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Abstract

Dynamical processes in many engineered and living systems take place on complex networks of discrete dynamical
units. We present laboratory experiments with a networked chemical system of nickel electrodissolution in which
synchronization patterns are recorded in systems with smooth periodic, relaxation periodic, and chaotic oscillators
organized in networks composed of up to twenty dynamical units and 140 connections. The reaction system formed
domains of synchronization patterns that are strongly affected by the architecture of the network. Spatially organized
partial synchronization could be observed either due to densely connected network nodes or through the ‘chimera’
symmetry breaking mechanism. Relaxation periodic and chaotic oscillators formed structures by dynamical
differentiation. We have identified effects of network structure on pattern selection (through permutation symmetry
and coupling directness) and on formation of hierarchical and ‘fuzzy’ clusters. With chaotic oscillators we provide
experimental evidence that critical coupling strengths at which transition to identical synchronization occurs can be
interpreted by experiments with a pair of oscillators and analysis of the eigenvalues of the Laplacian connectivity
matrix. The experiments thus provide an insight into the extent of the impact of the architecture of a network on self-
organized synchronization patterns.
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Introduction

Inspired by many chemical [1,2] and biological [3] examples,
self-organized spatiotemporal structures have been often
studied [4] In reaction-diffusion type systems where system
interaction is localized by diffusion, or in globally coupled
systems where the interaction is assumed to be dense enough
to be considered global (or there exists a physical global
constraint). However, natural and engineered systems
composed of discrete units have a tendency to form complex
interaction networks that can be characterized by several
statistical measures [5–7]. Because of the presence of these
prevalent network structures, intense research was focused on
the existence of prototype (e.g., traveling waves [8], stationary
patterns [9], and synchronization [10]) dynamical phenomena
on networks and on novel collective behaviors that are induced
by the network structure and cannot be seen with local or
global interactions [11]. Synchronization patterns on networks
[10] have relevance in a wide range of fields where the discrete
units exhibit oscillatory behavior; examples include biological

clocks [12], neuronal networks in the mammalian forebrain [13],
epileptic seizure dynamics [14], or power grids [15]. A
fundamental question is the relationship between the observed
synchronization pattern and the architectural and statistical
features of the underlying network structure for various types of
synchrony (phase, generalized, or identical synchronization,
clustering, phase waves) for different types of oscillators
(smooth vs. relaxation vs. chaotic oscillators) of varying
inherent heterogeneities [10,16]. Nonlocal coupling of identical
phase oscillators with a phase lag in their interaction functions
can induce a non-trivial hybrid ‘chimera’ state where regions of
coherent and incoherent states co-exist while in similar
configuration a pair or a globally coupled population exhibits
perfect synchrony [11,17–20].

Chemical reaction systems have long provided laboratory
examples of self-organized structures. Earlier experimental
studies on coupled oscillatory discrete reaction units have been
conducted with coupled continuous, stirred tank reactors [1].
With a relatively small number of oscillating elements and
simple networks (2-4 element chain, ring, or global
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configuration [21–25]) the transition to synchronization was
described. Sixteen bistable reactors were locally coupled in a
chain [26,27] or ring [28] geometry for studies of wave
propagation failure and pinning dynamics. For studies with
large number of oscillators, BZ beads [29–31], or micro-
droplets [32,33] could be used to characterize quorum
transitions [29], clustering [31], chimera [30], and complex in-
and anti-phase complex synchronization structures [32,33].
Emerging coherence [34], phase and chaotic clustering [35,36]
were observed with globally coupled oscillatory electrochemical
reactions with the use of electrode arrays. Construction of
complex networks of chemical reaction units still remains a
great experimental challenge where promising approaches
included BZ droplets [32,33] and individually illuminated BZ
beads [30] controlled by a computer system.

