm:

1. We incorporate an inhomogeneous background rate;
2. We assume the separability of the triggering function into components for mag-

nitude, time and distance;
3. We perform histogram estimation on the magnitude productivity function κ(m),

temporal triggering density g(t) and spatial triggering density f (r) (where r =
√

x2 + y2).

The above modifications make the method consistent with estimating the standard
form of the triggering function in (3). As in Marsan and Lengliné (2008), we as-
sume the spatial triggering component is isotropic, that is, f (x, y) = f (x2 + y2);
this means the rate of aftershock activity following an earthquake only depends
on the distance r from the earthquake’s epicenter and not direction (circular after-
shock regions). Also, to be consistent with model (2), the background component
μ(x, y) is assumed inhomogeneous in space and constant in time.

3.1. Histogram estimators. Let P be an N × N lower triangular probability
matrix with entries

pij =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

probability earthquake i is an aftershock of j, i > j,

probability earthquake i is a mainshock, i = j,

0, i < j,

(8)

P =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

p11 0 0 · · · 0
p21 p22 0 · · · 0
p31 p32 p33 · · · 0
...

...
...

. . . 0
pN1 pN2 pN3 · · · pNN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

P (0) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 · · · 0
1/2 1/2 0 · · · 0
1/3 1/3 1/3 · · · 0
...

...
...

. . . 0
1/N 1/N 1/N · · · 1/N

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
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The only constraint for matrix P is
∑N

j=1 pij = 1. The rows must sum to 1 since
each earthquake in the branching process is either a mainshock or an aftershock of
a previously occurring earthquake. P (0) is one possible initialization; others will
be considered in Section 4.4. For this matrix,

∑N
i=1 pii can be interpreted as the

estimated number of mainshocks, while
∑N

i=1
∑i−1

j=1 pij (sum of the nondiagonal
elements) is the estimated number of aftershocks.

Below is the MISD algorithm of Marsan and Lengliné (2008) with the
modifications specified at the beginning of this section. For the spatial com-
ponent, we specify a histogram density estimator of h(r) = 2πrf (r) since
∫ ∞
−∞

∫ ∞
−∞ f (x, y) dx dy =

∫ ∞
0 2πrf (r) dr = 1; here h(r) represents the under-

lying probability density function for the distance r between an earthquake and its
aftershock.

ALGORITHM 1. 1. Initialize P (0), set iteration index v = 0.

2. Estimate inhomogeneous background rate μ(x, y):

μ
(v)
kl =

1

T �x�y

∑

Dkl

p
(v)
ii , k = 1, . . . , nbins

x , l = 1, . . . , nbins
y .

3. Estimate triggering components κ(m), g(t) and h(r):

κ
(v)
k =

∑

Ak
p

(v)
ij

N
mag
k

, k = 1, . . . , nbins
m ;

g
(v)
k =

∑

Bk
p

(v)
ij

�tk
∑N

i=1
∑i−1

j=1 p
(v)
ij

, k = 1, . . . , nbins
t ;

h
(v)
k =

∑

Ck
p

(v)
ij

�rk
∑N

i=1
∑i−1

j=1 p
(v)
ij

, k = 1, . . . , nbins
r .

4. Update probabilities P (v+1), letting rij be the epicentral distance between
earthquakes i and j and f (v)(rij ) = h(v)(rij )/(2πrij ):

p
(v+1)
ij =

κ(v)(mj )g
(v)(ti − tj )f

(v)(rij )

μ(v)(xi, yi) +
∑i−1

j=1 κ(v)(mj )g(v)(ti − tj )f (v)(rij )
for i > j,

p
(v+1)
ii =

μ(v)(xi, yi)

μ(v)(xi, yi) +
∑i−1

j=1 κ(v)(mj )g(v)(ti − tj )f (v)(rij )
.

5. If maxi,j |p
(v+1)
ij − p

(v)
ij | < ε, where i ≤ j , then the algorithm has converged

(in practice, we take ε = 10−3). Otherwise, set v ← v + 1 and repeat steps 2–5
until convergence.
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For step 2 of Algorithm 1, the notation is defined as follows:

• nbins
x and nbins

y are the number of bins along the x and y axis for the 2-

dimensional histogram estimator of μ(x, y) (nbins
x · nbins

y bins total).
• Dkl = {i : (k − 1)�x < xi ≤ k�x, (l − 1)�y < yi ≤ l�y}, where �x and �y

are the fixed bin widths along the x and y axes.

For step 3 of Algorithm 1, the notation is defined as follows:

• nbins
m , nbins

t and nbins
r are the number of bins for the histogram estimators of the

magnitude κ , temporal g and spatial h components of the triggering function.
• Ak = {(i, j) : δmk < mj ≤ δmk+1, i > j} is the set of indices of all pairs of

earthquakes whose mainshock magnitudes fall within the kth bin (δmk, δmk+1]

of the histogram estimator for κ(m), where �mk = δmk+1 − δmk is the bin
width.

• N
mag
k =

∑N
j=1 I (δmk < mj ≤ δmk+1) is the number of earthquakes whose mag-

nitudes fall within the interval (δmk, δmk+1].
• Bk = {(i, j)|δtk < ti − tj ≤ δtk+1, i > j} is the set of indices of all pairs of

earthquakes whose time differences fall within the kth bin (δtk, δtk+1] of the
histogram estimator for g(t), where �tk = δtk+1 − δtk is the bin width.

• Ck = {(i, j)|δrk < rij ≤ δrk+1, i > j} is the set of indices of all pairs of earth-
quakes whose epicentral distances rij fall within the kth bin (δrk, δrk+1] of the
histogram estimator for h(r), where �rk = δrk+1 − δrk is the bin width.

The iterations of Algorithm 1 can be interpreted as an EM-type algorithm. In
Appendix A of the supplement [Fox, Schoenberg and Gordon (2016)] we specify
the expected complete data log-likelihood for the space–time Hawkes process (2)
and show that the estimators in steps 2 and 3 maximize an approximation to this
likelihood if we assume that the background and triggering rates are piecewise
constant.

In step 2 of Algorithm 1 the inhomogeneous background rate is estimated with a
histogram estimator which is a generalization of the homogeneous estimator in the
original MISD algorithm. In our modified method, the spatial observation region
S is partitioned into equally sized cells of width �x and height �y. The estimated
rate within each cell is given by the sum of the background probabilities, pii ,
corresponding to earthquakes occurring within that cell, and then dividing the sum
by �x · �y · T to give the rate of mainshocks per unit area per unit time. Note that
the histogram estimator in step 2 reduces to the homogeneous case in Marsan and
Lengliné (2008) when nbins

x = nbins
y = 1 and �x · �y = S (i.e., only one cell equal

to the spatial observation region is specified). Also note that the estimator of g is

itself a density since
∑nbins

t

k=1 �tkĝk = 1, and similarly for the histogram estimator
of h.

