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Spatially Piecewise Fuzzy Control Design for

Sampled-Data Exponential Stabilization of

Semi-linear Parabolic PDE Systems
Jun-Wei Wang, Shun-Hung Tsai, Han-Xiong Li, and Hak-Keung Lam

Abstract—This paper employs a Takagi-Sugeno (T-S) fuzzy
partial differential equation (PDE) model to solve the problem
of sampled-data exponential stabilization in the sense of spatial
L

∞ norm ∥ · ∥∞ for a class of nonlinear parabolic distributed
parameter systems (DPSs), where only a few actuators and
sensors are discretely distributed in space. Initially, a T-S fuzzy
PDE model is assumed to be derived by the sector nonlinearity
method to accurately describe complex spatiotemporal dynamics
of the nonlinear DPSs. Subsequently, a static sampled-data fuzzy
local state feedback controller is constructed based on the T-S
fuzzy PDE model. By constructing an appropriate Lyapunov–
Krasovskii functional candidate and employing vector-valued
Wirtinger’s inequalities, a variation of vector-valued Poincaré–
Wirtinger inequality in 1D spatial domain, as well as a vector-
valued Agmon’s inequality, it is shown that the suggested
sampled-data fuzzy controller exponentially stabilizes the nonlin-
ear DPSs in the sense of ∥·∥∞, if sufficient conditions presented in
term of standard linear matrix inequalities (LMIs) are fulfilled.
Moreover, an LMI relaxation technique is utilized to enhance
exponential stabilization ability of the suggested sampled-data
fuzzy controller. Finally, the satisfactory and better performance
of the suggested sampled-data fuzzy controller are demonstrated
by numerical simulation results of two examples.

Index Terms—Sampled-data control, exponential stability, dis-
tributed parameter systems, Agmon’s inequality, Takagi-Sugeno
fuzzy partial differential equation model.
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MUCH research has been done concerned with sampled-

data control systems over the past few decades, leading

to considerable results for analysis and synthesis of sampled-

data control systems (e.g., [1]- [13] and the references therein).

Note that the aforementioned results are mainly developed

for dynamic systems whose behavior only depends on time

and mathematical models take the form of ordinary/delay

differential equations (O/DDEs). In real industrial applications,

however, most processes are spatiotemporal in nature so that

their behavior must depend on time as well as spatial position,

for example, thermal diffusion processes, pipe flow, chemical

processes, and flexible mechanical structure, etc [14]- [17].

These spatiotemporal processes are modeled as distributed

parameter systems (DPSs) described by partial differential

equations (PDEs). By the model reduction techniques (e.g.,

Galerkin’s method), a finite-dimensional sampled-data bound-

ary control design was developed in [18] for a linear parabolic

DPS and a finite-dimensional observer-based active fault-

tolerant control design was reported in [19] for nonlinear

DPSs with sampled-data measurements in time. But an exact

performance of closed-loop DPSs is difficultly achieved due to

truncation before control design. To achieve exact and better

control performance, some infinite-dimensional robust design

results have been developed in [20]- [23] for linear sampled-

data controllers of nonlinear parabolic DPSs directly on the

basis of their original semi-linear PDE model.

On the other hand, fuzzy control based on the Takagi-

Sugeno (T-S) fuzzy model [24] offers a conceptually sim-

ple, systematic and effective framework to support nonlinear

control design of complex dynamic systems and has be-

come increasingly popular during the past few decades (see,

e.g., [25]- [27]). In the last decade, many fruitful results

of fuzzy-model-based sampled-data control design have been

reported for nonlinear O/DDE systems [28]- [38]. With the

help of the Galerkin’s method with the singular perturbation

approach, finite-dimensional guaranteed cost and H∞ fuzzy-

model-based sampled-data control designs have been recently

proposed in [39] and [40] for semi-linear parabolic PDE (SLP-

PDE) systems. Although fuzzy-model-based control approach

has been successfully extended in [41]- [46] for infinite-

dimensional nonlinear control design of SLPPDE systems by

proposing T-S fuzzy PDE model, the suggested results mainly

focus on exponential stabilization of SLPPDE systems via

continuous-time fuzzy controllers. To the best of authors’

knowledge, the result on infinite-dimensional fuzzy-model-

based control design has not been reported yet for sampled-
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data exponential stabilization of SLPPDE systems with a finite

number of actuators and sensors, which motivates this study.