In this paper, we investigate self-organized synchronization
structures that are obtained with networks of electrochemical
oscillators. The discrete dynamical units represent oscillatory
dissolution of nickel wires [34]; the electrodes are electrically
coupled with a resistance network. Several network
architectures are constructed to explore how prototype
structures of phase and chaotic synchronization and clustering
are affected by the network constraints. The effect of
communication delay between the units on the pattern
formation is investigated by addition of capacitances to the
resistor network. Special attention is paid to the emergence of
spatially organized partial synchronization states where the
network structure imposes the formation of coherent and
incoherent domains resulting in a ‘chimera’ state. Spatial
patterns are interpreted with combination of eigenvalue
analysis of the connection matrix between the elements [37]
and permutation symmetry principles [38]. Two different types
of synchronization are considered: phase synchronization that
entails bounded phase difference between two oscillators, and
identical chaotic synchronization that results in identical
dynamical evolution of the coupled systems [16]. The features
of network induced spatial patterns are discussed in
comparison to patterns obtained with global, all-to-all coupling
in previous studies [34–36].

Methods

Experimental setup
A schematic of the experimental setup is shown in Figure 1.

A standard electrochemical cell consisting of a nickel working
electrode array (Goodfellow Cambridge Ltd, 99.98%, 1.0 mm
diameter) [34,35,39], Hg/Hg2SO4/saturated K2SO4 reference
electrode, and platinum counter electrode were used in the
experiment. The electrode array was made of 1mm-diameter Ni
wires with 2 mm spacing embedded in epoxy so that reaction
takes place only at the end. The electrode array was wet
polished with series sandpapers (P180-P4000). An external
resistance Rind was added to each electrode in the array
[34,35,39]. Experiments on smooth and relaxation periodic
oscillators were carried out in 3 M sulfuric acid, and those on
chaotic oscillators were done in 4.5 M. The electrode array
connected to a potentiostat (ACM Instruments, Gill AC) was
polarized at a constant circuit potential V, and the currents

across the external resistances were acquired at 200-1000 Hz
data acquisition rate using a National Instruments PCI 6255
data acquisition board. A typical data file consists about
100-200 oscillations with 600 data points per cycle. The reactor
temperature was maintained at 10 °C by a circulating bath.

Electrochemical reaction network
A node of a network is an oscillatory dissolution reaction

occurring on the surface of a Ni electrode. A network edge
(link) is created with either coupling resistance (R) or a
combination of coupling resistance and capacitance (C) in
parallel. A network of three locally coupled oscillators is shown
in Figure 1b. This study considers two locally coupled
oscillators, three-oscillators in a chain or a ring, four-oscillators
in a chain, ring, star, extended triangle networks (with four or
six oscillators), and twenty oscillators in a non-locally coupled
regular (NLR) network. NLR network is a ring of oscillators in
which each node is connected to fourteen of its nearest
neighbors (seven on each side, giving 140 total connections).
The coupling strength of a network is defined as the inverse of
the coupling resistance, K= 1/R.

Frequency and phase of oscillation
The Hilbert transform of the current I(t)

H I t =
1
π

PV ∫
−∞

∞ I τ −<I>
t−τ

(1)

is used in defining phase[16] ϕ(t)

ϕt =arctan
H I t

I t −<I>

PV in eqn. (1) implies that the integral should be evaluated in
the sense of Cauchy principle value. < > denotes temporal
average. The frequency of an oscillator is obtained from a
linear fit of φ(t) vs. t

ω=
1
2π
dϕ
dt (3)

Global mean field.  The amplitude of global mean field of
coupled oscillators is characterized by the Kuramoto order
parameter [2] as

Z t =
1
N
∑j=1

N e
iϕj t (4)

where N is number of nodes of the network and i is the
complex unit.

Mean field phase.  The mean field phase of element k in the
NLR network is defined as [11]

Θ t =arctan
1
2L+1∑k−L

k+Lexpiϕk t (5)

Where L=7 is the radius of the coupling (the element indices
are circular). The phase of an oscillator relative to the mean
phase (phase difference) is obtained as
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θ t =ϕt −Θ t (6) Order parameter r.  The order parameter characterizes the
degree of identical synchronization of a network [16,38]. The