The assumption of separability allows for robust computation of model compo-
nents by substantially reducing the number of bins needed to estimate the model
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(only a one-dimensional support is needed for the histogram estimator of each
triggering component). Furthermore, since we perform histogram density estima-
tion on g and f , the output of Algorithm 1 has meaningful interpretation as in
Ogata (1998). For instance, the histogram estimate of the magnitude productivity
κ̂k has the natural interpretation as the estimated mean number of aftershocks di-
rectly triggered by an earthquake with magnitude m falling in the kth magnitude
bin (δmk, δmk+1].

3.2. Variable kernel estimation. A shortcoming of the histogram method for
estimating the background rate in Algorithm 1 is the implicit assumption of con-
stancy within each bin. If a large mainshock occurs, then the contribution of that
event to the background seismicity is limited to the bin in which the event is con-
tained. If a bin does not contain any earthquake events, then the estimated rate of
mainshocks in that bin is zero. Hence, the method does not allow for the estimate
to vary smoothly over the spatial observation region and is highly dependent on the
choice of the partition. This motivates considering a kernel smoothing approach,
where the background rate estimate only depends on the choice of the smooth-
ing parameter (bandwidth) and varies continuously over the pixels in the spatial
observation region.

As an alternative to the histogram approach (Algorithm 1, step 2) for estimat-
ing the inhomogeneous background rate, we adopt the variable bandwidth kernel
estimator used by Zhuang, Ogata and Vere-Jones (2002):

μ(x, y) = γ τ(x, y),(9)

τ(x, y) =
1

T

N
∑

i=1

piikdi
(x − xi, y − yi).(10)

Here the index i runs through all the events in the catalog, γ is a scaling factor,
and k is the Gaussian kernel function,

kdi
(x, y) =

1

2πd2
i

exp
(

−
x2 + y2

2d2
i

)

.

The kernel is weighted by pii , the probability that event i is a mainshock, and
has a varying bandwidth di specified for each event in the catalog. The bandwidth
di is computed by finding the radius of the smallest disk centered at (xi, yi) that
contains at least np other events, and is greater than some small value ε repre-
senting the location error. Zhuang, Ogata and Vere-Jones (2002) suggest taking
np between 15–100 and ε = 0.02 degrees. A variable bandwidth estimate is pre-
ferred since a large fixed bandwidth over-smooths areas with clustered events, and
a small fixed bandwidth under-smooths areas with sparsely located events.

In Zhuang, Ogata and Vere-Jones (2002) the estimate (9) is part of a semipara-
metric model for ETAS, with parameters estimated via maximum likelihood. Since
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our approach is completely nonparametric, the scaling factor γ for the estimate of
the background rate needs to be carefully defined. This leads to the following al-
gorithm for estimating the space–time Hawkes process model (2) with a variable
kernel estimator for the background seismicity.

ALGORITHM 2. 1. Initialize P (0) and compute di for each event i =

1, . . . ,N .

2. Estimate inhomogeneous background rate μ(x, y):

μ(v)(x, y) =

∑N
i=1 p

(v)
ii

Z(v)
τ (v)(x, y).

3. Follow steps 3–5 in Algorithm 1.

The normalizing factor Z(v) at iteration v is chosen so that

1

Z(v)

∫ T

0

∫ ∫

S
τ (v)(x, y) dx dy dt = 1,

and, consequently,

∫ T

0

∫ ∫

S
μ(v)(x, y) dx dy dt =

N
∑

i=1

p
(v)
ii ,

where
∑

i p
(v)
ii is the estimated number of mainshocks occurring in the space–time

observation region. In practice, Z(v) can be found by first computing τ (v)(x, y) as
defined in (10) at each pixel, and then evaluating the integral of τ (v)(x, y) over
S × [0, T ] with a Riemann sum over those pixels.

3.3. Uncertainty quantification for the triggering function. In this section we
propose a procedure that uses the bootstrap [Davison and Hinkley (1997)] to com-
pute error bars for the histogram estimates of the triggering function. The proce-
dure works by simulating many realizations (bootstrap datasets) from a nonpara-
metric Hawkes process model estimated with Algorithms 1 or 2. Then the nonpara-
metric model is re-estimated from the bootstrap datasets to get many replicates of
the histogram estimates of the triggering function. The error bars are computed as
the percentiles of the bootstrap replicates of the histogram estimates in each bin.
The procedure is written out formally below.

ALGORITHM 3. 1. Simulate from the estimated nonparametric model λ̂(t, x,

y|Ht ) over observation region S × [0, T ] to get a bootstrap earthquake dataset
b∗ = {(t∗i , x∗

i , y∗
i ,m∗

i ) : i = 1, . . . ,N∗}.

2. Re-estimate the nonparametric model from bootstrap dataset b∗ to get a boot-
strap replicate λ̂∗(t, x, y|Ht) of the nonparametric model.



NONPARAMETRIC HAWKES PROCESS MODELS 1735

3. Repeat previous steps M times (in practice, we take M = 200).
4. Compute bootstrap error bars for the histogram estimates of the triggering func-

tion using the α/2 and 1 − α/2 percentiles of the bootstrap replicates of the
triggering components:

(

κ̂∗
k;α/2, κ̂

∗
k;1−α/2

)

, k = 1, . . . , nbins
m ;

(

ĝ∗
k;α/2, ĝ

∗
k;1−α/2

)

, k = 1, . . . , nbins
t ;

(

ĥ∗
k;α/2, ĥ

∗
k;1−α/2

)

, k = 1, . . . , nbins
r ,

where k refers to the bin index for the histogram estimate of each triggering
component.

The simulation algorithm used to generate a bootstrap dataset from a fitted non-
parametric Hawkes process model is provided in Appendix B of the supplement
[Fox, Schoenberg and Gordon (2016)].

The bootstrap intervals from Algorithm 3 quantify the sampling variability of
the histogram estimators over multiple realizations of the self-exciting point pro-
cess. This includes the variability due to estimating the mainshock-aftershock
labels probabilistically with the EM algorithm since the probabilities are re-
estimated from the bootstrap datasets. Note that we use what are commonly re-
ferred to as percentile intervals in step 4 of Algorithm 3, and that alternative types
of bootstrap intervals exist [e.g., see Davison and Hinkley (1997)].

4. Simulation results.

4.1. Histogram estimator method. In this section we assess the performance
of the nonparametric method described in Algorithm 1 to recover an earth-
quake model from synthetic catalogs. For this study, earthquake occurrences
are simulated from the ETAS model with parametric triggering function given
by equations (4)–(6). The parameter values are the maximum likelihood esti-
mates (A,α,p, c, d, q) = (0.322,1.407,1.121,0.0353,0.0159,1.531) from Ta-
ble 2, row 8 of Ogata (1998) (parameters estimated from earthquake data over
a 36∼42◦N latitude and 141∼145◦E longitude region off the east coast of Tohoku
District, Japan, with time span 1926–1995). Earthquake magnitudes are gener-
ated independently of other model components according to an exponential den-
sity J (m) = βe−β(m−mc) with β = ln(10) (equivalent to a Gutenberg–Richter
b-value equal to 1). The observation region for the simulation is S × [0, T ] =
[0,4] × [0,6] × [0,25,000], and the magnitude cutoff is mc = 0. The inhomoge-
neous background rate is specified by partitioning the spatial observation region
S into 4 equally sized cells with the varying rates shown in Figure 1. An example
of a simulated realization is shown in Figure 2. For a description of the simulation
procedure for ETAS, please see Algorithm C from Zhuang, Ogata and Vere-Jones
(2004).
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FIG. 1. Inhomogeneous background rate used for the simulation study in Section 4.1; true rates

are displayed in each cell (numbered 1–4 for convenience).