This paper discusses the problem of infinite-dimensional

fuzzy-model-based sampled-data control design in the sense

of spatial L∞ norm ∥·∥∞ for a class of SLPPDE systems with

a finite number of actuators and sensors discretely distributed

over the spatial domain. The objective of this paper is to de-

velop a conceptually simple but effective infinite-dimensional

design method of a sampled-data fuzzy controller only using

state information taken from sensors located at some known

local areas of the spatial domain (i.e., local piecewise state

information), such that the resulting closed-loop PDE system

is exponentially stable in the sense of ∥ · ∥∞. In the proposed

design method, a T-S fuzzy PDE model is first assumed to

be constructed [45], [46] to accurately describe the complex

spatiotemporal dynamics of the SLPPDE system. Based on

the fuzzy PDE model, a sampled-data fuzzy controller is then

constructed only using local piecewise state information. It

is shown by constructing an appropriate Lyapunov-Krasovskii

functional candidate and using vector-valued Wirtinger’s in-

equalities, a variation of vector-valued Poincaré–Wirtinger

inequality in 1D spatial domain, as well as a vector-valued

Agmon’s inequality that the suggested sampled-data fuzzy

controller exponentially stabilizes the SLPPDE system in the

sense of ∥ · ∥∞. Moreover, exponential stabilization ability of

the suggested sampled-data fuzzy controller is enhanced by

providing an LMI relaxation technique. The main results of

this paper are presented in terms of standard LMIs, which

are directly solved by the solvers in MATLAB’s LMI Control

Toolbox [47]. Finally, the effectiveness and merit of the

suggested sampled-data fuzzy controller are demonstrated by

numerical simulation results of two examples.

Main contribution and novelty of this paper are summarized

as follows: (i) A variation of vector-valued Poincaré–Wirtinger

inequality in 1D spatial domain is provided by first mean value

theorem for definite integrals; (ii) A vector-valued Agmon’s

inequality is introduced from the scalar one; (iii) An LMI-

based infinite-dimensional design method of static sampled-

data fuzzy controller is developed for exponential stabilization

of the SLPPDE system in the sense of ∥·∥∞. In comparison to

existing finite-dimensional fuzzy sampled-data control designs

in [39] and [40] for the SLPPDE systems, the main difference

of the proposed design method of this paper lies in that

finite-dimensional fuzzy sampled-data control designs in [39]

and [40] only ensure exponential stabilization in the sense of

spatial L2 norm ∥·∥2, while the infinite-dimensional sampled-

data fuzzy control design of this paper guarantees exponential

stabilization in the sense of ∥ · ∥∞.

The organization of the rest of this paper is given as follows.

Section II provides preliminaries and problem formulation.

Section III gives a static sampled-data fuzzy control design.

Numerical simulation results are provided in Section IV to

show satisfactory and better performance of the suggested

sampled-data fuzzy controller than the existing ones. Finally,

Section V offers some brief concluding remarks.

Notation: The set of all real numbers, n-dimensional Eu-

clidean space with the norm ∥ · ∥ and the set of all m × n
matrices are denoted by ℜ, ℜn and ℜm×n, respectively. |ς|

denotes absolute value of any real number ς . I stands for

an identity matrix of appropriate dimension. For a matrix

M ∈ ℜn×n, M > (<,≤)0 means that it is symmetric

and positive definite (negative definite, negative semi-definite,

respectively). For a square matrix A, its minimum and max-

imum eigenvalues are denoted by λmin(A) and λmax(A),
respectively. For a given scalar L > 0, L2

n([0, L]) ,

L2([0, L];ℜn) is a Hilbert space of square integrable vector

functions ω(x) : [0, L] → ℜn with the norm ∥ω(·)∥2 ,
√

∫ L

0
ωT (x)ω(x)dx. This norm is also referred to as spa-

tial L2 norm. Given an integer k̄ and a constant L > 0,

Hk̄
n((0, L)) , W k̄,2((0, L);ℜn) is a Sobolev space of abso-

lutely continuous vector functions ω(x) : (0, L) → ℜn with

square integrable derivatives
dk̄

ω(x)

dxk̄
of the order k̄ and with

the norm ∥ω(·)∥
Hk̄

n((0,L)) ,

√

∫ L

0

∑k̄
i=0

di
ω

T (x)
dxi

di
ω(x)
dxi dx.