Figure 1.  Experimental setup for nickel electrodissolution.  a: Schematic diagram of electrochemical cell for a three locally
coupled elements. Ref: Hg/HgSO4/Sat.K2SO4 reference electrode, CE: Pt electrode, Rind: Individual resistors, R: Coupling resistors.
b: Coupling topology induced by the cross resistors.
doi: 10.1371/journal.pone.0080586.g001
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parameter is related to the pairwise distances of two phase
points calculated in three-dimensional time-delay reconstructed
state space for each set of (k, l). The distance is defined as

dk,l t =∑m=0
2 Ik t−mΔt −Il t−mΔt

2 (7)

where Δt= 0.079 s is the time delay for state space
reconstruction of the current of the kth current Ik(t). Two
elements at time t are considered identically synchronized
(sk,l(t) =1) when their pairwise distance is less than number that
represents error from the experiments and small heterogeneity
between the oscillators [36], δ=0.02 mA:

sk,l t =
1d<δ

0d≥δ
(8)

The order parameter r is the spatial average of the temporal
average of sk,l(t) :

r=
2

N N−1
∑k=1

N−1∑l=k+1
N sk,l t (9)

Results and Discussion

Spatially organized partial synchrony induced by
network structure

First we consider a network of six oscillators arranged in an
extended triangle configuration as shown in Figure 2. The
current oscillations of each individual wires, proportional to the
rate of Ni electrodissolution, arise through a Hopf bifurcation by
increasing the applied circuit potential V. Because of the
harmonic shape of the oscillatory waveform and the phase
response curve, the oscillators are called ‘smooth’ [35]. A pair
of smooth oscillators coupled by cross resistors gave nearly in-
phase synchronization [35]. A population of globally (all-to-all)
coupled oscillators exhibits a Kuramoto transition [2,34] to
synchronization in which above a critical coupling strength the
population quickly transitions to a strongly synchronized state;

the elements that form the synchronized group are uniquely
determined by their natural frequencies.

The effect of coupling topology on the synchronization
pattern in the extended triangle configuration is shown in
Figure 2. Without any coupling, the natural frequencies of the
oscillators are distributed in a random manner within a 7 mHz
range. The electrical coupling is induced by cross resistors
between the wires. With coupling turned on, the core oscillators
(number 2, 3 and 4) that are all-to-all coupled to each other are
phase locked with frequency 0.315 Hz; the periphery elements
(number 1, 5 and 6) are not synchronized and oscillate with
frequencies different from the core frequency (ω1=0.312,
ω5=0.321, ω6=0.319 Hz). Therefore, in contrast to the findings
with globally coupled oscillators, we observe that the position of
an oscillator strongly affects synchronization: elements that
belong to the more densely coupled inner core of the network
have a strong tendency to synchronize. This synchronization
behavior was observed in a broad range of weak coupling
strength 0.01≤ K ≤ 0.045 in 4 out of 6 experiments. (In the
remaining two experiments 5 elements were synchronized and
1 shell element was not synchronized.) All partially
synchronized states involved at least two elements from the
core oscillators. For strong coupling K>0.067 kΩ-1 all the
oscillators were synchronized.

In the extended triangle network we thus see that
synchronized elements come often from the densely coupled
core oscillators forming spatially organized partially
synchronized (SOPS) states.

Chimera state of nonlocally coupled phase oscillators
The robust partially synchronized state obtained in the

extended triangle network in Figure 2 is a direct consequence
of the intensified coupling density among the core oscillators.
However, oscillator networks with perfectly symmetrical
coupling topology can support formation of SOPS through the
chimera mechanism [11]. Chimera states have been shown to
occur in nonlocally coupled networks with oscillators that have
on optimal amount of non-isochronicity or ‘delay’ in their phase

Figure 2.  Spatially organized partial synchronization of six smooth oscillators in extended triangle network.  Left panel:
Current time series of the electrodes: the core oscillators (2–4) are phase locked while the peripheral oscillators (1,5,6) are not
synchronized. Right panel: coupling topology and schematic of synchronization pattern. V=1095 mV, Rind= 1200 Ω, R=40 kΩ.
doi: 10.1371/journal.pone.0080586.g002
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interaction function [11,17,18]. In such systems, the ‘chimera’
mechanism creates phase locking among a set of neighboring
oscillators forming a ‘core’ and, quite counter-intuitively,
desynchronization among remaining oscillators (shell
oscillators) even in a perfectly symmetrical network of
oscillators with identical natural frequencies.