We evaluate the performance of the nonparametric method by examining the
bias, standard deviation and root-mean-square error (RMSE) of the estimates over
200 simulated realizations of the specified ETAS model. For the inhomogeneous
background rate these quantities are computed as

Avg(μ̂kl) =
1

200

200
∑

i=1

μ̂i
kl,(11)

Bias(μ̂kl) = Avg(μ̂kl) − μkl,(12)

FIG. 2. Simulated realization of ETAS model (4)–(6) with background rate varying in each quad-

rant; (a) epicentral locations, and (b) space–time plot of simulated earthquakes.
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TABLE 1
Average, bias, standard deviation and RMSE for the estimates of the inhomogeneous background

rate from the simulation study in Section 4.1. Cell numbers correspond to Figure 1

Cell Truth Avg Bias SD RMSE

1 0.001 0.00137 0.00037 0.00014 0.00039
2 0.005 0.00597 0.00097 0.00030 0.00101
3 0.005 0.00597 0.00097 0.00031 0.00101
4 0.001 0.00138 0.00038 0.00013 0.00040

SD(μ̂kl) =

√

√

√

√

1

200

200
∑

i=1

(

μ̂i
kl − Avg(μ̂kl)

)2
,(13)

RMSE(μ̂kl) =

√

√

√

√

1

200

200
∑

i=1

(

μ̂i
kl − μkl

)2
,(14)

where μ̂i
kl and μkl are the estimate from the ith simulation and true value of the

background rate in the (k, l) cell, respectively. The results for the estimation of the
inhomogeneous background rate, shown in Table 1, reveal that the nonparametric
method (Algorithm 1) is able to recover the sharp differences between the rates in
each cell with reasonably small RMSE. However, the rates are overestimated in
each cell, and the bias contributes more to the RMSE than the standard deviation
of the estimates. In the next section we show that this overestimation bias is due
to boundary effects in the simulation induced by excluding aftershocks that occur
outside the space–time observation region.

Figure 3 shows the histogram estimates of the magnitude, temporal and spatial
components of the triggering function from 200 realizations of the specified ETAS
model. The estimates of g(t) and h(r) have equally spaced bins on a logarithmic
scale and are plotted on a log–log scale since the true densities are power law. The
estimates of κ(m) have equally spaced magnitude bins and are plotted on a log
scale. Overall, the histogram estimates in Figure 3 appear to successfully recover
the shape of each component of the triggering function governing the simulation
(i.e., the black curves in this figure).

We quantify the performance of the histogram estimator of each triggering func-
tion component by examining its bias, standard deviation and RMSE computed as

Avg(ĝk) =
1

200

200
∑

i=1

ĝi
k,(15)

Bias(ĝk) = Avg(ĝk) − ḡk,(16)
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FIG. 3. Magnitude, temporal and distance components for the triggering function from the sim-

ulation study in Section 4.1. The black curves are the true triggering components governing the

simulation, and the black horizontal lines are the binned average values of these functions. The gray

horizontal lines are the histogram estimates from 200 simulations of ETAS; the dark gray boxes

correspond to the pointwise 0.025 and 0.975 percentiles of the estimates in each bin.

SD(ĝk) =

√

√

√

√

1

200

200
∑

i=1

(

ĝi
k − Avg(ĝk)

)2
,(17)

RMSE(ĝk) =

√

√

√

√

1

200

200
∑

i=1

(

ĝi
k − ḡk

)2
,(18)

where ĝi
k is the estimate of g(t) over bin k for the ith simulation, and ḡk is the aver-

age value of the g(t) over bin k [i.e., ḡk = 1
�tk

∫ δtk+1
δtk

g(t) dt]; equations (15)–(18)

are defined similarly for ĥk and κ̂k . The values for these performance measures are
given in Tables 2–4.

Tables 3 and 4 reveal that the density estimates of g(t) and h(r) are most rea-
sonable in the midrange of each histogram’s support. The large standard deviations

TABLE 2
Average, bias, standard deviation and RMSE for the histogram estimates of κ(m) from the

simulation study in Section 4.1. Bias and RMSE are evaluated using the binned average values of

κ(m), which are provided in the column labeled Truth

Bin Truth Avg Bias SD RMSE

(0, 0.679] 0.539 0.28 −0.26 0.0183 0.26
(0.679, 1.36] 1.4 0.724 −0.677 0.0516 0.679
(1.36, 2.04] 3.64 1.88 −1.76 0.16 1.77
(2.04, 2.72] 9.47 4.9 −4.57 0.603 4.61
(2.72, 3.39] 24.6 12.7 −11.9 2.61 12.2
(3.39, 4.07] 64 34.5 −29.4 12.9 32.1
(4.07, 4.75] 166 88.4 −77.8 23.9 81.4
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TABLE 3
Average, bias, standard deviation and RMSE for the histogram estimates of g(t) from the simulation

study in Section 4.1. Bias and RMSE are evaluated using the binned average values of g(t), which

are provided in the column labeled Truth

Bin Truth Avg Bias SD RMSE

(0.000052, 0.00022] 3.41 5.53 2.12 3.71 4.27
(0.00022, 0.00091] 3.37 4.93 1.57 1.96 2.51
(0.00091, 0.0038] 3.19 4.86 1.67 1.02 1.95
(0.0038, 0.016] 2.62 3.96 1.34 0.417 1.4
(0.016, 0.066] 1.51 2.26 0.748 0.157 0.764
(0.066, 0.27] 0.534 0.795 0.261 0.05 0.265
(0.27, 1.1] 0.132 0.196 0.0643 0.0123 0.0655
(1.1, 4.8] 0.0282 0.0412 0.013 0.00271 0.0132
(4.8, 20] 0.00577 0.00811 0.00234 0.000689 0.00244
(20, 83] 0.00117 0.00157 0.000403 0.000153 0.000431
(83, 345] 0.000236 0.000292 5.55E-05 4.65E-05 7.24E-05
(345, 1439] 4.77E-05 3.18E-05 −1.59E-05 1.56E-05 2.23E-05
(1439, 5998] 9.63E-06 3.67E-07 −9.26E-06 1.37E-06 9.36E-06
(5998, 25,000] 1.94E-06 3.21E-11 −1.94E-06 4.5E-10 1.94E-06

in the first two rows of Tables 3 and 4 are due to the very small logarithmically
spaced bin sizes. Tables 3 and 4 also show that the density estimates become neg-
atively biased over bins on the right-tail ends of g(t) and h(r). This can also be
seen clearly in Figure 3. The role of boundary effects on the estimates of the tail
ends of the triggering densities will be investigated in the next section.