For any y(·, t) ∈ H1
n((0, L)), spatial L∞ norm is defined

as ∥y(·, t)∥∞ , maxx∈[0,L] ∥y(x, t)∥. The subscripts x and

t of y(x, t) are partial derivatives with respect to x and

t, i.e., yt(x, t) = ∂y(x, t)/∂t, yx(x, t) = ∂y(x, t)/∂x, and

yxx(x, t) = ∂2y(x, t)/∂x2, respectively. The transpose of a

vector or a matrix is denoted by the superscript ’T ’. The

symbol ’∗’ in matrix expressions denotes an ellipsis induced

by symmetry.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. System description

The class of nonlinear DPSs under consideration is de-

scribed by the following SLPPDE in 1D spatial domain















yt(x, t) = Θyxx(x, t) + f(y(x, t))
+G(x)u(t), x ∈ (0, L), t > 0,

y(0, t) = 0, yx(x, t)|x=L = 0, t > 0,
y(x, 0) = y0(x), x ∈ [0, L],

(1)

where y(x, t) , [y1(x, t) y2(x, t) · · · yn(x, t)]
T ∈ D

is state (D ,
{

y(·, t) ∈ L2
n([0, L])

∣

∣ ∥yi(·, t)∥∞ ≤ ϕi, i ∈
{1, 2, · · · , n}} ⊂ L2

n([0, L]) is a given local domain con-

taining the equilibrium profile y(·, t) = 0, ϕi > 0, i ∈
{1, 2, · · · , n} are real known scalars), x ∈ [0, L] ⊂ ℜ
and t ≥ 0 are spatial position and time variables, respec-

tively. 0 < Θ ∈ ℜn×n is a known diffusivity coefficient

matrix and controls how fast the masses can spread in the

media, the term Θyxx(x, t) describes diffusion phenomenon

and that is a spontaneous dispersion of mass in the spatial

domain from the higher density/concentration/temperature area

to the lower density/concentration/temperature area, f(y(x, t))
is sufficiently smooth in y(x, t) and satisfies f(0) = 0.

u(t) , [u1(t) u2(t) · · · um(t)]T ∈ ℜm is control input

provided by m actuators, which are discretely distributed

over the spatial domain (0, L). G(x) is a known square

integrable matrix function of x, in which the i-th column

describes the i-th actuator’s distribution. Here, G(x) is chosen

as G(x) , [g1(x) g2(x) · · · gm(x)] ∈ ℜn×m, where

gv(x) ,

{

gv x ∈ [xv, xv+1)
0 otherwise,

v ∈ M, (2)
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Fig. 1: Spatial piecewise control form [46]

with [xv, xv+1) is the v-th actuator coverage area and M ,

{1, 2, · · · ,m}. This form G(x) will produce m zones of

spatial piecewise control over the intervals [xv, xv+1), v ∈ M
[46], which is illustrated in Fig. 1. It is easily seen from Fig.

1 that 0 = x1 < x2 < · · · < xm < xm+1 = L.

We introduce the following definitions of exponential sta-

bility in the sense of ∥ · ∥2 and ∥ · ∥∞:

Definition 1: (Exponential stability in the sense of ∥ · ∥2,

[46]) The SLPPDE system (1) with u(t) ≡ 0 is said to be expo-

nentially stable in the sense of ∥·∥2, if there exist two constants

σ ≥ 1 and ρ > 0 such that ∥y(·, t)∥2 ≤ σ∥y0(·)∥2 exp(−ρt)
is fulfilled for any t ≥ 0.

Definition 2: (Exponential stability in the sense of ∥ · ∥∞)

The SLPPDE system (1) with u(t) ≡ 0 is said to be

exponentially stable in the sense of ∥ · ∥∞, if there exist two

constants α ≥ 1 and β > 0 such that ∥y(·, t)∥∞ ≤ α exp(−βt)
is fulfilled for any t ≥ 0.

Remark 1: Clearly, Definitions 1 and 2 are not equivalent

and Definition 2 is stronger than Definition 1 as if the system

(1) is exponentially stable in the sense of ∥ · ∥∞, it must be

exponentially stable in the sense of ∥ · ∥2, but not vice versa.