We have designed an experimental system in which the
chimera SOPS could be observed. In order to ensure that the
chimera mechanism is responsible for the intensified
desynchronization of the ‘shell’ oscillators, before the
experiment the natural frequencies of all oscillators were
carefully tuned to fall below a range of 1 mHz (as shown in
Figure 3c) by small adjustments of individual resistors attached
to the electrodes. The non-locally coupled regular network
(NLR) is composed of 20 electrodes arranged in a ring (Figure
3a): each element is coupled to 14 neighboring elements (7
elements on each side). (Similar coupling configurations were
used in numerical simulations with phase models [18]). The
coupling induced by resistance in the given chemical system
induces phase interaction function without delay [34]; relatively
large phase delay close to π/2 is a requirement for the chimera
states in the NLR network [17]. To introduce the necessary
delay, we employ a combination of capacitance and resistance
as coupling elements; in such way the coupling current induced
by the resistors is delayed by the capacitance.

When coupling typically introduced when phases are evenly
distributed in [-π, π] range was turned on among the elements
in the network, we quickly (within 100 cycles) observed a group
of synchronized, ‘core’ elements and a group of
desynchronized ‘shell’ elements. (Note that here the core and
shell elements do not indicate network structure as in the
extended triangle network in Figure 2; now the terms refer to
dynamical organization of the system.) A snapshot of currents
of the oscillators is shown in Figure 3b. Eight neighboring
elements (1–4,17–20) have very similar current values and
deviations start to arise outside the core region. The eight core
oscillators are synchronized with a frequency of 0.389 Hz
(1–4,17–20); all the shell elements (5-16) have lower frequency
than the frequency of the synchronized core elements. The
frequency distribution in Figure 3c reveals that not only are the
shell elements desynchronized, but the frequencies of these
elements along the chain form a lower semi-circle as a function
of position as it was predicted theoretically for the chimera
state [11]. Note that the shell elements do not simply involve in
a ‘free rotation’, in fact they are repelled strongly by the
coupling mechanism; hence, the initial 1 mHz natural frequency
distribution becomes broad. The frequency deviation of the
shell is about 20 mHz from the core region; 20 times larger
than natural frequency distribution, further proving the
presence of chimera symmetry breaking mechanism [17]. The
frequency distribution implies that elements further away from
the core of the chimera states are less synchronized than the
elements closer to the core.

The desynchronization of the shell elements in the chimera
state is illustrated in Figure 3e where the phases of each
oscillator are plotted relative to the mean field phase [Θ(t)]. The
phases of the chimera core elements are locked to their
respective mean field phase (with zero phase difference); the

phases of the shell elements exhibit phase slipping behavior in
which time sequences of phase locking is interrupted with a
relatively quick 2π phase slip. The shell oscillators neighboring
the core elements have only 1-2 phase slips as shown in the
Figure 3e in the 82 cycles; the shell elements far away from the
core exhibit about 4 phase slips. Note that although many shell
elements have similar frequencies, they are not synchronized
with each other or with the mean field.

The chimera state was stable for about 90-100 oscillations,
and it was observed in 9 out of 14 experiments. Most
successful observations (6/9) were made during the first four
hours when the natural frequency drift of our system was
minimum. In the remaining 5 experiments, most (4/5) done
after four hours, less than 5 oscillators exhibited
synchronization in 100 cycles. Figure 3d shows the global
mean field Kuramoto order parameter (Z) as a function time;
the system exhibits partial synchrony with a mean value of
Z=0.73. After the break-up of the chimera state the system
typically approaches full synchrony with Z =1 (not shown).
Therefore, the chimera state in the experiment is a long
transient state. The transient nature of the behavior in the
experimental system could arise from drifting of the natural
frequency distribution of the individual oscillators, however, it
was shown in numerical simulations that, as a form of finite-
size effect, the chimera state in the given coupling
configuration is an inherently transient behavior with finite
number of oscillators and the transient time exponentially
increases with increase of network size [18].