TABLE 4
Average, bias, standard deviation and RMSE for the histogram estimates of h(r) from the

simulation study in Section 4.1. Bias and RMSE are evaluated using the binned average values of

h(r), which are provided in the column labeled Truth

Bin Truth Avg Bias SD RMSE

(0.0043, 0.0085] 0.426 0.511 0.0847 0.283 0.296
(0.0085, 0.017] 0.826 0.988 0.162 0.284 0.327
(0.017, 0.033] 1.55 1.89 0.337 0.288 0.443
(0.033, 0.064] 2.58 3.08 0.5 0.256 0.562
(0.064, 0.13] 3.11 3.68 0.567 0.194 0.599
(0.13, 0.25] 2.14 2.45 0.309 0.1 0.325
(0.25, 0.49] 0.846 0.909 0.0625 0.0495 0.0797
(0.49, 0.95] 0.246 0.209 −0.0369 0.0215 0.0427
(0.95, 1.9] 0.064 0.0241 −0.0398 0.00702 0.0405
(1.9, 3.7] 0.0161 0.000118 −0.016 0.000303 0.016
(3.7, 7.2] 0.00402 1.24E-10 −0.00402 1.76E-09 0.00402
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Tables 3 and 4 also show a positive bias in the histogram density estimates for
t ∈ (0.000052,345) and r ∈ (0.0043,0.49). The reason for this is that the his-
togram density estimates are constrained to integrate to one over their finite sup-
ports, while the true densities governing the simulation have infinite supports and
integrate to one over the positive real line. For instance, the true temporal density
g(t) has 80% of its mass below 25,000, while the density estimate ĝ(t) has 100%
of its mass below 25,000.

Table 2 and Figure 3 show that the nonparametric method recovers the under-
lying exponential form of the magnitude productivity κ(m) with reasonable sam-
pling variation. However, the productivity function is underestimated in each bin;
one explanation is that many aftershocks in the simulation fall outside the obser-
vation region and are not included in the estimation. Table 2 also shows that the
standard deviation of the estimates increases with magnitude, although this is ex-
pected as there are only a few large magnitude events in each simulation with
which to estimate the productivity.

To illustrate the performance of the bootstrap procedure for uncertainty quan-
tification (Section 3.3), Figure S1 and Table S1 in Appendix C of the supplement
[Fox, Schoenberg and Gordon (2016)] show a realization of the bootstrap inter-
vals for one nonparametric estimate of the specified ETAS model. Note that the
bootstrap intervals only quantify the sampling variability of the estimates, and are
therefore affected by the biases in the estimates caused by boundary effects.

4.2. Boundary issues. When simulating earthquake catalogs from the ETAS
model the mainshocks are restricted to occur within the space–time observation
region S ×[0, T ]. However, the times and locations of aftershocks, simulated from
the triggering function components g and h, may occur outside of this boundary.
In the last section, we neglected boundary effects, and only used simulated data
occurring within the space–time observation region to estimate the model using
Algorithm 1.

To evaluate the boundary effects on the estimation, we include simulated after-
shocks which occur within a distance εr of the spatial boundary and a time εt of
the temporal boundary, that is, all aftershocks occurring within [−εr ,4 + εr ] ×

[−εr ,6 + εr ] × [0,25,000 + εt ]. We then run Algorithm 1 on the expanded simu-
lation data, and slightly modify step 4 so that μ(xi, yi) = 0 if event (ti, xi, yi,mi)

falls outside of S × [0, T ].
To measure the change in performance of Algorithm 1 on estimating the inho-

mogeneous background rate as we increase εr and εt , we use the RMSE evaluated
over all cells (k, l):

√

√

√

√

1

nbins
x nbins

y

∑

k,l

(μ̂kl − μkl)2.(19)
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FIG. 4. RMSE of the background rate, equation (19), for increasing values of εr and εt . RMSEs

are averaged from 10 realizations of ETAS; the vertical bars cover one sample standard deviation in

the RMSE values, above and below the mean.

We simulate the ETAS model 10 times using the same parameters and background
rate as in Section 4.1, with mainshocks again restricted to S × [0, T ] = [0,4] ×
[0,6] × [0,25,000], but aftershocks allowed to occur outside that region. For each
simulation, the RMSE (19) is computed for increasing values of εr and εt . Figure 4
shows the mean RMSE from the 10 realizations at selected values of εr and εt ; the
vertical lines represent a standard deviation in RMSE above and below the mean.
The incorporation of aftershocks falling outside the space–time observation region
significantly improves the performance of the estimation of the background rate.
The RMSE appears to level off when εr = 100.5 = 3.16 and εt = 103.5 = 3162.28.

Tables 5–8 show the results from simulating and re-estimating ETAS with Al-
gorithm 1 200 times with a boundary correction of εr = 1000 and εt = 106. Again,
we simulate events with the same parameters and space–time region as Section 4.1.
The only difference is that in the estimation we use aftershocks occurring within a
distance εr = 1000 and time εt = 106 of the boundary of the observation region.

The measures in Table 5 show substantial improvement in the estimation of
the inhomogeneous background rate when compared to Table 1, which neglected
boundary effects. The consistent over-prediction of the rates is no longer present,
and the bias in each cell is negligible once the boundary effects are accounted for.

The histogram estimates of the triggering function in Figure 5 also show much
improvement when compared to Figure 3. After applying the boundary correction,
the large negative biases in the right-tail ends of densities g(t) and h(r) are no
longer present, and the estimates of the magnitude productivity κ(m) appear more
centered around the true value.
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TABLE 5
Average, bias, standard deviation and RMSE for the estimates of the inhomogeneous background

from the simulation study with boundary correction discussed in Section 4.2. Cell numbers

correspond to Figure 1

Cell Truth Avg Bias SD RMSE

1 0.001 0.000989 −0.000011 0.000096 0.000096
2 0.005 0.005034 0.000034 0.000209 0.000212
3 0.005 0.005038 0.000038 0.000209 0.000213
4 0.001 0.001001 0.000001 0.000094 0.000094

Tables 6–8 also quantify a substantial reduction in the bias and RMSE of the
triggering estimates when compared to Tables 2–4.

Note that a positive bias is present in the histogram estimates of g(t) (Table 7)
even after applying the boundary correction εr = 1000 and εt = 106. However,
this is perhaps not surprising since the power-law density g(t) governing the sim-
ulation has 12.5% of its mass above 106. Further simulation studies have also
demonstrated that applying a larger boundary correction (εt > 106 and εr > 1000)
further reduces the bias in the estimation of the triggering densities and magnitude
productivity.

Illustratively, Figure S2 and Table S2 in Appendix C of the supplement [Fox,
Schoenberg and Gordon (2016)] show the bootstrap intervals (Section 3.3) for
one nonparametric estimate the specified ETAS model with boundary correction.
Since the boundary correction reduces the biases in the estimates, the correspond-
ing bootstrap intervals are also substantially less biased (i.e., when compared to
Figure S1 and Table S1).