B. T-S fuzzy PDE model and problem formulation

For the convenience of fuzzy control design, by following

the main idea of the sector nonlinearity method for semi-linear

PDE systems [45] and [46], we assume that the following T-

S fuzzy PDE model is constructed by the sector nonlinearity

method to exactly describe complex spatiotemporal dynamics

for the SLPPDE of (1) in a given operating domain S:

Plant Rule i:

IF ξ1(x, t) is Fi1 and · · · and ξl(x, t) is Fil, THEN

yt(x, t) = Θyxx(x, t) + Aiy(x, t)

+ G(x)u(t), x ∈ (0, L), t > 0, i ∈ S (3)

where Fij , i ∈ S , {1, 2, · · · , r}, j ∈ {1, 2, · · · , l} are fuzzy

sets, Ai ∈ ℜn×n, i ∈ S are known matrices, and r = 2l is

the number of IF-THEN fuzzy rules. The premise variables

ξ1(x, t), ξ2(x, t), · · · , ξl(x, t) are assumed to be functions of

y(x, t). The overall dynamics of the fuzzy parabolic PDE (3)

is expressed as

yt(x, t) = Θyxx(x, t) +

r
∑

i=1

hi(ξ(x, t))Aiy(x, t)

+ G(x)u(t), x ∈ (0, L), t > 0, (4)

where ξ(x, t) , [ξ1(x, t) ξ2(x, t) · · · ξl(x, t)]
T and

hi(ξ(x, t)) ,

∏l
j=1

Fij(ξj(x,t))
∑

r
i=1

∏
l
j=1

Fij(ξj(x,t))
, i ∈ S, Fij(ξj(x, t)) is

grade of the membership of ξj(x, t) in Fij for i ∈ S. In

this paper, it is assumed that
∏l

j=1 Fij(ξj(x, t)) ≥ 0, i ∈ S

and
∑r

i=1

∏l
j=1 Fij(ξj(x, t)) > 0 for x ∈ (0, L) and t > 0.

Hence, hi(ξ(x, t)), i ∈ S have the following property for

x ∈ (0, L) and t > 0:

hi(ξ(x, t)) ≥ 0, i ∈ S and

r
∑

i=1

hi(ξ(x, t)) = 1. (5)

From above analysis, we know that the SLPPDE in (1) is

equivalent to the fuzzy PDE (4) in the operating domain S.

Generally, the operating domain S is chosen as D ⊂ S to

guarantee the robustness of the fuzzy PDE model (4).

This study considers a static sampled-data fuzzy local state

feedback controller of the following form by the fuzzy PDE

model (4):

uv(t) =
r

∑

i=1

hvi(tk)
kTvi
∆x̃v

∫ x̃2v

x̃2v−1

y(x, tk)dx, v ∈ M,

t ∈ [tk, tk+1), k ∈ ℘ , {0, 1, 2, · · · }, (6)

where

hvi(tk) ,
1

∆x̃v

∫ x̃2v

x̃2v−1

hi(ξ(x, tk))dx,

∆x̃v , x̃2v − x̃2v−1, v ∈ M, (7)

and kvi ∈ ℜn, v ∈ M, i ∈ S are control gain parameters to

be determined, and tk, k ∈ ℘ are sampling instants and satisfy

tk+1 − tk ≤ Th, k ∈ ℘ (Th > 0 is the maximum sampling

step in time given in advance). From (5) and (7), we get

hvi(tk) ≥ 0, i ∈ S and

r
∑

i=1

hvi(tk) = 1, (8)

for any sampling instants tk, k ∈ ℘ and v ∈ M. Clearly, the

sampled-data fuzzy control law (6) with (7) is a weighted aver-

age of sampled-data linear control laws
kTvi

∆x̃v

∫ x̃2v

x̃2v−1
y(x, tk)dx,

v ∈ M, i ∈ S, k ∈ ℘, where the mean value of the

sampled-data state y(x, tk), k ∈ ℘ is utilized and the weights

are determined by the functions hvi(tk), v ∈ M, i ∈ S,

k ∈ ℘ (i.e., the mean value of fuzzy membership functions

hi(ξ(x, t)), i ∈ S on the subintervals [x̃2v−1, x̃2v], v ∈ M at

the sampling instants tk, k ∈ ℘).