The system within experimental limitations exhibits a very
robust partially synchronized state with behavioral
characteristics identical to the predicted chimera state. The
coupling thus induces co-existing synchronized and
desynchronized states even in a symmetrical network. Chimera
states have been reported in the chemical BZ bead system in
which two groups of oscillators are robustly created with
positive intra cluster, and negative inter-cluster coupling [30]. In
comparison to those experiments, the chimera states in our
setup are also found with a lifetime of about 100 oscillatory
cycles, but do not require opposing coupling signs in the
network. The results in our experiments can also be directly
compared to chimera theories [11,17,18] because extensive
and accurate phase models exist for the electrochemical
oscillators [35,39].

Clustering of relaxation oscillators
Relaxation oscillators often develop higher harmonics in their

phase interaction functions and consequently develop out-of-
phase and anti-phase synchronization patterns [40]. For
example, a pair of relaxation electrochemical oscillators
exhibits anti-phase synchronization with electrical coupling [35].
In a population of globally coupled oscillators, two groups in
which the elements are frequency-locked and are in anti-phase
synchrony [35]. The position of the elements in each group with
global coupling was ‘random’ because of the global nature of
the coupling – the experiments under the same conditions but
with slightly different initial conditions typically resulted in
different spatial patterns in a globally coupled population of 64
elements because of the large number of possible states [35].
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Figure 3.  Spatially organized partial synchronization induced by ‘chimera’ mechanism of in nonlocally coupled regular
(NLR) network.  a: Coupling topology of the NLR network. (Each oscillator is coupled to 14 nearest neighbors.) b: Snapshot of
currents of the electrodes: the core oscillators (1–4,17–20) have similar currents. c: Frequencies of the oscillations of the elements.
Open circles: Natural frequencies measured without coupling. Black circles: frequencies of the coupled oscillators. d. Global mean
field order parameter vs time for the chimera dynamics. e: Grayscale plot of phase of oscillators relative to mean field phase.
V=1094 mV, Rind= 1000 Ω, R= 499 kΩ, C=4.7 μΦ.
doi: 10.1371/journal.pone.0080586.g003
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The features of this phase clustering behavior are examined
in small networks of relaxation oscillators. These oscillators in
the experiments are obtained at somewhat higher resistance
and circuit potential values (V=1315mV, Rind=1200 Ohm). The
clustering behavior of an extended triangle network with
relaxation oscillators is shown in Figure 4a when the oscillators
are coupled with resistances. Similar to the smooth oscillators,
the core network elements (2,3, and 4 in Figure 4a) strongly
synchronize. In contrast to the results with the smooth
oscillators, the peripheral elements (1,5,6) also form a
synchronized group, however, the peripheral oscillators are in
anti-phase synchronization to the core oscillators. This (3–3)
cluster configuration being a very robust system response: all
10 experiments at K=0.67 kΩ-1 gave the same cluster state.
Note that in this state the peripheral oscillators are in perfect
synchrony despite the coupling between them is only indirect
through the core oscillators. This (3–3) state is an experimental
confirmation for a configuration of phase synchronization that
reflects the symmetries of the underlying coupling network[41].
The phase synchrony stabilized by the network symmetry can
be changed by slightly increasing the coupling strength to (2,4)
clustering (Figure 4b) in which one of the peripheral oscillators
joins the core oscillators. The two peripheral oscillators are
perfectly synchronized, however, the four anti-phase oscillators
can be further classified into three groups: two identical core
oscillators (2 and 4), the remaining core oscillator (3), and the
peripheral oscillator (5). Because of the different coupling
currents flowing between the oscillators the currents close to
the minimum of the cycles can be clearly distinguished,
however, the oscillators ‘spike’ with very similar spiking times.
Therefore, in this (2,4) cluster configuration we can observe a
type of ‘hierarchical’ clustering. At strong coupling strengths
(e.g., K=1 kΩ-1) clustering disappears and all the oscillators
exhibit in-phase synchronization.