4.3. Variable kernel estimation method. In this section we use simulation to
assess the ability of Algorithm 2 to recover the components of the space–time

TABLE 6
Average, bias, standard deviation and RMSE for the histogram estimates of κ(m) from the

simulation study with boundary correction discussed in Section 4.2. Bias and RMSE are evaluated

using the binned average values of κ(m), which are provided in the column labeled Truth

Bin Truth Avg Bias SD RMSE

(0, 0.679] 0.539 0.423 −0.116 0.0123 0.117
(0.679, 1.36] 1.4 1.08 −0.322 0.0414 0.325
(1.36, 2.04] 3.64 2.77 −0.87 0.155 0.884
(2.04, 2.72] 9.47 7.1 −2.37 0.546 2.43
(2.72, 3.39] 24.6 18.4 −6.25 2.3 6.66
(3.39, 4.07] 64 45.2 −18.8 10.3 21.4
(4.07, 4.75] 166 128 −37.8 33.9 50.8
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TABLE 7
Average, bias, standard deviation and RMSE for the histogram estimates of g(t) from the simulation

study with boundary correction discussed in Section 4.2. Bias and RMSE are evaluated using the

binned average values of g(t), which are provided in the column labeled Truth

Bin Truth Avg Bias SD RMSE

(0.000052, 0.00022] 3.41 3.77 0.358 2.39 2.42
(0.00022, 0.00091] 3.37 3.88 0.516 1.11 1.22
(0.00091, 0.0038] 3.19 3.63 0.443 0.59 0.738
(0.0038, 0.016] 2.62 3.05 0.426 0.249 0.494
(0.016, 0.066] 1.51 1.76 0.245 0.0953 0.263
(0.066, 0.27] 0.534 0.616 0.0819 0.0262 0.086
(0.27, 1.1] 0.132 0.152 0.0197 0.00717 0.021
(1.1, 4.8] 0.0282 0.0322 0.00406 0.00158 0.00436
(4.8, 20] 0.00577 0.00662 0.000853 0.000372 0.00093
(20, 83] 0.00117 0.00132 0.000155 9.42E-05 0.000182
(83, 345] 0.000236 0.000273 3.65E-05 2.39E-05 4.36E-05
(345, 1439] 4.77E-05 5.6E-05 8.3E-06 5.78E-06 1.01E-05
(1439, 5998] 9.63E-06 1.11E-05 1.49E-06 1.45E-06 2.08E-06
(5998, 25,000] 1.94E-06 2.22E-06 2.76E-07 2.61E-07 3.8E-07

Hawkes process model (2) with a smoothly varying background rate. Here we
simulate from a parametric ETAS model with the same triggering function and pa-
rameter values as Section 4.1. However, instead of the background rate in Figure 1
with constant rates in each cell on a 2 × 2 grid, we simulate from the smoother
background rate shown in Figure 6(a). This inhomogeneous background rate was

TABLE 8
Average, bias, standard deviation and RMSE for the histogram estimates of h(r) from the

simulation study with boundary correction discussed in Section 4.2. Bias and RMSE are evaluated

using the binned average values of h(r), which are provided in the column labeled Truth

Bin Truth Avg Bias SD RMSE

(0.0043, 0.0085] 0.426 0.402 −0.0237 0.161 0.163
(0.0085, 0.017] 0.826 0.839 0.0126 0.188 0.188
(0.017, 0.033] 1.55 1.54 −0.00707 0.171 0.171
(0.033, 0.064] 2.58 2.57 −0.0119 0.16 0.16
(0.064, 0.13] 3.11 3.12 0.00374 0.127 0.127
(0.13, 0.25] 2.14 2.17 0.0251 0.0776 0.0815
(0.25, 0.49] 0.846 0.851 0.00498 0.0351 0.0355
(0.49, 0.95] 0.246 0.245 −0.00143 0.0149 0.0149
(0.95, 1.9] 0.064 0.0628 −0.00121 0.00582 0.00595
(1.9, 3.7] 0.0161 0.0155 −0.00061 0.00207 0.00216
(3.7, 7.2] 0.00402 0.00387 −0.000151 0.00063 0.000648
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FIG. 5. Estimates of the triggering function components from 200 ETAS simulations, with boundary

correction for aftershock activity εr = 1000 and εt = 106.

generated by performing fixed bandwidth kernel density estimation over the loca-
tions of 883 earthquakes of magnitude 5.0 or greater, longitude 141∼145◦E, lati-
tude 36∼42◦N, and time between 16 Jan 2007 to 28 Dec 2014 [data gathered from
http://www.quake.geo.berkeley.edu/anss/catalog-search.html with the same spatial
observation region as Ogata (1998)]. To simulate from the kernel smoothed back-
ground rate, in Figure 6(a) we use the thinning procedure of Lewis and Shedler
(1979) and set the expected number of background events equal to 2000.

Figure 6(b) shows the probability weighted variable kernel estimate (Algo-
rithm 2, step 2) of the inhomogeneous background rate from a single simulated
realization of the ETAS model. The epicentral location and space–time plots of the
simulated earthquake data used for this estimate are shown in Figure 7. The kernel
estimate of the background rate depends on the smoothing parameter np (Sec-
tion 3.2). Here we choose np = 50, since this value gives the lowest RMSE (19)

FIG. 6. (a) True background rate for simulation study in Section 4.3. (b) Estimate of background

rate from one simulated realization of ETAS, and (c) mean estimate from 200 realizations.

http://www.quake.geo.berkeley.edu/anss/catalog-search.html
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FIG. 7. Simulated realization of ETAS model (4)–(6) with smooth inhomogeneous background

rate; (a) epicentral locations, and (b) space–time plot of simulated earthquakes. The dashed

rectangles in each plot are the spatial and temporal boundaries for the observation region

S × [0, T ] = [0,4] × [0,6] × [0,25,000]. Aftershocks occurring within a distance εr = 3 and time

εt = 3000 of the boundary are plotted outside the rectangle. The asterisks denote events with magni-

tudes m > 4.

for np ∈ {10,15, . . . ,95,100}. The kernel estimates are evaluated on a 100 × 100
pixel grid [making nbins

x = nbins
y = 100 when evaluating (19)].

As discussed in Section 4.2, the nonparametric estimation of ETAS is sensitive
to boundary effects. As a boundary correction for the estimation with Algorithm 2,
we allow for aftershocks occurring within εr = 3 degrees and εt = 3000 days of
the space–time boundary S × [0, T ] = [0,4] × [0,6] × [0,25,000]. Note that the
selected values, εr = 3 and εt = 3000, correspond to where the RMSE in Figure 4
begins to level off. The panels in Figure 7 show the boundary (dashed rectangles)
and simulated aftershocks occurring in the specified region outside the boundary.

The estimate in Figure 6(b) resembles the overall form of the true background
intensity [Figure 6(a)] and recovers many of the mainshock hotspots. However,
near location (2.06, 2.33), a hotspot appears to have been erroneously estimated,
that is, a false positive has been identified. This is due to the large magnitude event
(m > 4) that occurred in the simulation at this location, as denoted by the asterisk
in Figure 7(a). The mean of 200 estimates of the background rate from 200 simu-
lated realizations of ETAS is shown in Figure 6(c) and appears to closely resemble
the true background rate. Hence, while there may be discrepancies for estimates
from a single realization due to sampling variation, the mean of the variable kernel
estimates from repeated simulation appears to correctly recover all major hotspots
in the true background intensity.