In the NLR network of 20 oscillators, a (9,11) cluster
configuration was typically observed under resistive coupling.
The network always partitioned into two domains in anti-phase
synchronization with often (6 out of 9 experiments) in the (9,11)
cluster state with each cluster composed of contiguous
domains as shown in Figure 4c at coupling strength K=0.2 kΩ-1.
The remaining 3 experiments exhibited a similar (10–10)
cluster state where one of the border elements between the
two groups switched from one group to the other.

We have also performed experiments with combined
capacitance and resistance; in these experiments we could
again observe some effects of delaying the coupling signal.
Similar to non-delayed coupling, the experiments exhibited a
(10–10) ‘condensed cluster states’ (contiguous domains)
shown in Figure 4d for 5 out of 8 experiments. However, in the
remaining 3 experiments (10–10), ‘flip-flop’ cluster states where
in- and anti-phase synchronizations occur without an apparent
structure (Figure 4e). The flip-flop arrangement was two
clusters composed of 12 domains having maximum 4 elements
in a single domain. (Both clustering situations were stable over
the observed 100 cycles; structures did not switch their states.)
Such localized flip-flop structure was previously observed with
BZ microdroplets where the droplets are coupled through
inhibitory local interactions and co-existence of in- and anti-

phase synchrony between a pair of oscillators was found to be
in important factor in formation of structures [33].

The electrochemical relaxation oscillators form phase
clusters on the network; in a cluster, in contrast to the globally
coupled oscillator-population, the position of the elements plays
an important role in the formation of synchronization structures.
Similar to the globally coupled oscillators [35], the network has
a tendency to breaking up into two approximately equally sized
clusters. At least one of the clusters is composed of densely
connected elements; to maintain the cluster balance, the other
cluster could form symmetrically related but only indirectly
coupled elements. Cluster sizes that are not compatible with
the system symmetry could result in ‘hierarchical’ clustering
where the fundamental cluster structure can be broken into
sub-clusters due to the superimposed network architecture.
Adding delay to the interactions makes the clusters fuzzy, and
the condensed structure could break up to form more irregular
pattern; we also observed bistability between the condensed
and ‘flip-flop’ structure.

Effect of coupling topology on identical
synchronization of chaotic oscillators

The electrochemical system can also exhibit chaotic
oscillations where the system is characterized by long-term
unpredictability characterized by positive Lyapunov exponent
[36]. The currents of a pair of uncoupled chaotic oscillators are
shown in Figure 5a. When strong coupling is added between
the oscillators, identical chaotic synchronization [16] takes
place where the trajectories follow identical paths (Figure 5b).
An order parameter, r, can be defined (Equations 7-9) that
expresses the fraction of time the chaotic trajectories stay close
to each other in the reconstructed state space. Figure 5c
shows that the order parameter quickly increases to r = 1 at a
critical coupling strength of K* = 1.1 kΩ-1. We have constructed
six networks shown in Figure 5e to test the effect of network
structure on identical synchronization of chaotic oscillators.

The order parameter as a function of coupling strength for a
set of different networks is shown in Figure 5c. Typically, the
transition to identical synchronization is not as abrupt for the
networks as that observed for the pair of oscillators. The small
linear chains of 3 and 4 oscillators are very difficult to
synchronize and the difficulty of synchronization increases with
the chain length. 4-element square, 3 globally coupled, and
NLR networks are very easy to synchronize. The
synchronizabilities of 4-element square and star networks are
similar to those of the two-element and three-element chains,
respectively. In star and three-element chain graphs, peaks at
r≈0.5 could be attributed to stable and intermittent chaotic
clustering [42,43] phenomenon.

The widely different coupling strengths at which the networks
synchronize can be interpreted by applying master-stability
function analysis [44]. The critical coupling strengths (Kc1, Kc2)
at which two networks with symmetrical connectivity matrix
synchronize are related by the Wu-Chua conjecture [37]