The average of the estimated total number of mainshock events over the 200
simulations is 2074.85 with a bias of 74.85, standard deviation of 76.22, and root-
mean-square error of 106.83. Note that while a positive bias is present, it is less
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FIG. 8. Estimate of the smoothly varying background rate using the histogram estimation method

(Algorithm 1, step 2) on one simulated realization of the ETAS model specified in Section 4.3.

than 4% of the average estimate, and the standard deviation of the estimates is
slightly larger than the bias (which is not the case when neglecting boundary ef-
fects as in Table 1).

Figure 8 shows the estimate of the smooth background rate in Figure 6(a) when
applying the histogram estimator approach (Algorithm 1, step 2) to one simulated
realization of ETAS. The histogram estimate shows substantial variability between
the rates in nearby cells. The recovered mainshock hotspots are also much more
discernible with the kernel estimate [Figure 6(b)]. This clearly demonstrates the
advantage of using the kernel method (Algorithm 2) when it is believed that the
true background seismicity varies smoothly over the observation region.

Figure 9 shows the histogram estimates of the triggering function from applying
Algorithm 2 to 200 realizations of the specified ETAS model. The estimates in this
figure appear to successfully recover the shape of each component of the triggering
function governing the simulation. The most noticeable discrepancies seem to be
in the right tail for estimates of g(t) and h(r); these are likely due to persistent
boundary effects.

Tables 9–11 give the bias, standard deviation and RMSE of the triggering esti-
mates as defined in equations (15)–(18). For reasons discussed in Section 4.1 and
4.2, we see a positive bias in the estimates of g(t) over the left and mid-range of
its support, and a negative bias in the estimates of the magnitude productivity. The
bias in the estimates of h(r) (Table 11) is quite reasonable, and contributes substan-
tially less to the RMSE than the standard deviation for most bins. All tables show
very reasonable standard deviations in the histogram estimates as well. Boundary
correction values larger than εr = 3 and εt = 3000 may result in more accurate
histogram estimates, however, the selected values seem sufficient for estimating
the background intensity and recovering the shapes of the triggering components.

The results of this simulation study suggest that the nonparametric estimates
appear to approximate both the true background and triggering components of the
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FIG. 9. Magnitude, temporal and distance components for the triggering function from the simula-

tion study in Section 4.3. The black curves are the true triggering components used for the simulation,
and the black horizontal lines are the binned average values of these functions. The gray horizontal

lines in each bin are the histogram estimates from 200 simulations of ETAS; the dark gray boxes

correspond to the pointwise 0.025 and 0.975 percentiles of the estimates in each bin.

process quite accurately. Note that, according to the Hawkes model, the proper-
ties (magnitude distribution, magnitude productivity, spatial and temporal distri-
butions of triggered events) of mainshocks and aftershocks are identical, and thus
we are only estimating one triggering function and one spatial background rate.
Although the problem of nonidentifiability is often encountered when estimating
both clustering and nonstationarity simultaneously, here this does not appear to be
a problem since the form of the triggering function and spatial background rate
are posited not to change over time. Hence, if the process is observed for an in-
finitely long time, one could recover both the true triggering function and spatial
background rate up to any boundary effects.

TABLE 9
Average, bias, standard deviation and RMSE for the histogram estimates of κ(m) from the

simulation study in Section 4.3. Bias and RMSE are evaluated using the binned average values of

κ(m), which are provided in the column labeled Truth

Bin Truth Avg Bias SD RMSE

(0, 0.529] 0.478 0.34 −0.138 0.0138 0.139
(0.529, 1.06] 1.01 0.705 −0.302 0.0319 0.303
(1.06, 1.59] 2.12 1.49 −0.628 0.0876 0.634
(1.59, 2.12] 4.46 3.12 −1.34 0.255 1.37
(2.12, 2.65] 9.4 6.47 −2.92 0.7 3.01
(2.65, 3.17] 19.8 13.7 −6.09 2.12 6.45
(3.17, 3.7] 41.6 28.6 −13.1 6.66 14.7
(3.7, 4.23] 87.7 61.7 −26 16.4 30.8
(4.23, 4.76] 185 123 −62.1 30.2 69.1
(4.76, 5.29] 389 288 −101 52.5 114
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TABLE 10
Average, bias, standard deviation and RMSE for the histogram estimates of g(t) from the simulation

study in Section 4.3. Bias and RMSE are evaluated using the binned average values of g(t), which

are provided in the column labeled Truth

Bin Truth Avg Bias SD RMSE

(0.000096, 0.0003] 3.41 4.36 0.958 2.56 2.73
(0.0003, 0.00095] 3.36 4.51 1.15 1.33 1.76
(0.00095, 0.003] 3.23 4.18 0.955 0.848 1.28
(0.003, 0.0094] 2.86 3.76 0.893 0.416 0.986
(0.0094, 0.03] 2.12 2.76 0.645 0.219 0.681
(0.03, 0.093] 1.16 1.52 0.361 0.0907 0.373
(0.093, 0.29] 0.458 0.599 0.141 0.0321 0.145
(0.29, 0.93] 0.147 0.192 0.0447 0.0106 0.046
(0.93, 2.9] 0.0428 0.0554 0.0126 0.00322 0.013
(2.9, 9.2] 0.0121 0.0155 0.00346 0.00104 0.00362
(9.2, 29] 0.00335 0.00432 0.000965 0.000342 0.00102
(29, 91] 0.000929 0.00118 0.000256 0.000118 0.000282
(91, 286] 0.000257 0.000335 7.74E-05 4.66E-05 9.04E-05
(286, 898] 7.11E-05 9.43E-05 2.32E-05 1.56E-05 2.8E-05
(898, 2827] 1.97E-05 3.29E-05 1.32E-05 6.35E-06 1.46E-05
(2827, 8898] 5.44E-06 2.87E-06 −2.58E-06 1.41E-06 2.94E-06
(8898, 28,000] 1.51E-06 8.03E-10 −1.5E-06 5.99E-09 1.5E-06

TABLE 11
Average, bias, standard deviation and RMSE for the histogram estimates of h(r) from the

simulation study in Section 4.3. Bias and RMSE are evaluated using the binned average values of

h(r), which are provided in the column labeled Truth

Bin Truth Avg Bias SD RMSE

(0.003, 0.0053] 0.277 0.298 0.021 0.249 0.25
(0.0053, 0.0094] 0.488 0.518 0.0294 0.202 0.204
(0.0094, 0.017] 0.854 0.896 0.0422 0.209 0.214
(0.017, 0.029] 1.46 1.46 0.00725 0.238 0.238
(0.029, 0.052] 2.31 2.33 0.0181 0.203 0.203
(0.052, 0.092] 3.07 3.13 0.0574 0.194 0.202
(0.092, 0.16] 2.87 2.94 0.0719 0.125 0.144
(0.16, 0.29] 1.72 1.76 0.0443 0.0775 0.0893
(0.29, 0.51] 0.718 0.731 0.0135 0.0379 0.0403
(0.51, 0.9] 0.248 0.251 0.0028 0.0196 0.0198
(0.9, 1.6] 0.0796 0.0781 −0.00158 0.0089 0.00903
(1.6, 2.8] 0.0249 0.0263 0.00138 0.0039 0.00414
(2.8, 5] 0.0077 0.00767 −3.55E-05 0.00146 0.00146
(5, 8.8] 0.00238 0.000403 −0.00198 0.000217 0.00199
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Illustratively, Figure S3 and Table S3 in Appendix C of the supplement [Fox,
Schoenberg and Gordon (2016)] show the bootstrap intervals (Section 3.3) for
one nonparametric estimate of the specified ETAS model with a smoothly varying
background rate.