Kc1α1=Kc2α2 (10)

where α1 and α2 are the second largest eigenvalues of
connectivity matrix. The application of Wu-Chua conjecture is
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Figure 4.  Cluster dynamics of relaxation oscillators on extended triangle and NLR networks.  Left panels: current vs time of
the electrodes. Right panels: coupling topology and schematic of synchronization patterns. a: (3–3) two-cluster state in which the
synchronized center (2–4) oscillators (black) are in anti-phase configuration to the periphery (1,5,6) oscillators (red). V=1290 mV,
Rind= 1200 Ω, R= 1500 Ω. b: (2,4) two-cluster states in anti-phase synchronization. V=1300 mV, Rind=1200 Ω, R= 1000 Ω. c: (10–10)
condensed two-cluster cluster state with the NLR network. Oscillators in one half of the circle (red) are anti-phase synchronized with
oscillators in the other half (black). V=1335 mV, Rind=1200 Ω, R=5000 Ω. d: (10–10) two-cluster condensed state with combined
resistive-capacitive coupling. V=1190 mV, Rind= 1000 Ω, C=33 μΦ. e: (10–10) flip-flop two-cluster synchronized state in which the
red elements are anti-phase synchronized with black elements. V=1190 mV, Rind= 1000 Ω, C=33 μΦ.
doi: 10.1371/journal.pone.0080586.g004
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limited to cases when desynchronization transition of a pair
identical oscillators does not occur [44]. Because such
desynchronization transition has not been observed with a pair
of coupled Ni electrodes[45], it was expected that the Wu-Chua
conjecture could be an effective tool in describing the critical
coupling strength dependence of the various networks.

The connectivity matrix A (with elements ak,l) for the network
consists of zero for the unconnected, and one for the
connected electrode pairs k and l. The diagonal values are set

such that each row has a sum of zero values, i.e., ak,k is -1
times the number electrodes to which the k-th electrode is
connected. The connectivity matrix represents the coupling
between the electrodes through differences between the
electrode potentials.

With the use of the Wu-Chua conjecture (equation 10) we
define a rescaled coupling strength κ = K |α| /(2K*); where |α| is
the absolute value of the second largest eigenvalue of the
connectivity matrix of the considered network, and K* the

Figure 5.  Identical synchronization of chaotic oscillators in small networks.  a: Current time series of two chaotic oscillators
without any coupling. V=1295 mV, Rind= 1395 Ω. b: Current time series of two identically synchronized oscillators with strong
coupling. V=1295 mV, Rind=1395 Ω, R=900 Ω. c: Order parameter (r) vs coupling strength (K) for various networks. d: Order
parameter vs rescaled coupling strength (κ). e. Schematics of network topologies. For each network, the experimental conditions
were set to exhibit chaotic behavior: V=1295-1345 mV, Rind= 1350-1520 Ω.
doi: 10.1371/journal.pone.0080586.g005
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critical coupling strength at which a pair of chaotic oscillators
synchronize. A plot of r against rescaled coupling strength
(κ)shows that all the networks become identically synchronized
at approximately the same, expected value of κ =1 (Figure 5d).
Therefore, the second largest eigenvalue of the connectivity
matrix plays a pivotal role in determining the critical coupling
strength at which identical synchronization takes place in the
network of electrochemical oscillators. The graph also indicates
that NLR network exhibits elevated level of synchrony at very
low coupling strengths not seen at the small networks. Under
these conditions intermittently synchronized, localized structure
forms are similar to itinerant cluster dynamics; further
investigation is required to reveal the statistical features of the
‘hidden’ synchrony seen with this relatively large network.

Clustering of chaotic oscillators
Globally coupled chaotic oscillators are known to produce a

unique phenomenon of chaotic clustering [42] that was
experimentally confirmed with globally coupled electrochemical
oscillators [43]. At intermediate coupling strengths the two
groups of synchronized elements formed; the groups often
have balanced configuration with approximately the same
number of elements. Note that the mechanism for chaotic
clustering was interpreted with coupled map lattices [42], and
the mechanism is very different than that of phase clustering of
periodic oscillators. Numerical studies [38] of chaotic clusters
reveal that clustering is often ‘fuzzy’, and cluster-partition
follows the connection pattern of the network. Indistinguishable
nodes (nodes that have the same architectural permutation
symmetry), in networks with average connectivity above 0.5,
often form synchronous clusters.