4.4. Sensitivity to initial conditions. The nonparametric estimation methods
described in Section 3 require an initialization of the mainshock-aftershock prob-
abilities (8) in matrix P . For the simulation studies we used the initialization

pij =

{

1/i, j ≤ i; i = 1, . . . ,N,

0, otherwise.
(20)

We can consider other initializations, for instance,

pij =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1, i = j = 1,

α, i = j ; i > 1,
1 − α

i − 1
, j < i,

0, otherwise,

(21)

where 0 < α < 1. Setting α = 0.5, for example, means that at initialization we
assign a 0.5 mainshock probability to each event i = 2, . . . ,N .

Figure 10 shows the convergence of the nonparametric estimates of the total
mainshock rate when using different initial values for probability matrix P . The

FIG. 10. Convergence of estimates of the total mainshock rate using different initial conditions.
The left panel shows the convergence of Algorithm 1 applied to one realization of the ETAS model

specified in Section 4.1. The right panel shows the convergence of Algorithm 2 applied to one re-

alization of the ETAS model specified in Section 4.3. The horizontal line in each panel is the true

total number of mainshocks for each simulation. Initial conditions 1–4 are given by (20) and (21) for

α = 0.1,0.5,0.9, respectively.
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FIG. 11. Epicentral locations (a) and space–time plot (b) of earthquakes, magnitude 4.0 or greater,
occurring off the east coast of the Tohoku District, Japan. The asterisk corresponds to the 2011
Tohoku earthquake of magnitude 9.0.

first panel shows the estimated total number of mainshocks at each iteration of
Algorithm 1 applied to one simulated realization of the ETAS model specified in
Section 4.1 (using boundary correction for aftershocks εt = 106 and εr = 1000).
The second panel shows the estimated total number of mainshocks at each iteration
of Algorithm 2 applied to one simulated realization of the ETAS model specified
in Section 4.3. We considered the initialization in (20), as well as (21) for α =

0.1,0.5,0.9. These initializations are labeled 1–4, respectively, in Figure 10.
Figure 10 demonstrates that Algorithms 1 and 2 are robust to choice of initial-

ization of the probability matrix P since the algorithms converge to the same total
mainshock rate for a wide variety of initial values.

5. Application to Japan dataset. We apply the MISD algorithm (Algo-
rithm 2) to earthquake data from the ANSS catalog http://www.quake.geo.
berkeley.edu/anss/catalog-search.html. The dataset contains 6075 earthquakes of
magnitude 4.0 or greater occurring over a 10 year period between 5 Jan 2005–31
Dec 2014. The spatial window is a 141∼145◦E longitude and 36∼42◦N latitude
region off the east coast of the Tohoku District in northern Japan. This is the same
spatial region analyzed in Ogata (1998), although the time window in this study
is different. An epicentral and space–time plot of the data is shown in Figure 11,
with the asterisk corresponding to the 2011 magnitude 9.0 Tohoku earthquake.

The variable kernel estimate of the background rate (Algorithm 2, step 2) is
shown in Figure 12. Here we chose the smoothing parameter np = 50, corre-
sponding to the best choice for the simulation study in Section 4.3. Figure 12
is an important plot for assessing seismic risk since it shows the estimate of the

http://www.quake.geo.berkeley.edu/anss/catalog-search.html
http://www.quake.geo.berkeley.edu/anss/catalog-search.html
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FIG. 12. Estimate of background rate (Algorithm 2, step 2) for Japan earthquake dataset (Sec-

tion 5). Rate values are in events/day/degree2.

underlying spatially inhomogeneous Poisson processes μ(x, y) for mainshock ac-
tivity which persists over time in the region. In total, the algorithm estimated there
to have been 801 mainshocks, or 13.2% of the total seismicity; this suggests that
most of the events in the dataset were aftershocks, temporally and spatially linked
to previously occurring earthquakes. Moreover, a comparison of Figures 11(a) and
12 reveal that most of the earthquakes observed in the lower right-hand quadrant
were aftershocks.

The histogram estimate of each triggering function component is shown in Fig-
ure 13. The bootstrap error bars (Section 3.3) were formed by taking the 0.025 and
0.975 percentiles from 200 bootstrap replicates of the fitted nonparametric model.

FIG. 13. Magnitude, temporal and distance components for the triggering function estimated from

the Japan earthquake dataset. The histogram estimate of each component is plotted with black hori-

zontal lines and gray bootstrap error bars. The black curves are the parametric estimates from Ogata

(1998) in the same region, and the dashed horizontal lines are the binned average values of these

functions.
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The density estimates of g(t) and h(r) both exhibit power-law type behavior.
The bootstrap error bars are centered around both density estimates and indicate
very reasonable sampling variability for t ∈ (0.001,1000) days and r ∈ (0.01,4)

degrees. Note that the estimates at the right-tail ends of these distributions (t >

1000 days and r > 4 degree) are perhaps unreliable and underestimate the truth
due to boundary effects, as demonstrated in the simulation study (Section 4.2).

The estimate of the magnitude productivity function κ(m) appears to follow an
exponential form. The error in the estimation of the productivity increases with
magnitude, as also demonstrated in the simulation study. In the dataset there are
only 3 events of magnitude 7.4 or above, and hence greater sampling variation
for the estimates of the mean productivity for large magnitude events. The esti-
mate in the last bin was estimated with only one event, namely, the magnitude 9.0
Tohoku earthquake. It appears that the magnitude productivity for this event is un-
derestimated; this may be due to boundary effects since many of the aftershocks
may have occurred outside the observation region. Moreover, a bias in the com-
pleteness magnitude (i.e., minimum magnitude above which all earthquakes are
reliably detected) has been reported in the first few hours following the Tohoku
earthquake [Lengliné et al. (2012)]. This could also explain the underestimation of
the magnitude productivity since many events may not have been detected.

Superimposed on Figure 13 are the parametric estimates of the ETAS model
given by equations (4)–(6) for this same region from Table 2, row 11 of Ogata
(1998). Amazingly, the parametric and nonparametric estimates agree closely. This
suggests that seismicity in this region is well captured by an ETAS model with
power-law g(t) and f (r), and exponential κ(m). Since our dataset was gathered
over a different time window than Ogata (1998), the results also suggest that prop-
erties of aftershock sequences in this region are rather invariant over time.

Note that in Figure 13 the nonparametric estimate of the triggering density g(t)

is slightly higher than what Ogata previously estimated for small time intervals t .
This could perhaps be attributable to increased accuracy of seismometers in this
region detecting aftershocks occurring shortly after large earthquakes more accu-
rately than previously.