For experimental verification of these numerical findings, we
constructed two small networks in extend triangle (Figures 6a-
e) and star (Figures 6f-j) configurations. In the extended
triangle configuration permutation symmetry does not allow the
formation of two clusters: elements 1 and 2 are equivalent and
different from both electrodes 3 and 4. Figure 6a shows a
typical snapshot of the cluster dynamic state along the overlaid
chaotic attractor. The elements, during clustering, partitioned
into three groups in (1–1,2) configurations in all 6 out of 6
experiments. The evolution of distances in the state space [dk,l

(t)] between pairs of state points helps to determine the cluster
configurations in Figures 6 b-e. Identical synchronization
occurred between only the two indistinguishable nodes 1,2
(d1,2(t)=0 Figure 6b) and all other dk,l(t)≠0 (Figure 6b-e). Only
this (1–1,2) cluster state was obtained in the network at
different coupling strength (below identical synchronization).

Star network of four oscillators has 3 indistinguishable
peripheral oscillators and one central oscillator. This would
allow formation of two cluster states, however, only through
indirect connections and at ratios 1:3 that are very far from the

balanced 2:2 two-cluster state. Twenty-four out of 34
experiments run in the domain K=1.25-1.43 kΩ-1 produced
(1–1,2) three-cluster state that was formed by two periphery
oscillators ((1–1–3), or (2,3)); an example is shown in Figures
6g-j. In the 10 remaining experiments clustering was ‘fuzzy’:
the pair distances of the most synchronized oscillator pairs
were larger than those shown in Figures 6, thus they could not
be classified as clusters, and were definitely smaller than the
distance between the central and periphery oscillators in
Figures 6h-j. The fuzzy clustering also had tendency to form
between periphery oscillators (8 out of 10 experiments).

These results confirm the importance of network topology for
developing chaotic clusters. The network can impose an
architectural bias on the achievable cluster configuration to
which the system attempts to adapt within its constraints.
Elements with permutation symmetry and direct links tend to
form the clustered groups. The chaotic cluster dynamics
compared to partial phase synchrony of smooth or relaxation
oscillators tend to create structures with indirectly coupled
oscillators. In addition, the observed clusters were often ‘fuzzy’
when such structures were formed.

Conclusions

In the experiments, networked oscillatory chemical
processes exhibited identifiable spatial organization in contrast
to the previously reported [34–36] global coupling induced
synchrony that produced highly degenerate structures. As a
common feature of network effects we have shown the
existence of spatially organized partial synchronization that
develops due to either the presence of densely coupled
network nodes or through the chimera symmetry breaking
mechanism. Dynamical differentiation of densely coupled
networks produced groups of synchronized elements that were
formed by directly coupled or permutation symmetry related
elements. Eigenvalue analysis of coupling matrices enabled
rescaling of coupling strength of the different networks to
produce transition to chaotic synchronization at approximately
the same critical coupling strength. The experimental system
allows measurements for hundreds of oscillatory cycles and the
electrochemical networks could be expanded in future to a few
hundred nodes and about 1000 links. These properties of the
spatially organized electrochemical media could enable the
device to serve a platform for a biomimetic chemical computing
device that could be miniaturized with lab-on-chip technologies
[46]. Although the reported network effects were obtained with
chemical oscillators, similar behavior is expected in other
biological (e.g., circadian [12]) and physical (e.g., power grid
[15]) systems that are composed of interactions within a
network of oscillatory units.
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Figure 6.  Cluster dynamics of chaotic oscillators.  Left panels (1–1,2): three cluster dynamics in an extended triangle
configuration with four oscillators. V=1335 mV, Rind= 1390 Ω, R=800 Ω. Right panels (1–1,2): three cluster dynamics in a star
configuration with four oscillators. V=1335 mV, Rind=1380-1460 Ω, R=750 Ω. Top row: schematic of coupling topology and
synchronization pattern along with reconstructed phase space showing the chaotic attractor of one oscillator and a snapshot of the
elements in the state space. b-e and g-j: distances of phase points as a function of time for the corresponding cluster states. In
panels a and f identical symbols (circle, square, triangle) indicate clustered elements.
doi: 10.1371/journal.pone.0080586.g006
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