The bootstrap technique described in Section 3.3 can also be used for uncer-
tainty quantification for the total mainshock rate by taking the 0.025 and 0.975
percentiles of the replicates of the number of mainshock events estimated from the
bootstrap datasets. However, the bootstrap interval (797, 1003) obtained for the
Japan data is not centered around the estimated value of 801, and demonstrates a
tendency for the bootstrap procedure to overestimate the number of mainshocks.
This is perhaps not surprising since the estimates of the total mainshock rate in
the Section 4.3 simulation study also showed a positive bias. Thus, the estimated
value of 801 is mostly likely larger than the true total for this region. Moreover,
when generating bootstrap replicates from the fitted nonparametric model, the re-
estimates of the total mainshock rate are affected by similar biases, which lead to
an asymmetrical percentile interval.
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6. Discussion.

6.1. Additional remarks about boundary issues. The results from the simula-
tion studies revealed that the nonparametric estimates are sensitive to boundary
effects when only considering events that occur within the observation region. In
Section 4.2, we demonstrated that these boundary effects become negligible once
aftershocks occurring outside the observation region are included in the estima-
tion. However, it is important to note that this proposed boundary correction is
only applicable to simulated data and not to real earthquake data. In the simula-
tion, mainshocks are constrained to occur within the observation region, but may
trigger aftershocks outside of this region. For the boundary correction we are us-
ing the additional information that events occurring outside the observation region
must be aftershocks. For real earthquake data the boundary correction cannot be
applied since it is unknown whether events outside the observation region are ei-
ther mainshocks or aftershocks. Designing boundary correction schemes that can
be applied to real data would be an important avenue for future research.

The bootstrap intervals discussed in Section 3.3 only account for the sampling
variability of the estimates, and do not account for any biases caused by boundary
effects. Thus, the bootstrap error bars for the histogram estimates of the Hawkes
process model can only be interpreted as approximate confidence intervals. As an
illustration, Appendix C of the supplement [Fox, Schoenberg and Gordon (2016)]
provides a realization of the bootstrap intervals for an estimated model from each
of the simulation studies discussed in Section 4.

For the simulation studies presented in this article we only examined the case
where mainshocks occurring inside the observation region can trigger aftershocks
outside the observation region. However, with real observed data mainshocks oc-
curring outside of the observation region can trigger aftershocks inside the obser-
vation region. To address the latter case, we performed additional simulation stud-
ies where the observation region is a subset of a larger spatial region over which
earthquakes are generated. Estimation is then only performed on earthquakes oc-
curring within the subset observation region. The main result is that the boundary
effects on the background rate become more severe when allowing mainshocks
to occur outside the observation region. The details of this additional simulation
study are provided in Appendix D.1 of the supplement [Fox, Schoenberg and Gor-
don (2016)].

Another important question is how altering the size of the observation region
affects the nonparametric estimates. In Appendix D.2 of the supplement [Fox,
Schoenberg and Gordon (2016)] we implement the same simulation study dis-
cussed in Section 4.1, except on a larger observation region. Interestingly, we find
that the biases in the background rate estimates do not change much when enlarg-
ing the observation region. This perhaps suggests that the severity of boundary
effects on the background rate depends on whether most of the aftershock activity
is accounted for and not the size of observation region.
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6.2. Future work. There are many directions for future methodological and
applied research on nonparametric estimators for Hawkes point processes. Below
we list several important possibilities:

1. Due to computational limitations, we did not implement a simulation study to
assess the empirical coverage of the bootstrap confidence intervals discussed
in Section 3.3. Such a study would provide a quantitative evaluation of the
performance of the proposed intervals. It would be necessary to first improve
the computational efficiency of the estimation algorithm since an assessment of
coverage requires running the estimation algorithm many thousands of times.

2. In the application to real data, the error bars for the histogram estimates of
the triggering function can potentially be improved by investigating ways to
incorporate measurement uncertainty in the times and locations of earthquakes.

3. In this paper we only considered modeling the conditional intensity over a
two-dimensional spatial domain. However, earthquakes occur in the crust in
a three-dimensional volume. A possible extension is to consider a nonparamet-
ric space–time Hawkes model with the depth of an earthquake incorporated as
a mark.

4. In the simulation studies we discovered that boundary effects result in a nega-
tive bias in the right-tail ends of the estimates g(t) and h(r). For future applica-
tions of the method it would be useful to quantify, as a function of the size of the
observation region, up to which point t and r the histogram density estimates
remain reliable.

5. We can compare the weighted kernel approach described in this paper with
other methods for estimating a smoothly varying background rate such as the
B-spline method described in Ogata and Katsura (1988).

6.3. Concluding remarks. This paper investigated two new ways to incorpo-
rate an inhomogeneous background rate estimator into the EM-type method of
Marsan and Lengliné (2008) for estimating a Hawkes process nonparametrically.
The first approach uses a two-dimensional histogram estimator, and the second
approach uses kernel smoothing. Both types of background rate estimators are
weighted by the estimated probabilities that each event in the catalog is a main-
shock. In this paper, we also proposed a bootstrap procedure for adding error bars
to the histogram estimates of the triggering function. The error bars quantify the
variability of the estimates over multiple realizations of the seismic process.

The results of the simulation studies demonstrated the ability of our nonpara-
metric methods (Algorithms 1 and 2) to recover a spatially varying background
rate and separable triggering function with components for magnitude productiv-
ity, time and distance. Some boundary effects were noticeable, such as bias in the
background rate estimates and the right-tail ends of the histogram estimates of the
triggering densities. Further simulations demonstrated that these boundary effects
are attributable to neglecting aftershock activity occurring outside the observation
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region. Once boundary effects were taken into account in the simulation study the
biases in the resulting estimates were substantially less severe.

The new methodology was applied to an earthquake dataset from the Tohoku
District in Japan. A striking result was that the nonparametric estimate agreed
closely with a previously estimated parametric form of the ETAS model for this
region. This further justifies ETAS as an adequate model of seismicity.

The parametric forms for point process models in seismology are the result
of many decades of refinement. However, for any given seismic region, a multi-
tude of different parameterizations of the space–time Hawkes process model may
be considered. The nonparametric methods discussed in this paper can serve as
a diagnostic to assess which parameterization is a good fit to the data. In other
applications of self-exciting point processes, such as crime or ecology, there is
a less established literature on suitable parametric models. In such applications,
nonparametric estimation can be a powerful exploratory tool in determining a suit-
able parameterization of the triggering function. The bootstrap error bars on the
histogram estimates can be used for statistical inference, and to identify places
where the nonparametric estimate is more or less reliable as either a diagnostic or
exploratory tool.
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SUPPLEMENTARY MATERIAL

Supplement to “Spatially inhomogeneous background rate estimators and

uncertainty quantification for nonparametric Hawkes point process models of

earthquake occurrences” (DOI: 10.1214/16-AOAS957SUPP; .pdf). This supple-
mentary document contains the following: (1) a derivation of Algorithm 1 as iter-
ations of an EM-type algorithm; (2) the simulation algorithm for generating boot-
strap datasets from a fitted nonparametric Hawkes process model; (3) additional
figures and tables for Section 4; (4) additional simulation studies about boundary
effects; (5) an example of nonparametrically estimating a Hawkes process model
using distance to the fault.
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