By substituting the sampled-data fuzzy controller (6) into

the fuzzy PDE (4), considering the boundary conditions and

the initial condition in (1), and using the definition of G(x)
given in (2), the resulting closed-loop sampled-data fuzzy PDE

system is given as follows:






















yt(x, t) = Θyxx(x, t) +
∑r

i=1 hi(ξ(x, t))Aiy(x, t)

+ gv
∑r

i=1 hvi(tk)
kTvi

∆x̃v

∫ x̃2v

x̃2v−1
y(x, tk)dx,

k ∈ ℘, x ∈ [xv, xv+1), t > 0, v ∈ M,
y(0, t) = 0, yx(x, t)|x=L = 0, t > 0,
y(x, 0) = y0(x), x ∈ [0, L].

(9)

The fuzzy-model-based sampled-data control design ad-

dressed in this paper is formally defined as follows:

For the SLPPDE system (1), the objective of this study

is to develop an LMI-based design of the static sampled-

data fuzzy controller (6) such that the resulting closed-loop

SLPPDE system is exponentially stable in the sense of ∥ · ∥∞.
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C. Important lemmas

Lemma 1 (Vector-valued Wirtinger’s inequalities): Let

y(·, t) ∈ H1
n((0, L)) be a vector function with y(0, t) = 0

or y(L, t) = 0, t ≥ 0. Then, for any matrix 0 ≤ S ∈ ℜn×n,

we have for any t ≥ 0

∫ L

0

yT (x, t)Sy(x, t)dx ≤ 4L2

π2

∫ L

0

yTx (x, t)Syx(x, t)dx. (10)

Moreover, for a vector function y(·, t) ∈ H2
n((0, L)) with

yx(0, t) = 0 or yx(L, t) = 0, t ≥ 0, we have the following

inequality for any matrix 0 ≤ S ∈ ℜn×n

∫ L

0

yTx (x, t)Syx(x, t)dx

≤ 4L2

π2

∫ L

0

yTxx(x, t)Syxx(x, t)dx, t ≥ 0. (11)

Proof: The proof of this lemma is easily done by Theorem

2 in [48] and thus omitted here.

Lemma 2 (A variation of vector-valued Poincaré–Wirtinger

inequality in 1D spatial domain): Let y(·, t) ∈ H1
n((0, L)),

t ≥ 0 be a vector function. Then, for any matrix 0 ≤ S ∈
ℜn×n, we have

∫ L

0

(y(x, t)− yl(t))
T S(y(x, t)− yl(t))dx

≤ 4ϕπ−2

∫ L

0

yTx (x, t)Syx(x, t)dx, t ≥ 0 (12)

where yl(t) , (l2 − l1)
−1

∫ l2

l1
y(x, t)dx, [l1, l2] ⊂ [0, L], and

ϕ , max{l22, (L− l1)
2}.

Proof: See the Appendix A

Lemma 3 (Vector-valued Agmon’s inequality): Let y(·, t) ∈
H1

n((0, L)) be a vector function with y(0, t) = 0 or y(L, t) =
0, t ≥ 0. The following inequality is fulfilled:

∥y(·, t)∥2∞ ≤ 2∥y(·, t)∥2∥yx(·, t)∥2 ≤ ∥y(·, t)∥2
H1

n((0,L)), t ≥ 0.
(13)

Proof: See the Appendix B

Note that the membership functions hvi(tk), v ∈ M, i ∈
S, k ∈ ℘ in the sampled-data fuzzy controller (6) are different

from the ones hi(ξ(x, t)), i ∈ S in the fuzzy PDE model (4).

This characteristic prevents direct use of the parameterized

LMI technique [41] to reduce control design conservativeness.

To overcome this drawback, this paper will provide an LMI

relaxation technique. By considering (5) and (8), we get

|hi(ξ(x, t))− hvi(tk)| ≤ 1, x ∈ [xv, xv+1), v ∈ M (14)

for any t ∈ [tk, tk+1), k ∈ ℘, and i ∈ S. Using (14), the

following lemma provides an LMI relaxation technique:

Lemma 4: Consider n × n matrices Λv(x, t, tk) ,
∑r

i=1

∑r
j=1 hi(ξ(x, t))hvj(tk)Λvij , x ∈ [xv, xv+1), v ∈ M,

t ∈ [tk, tk+1), k ∈ ℘. The matrix inequalities Λv(x, t, tk) < 0,

v ∈ M are fulfilled for x ∈ [xv, xv+1), v ∈ M, t ∈ [tk, tk+1),
k ∈ ℘, if there exist matrices 0 > Γvij ∈ ℜn×n, 0 > Υvij ∈

ℜn×n, Ωvij = ΩT
vji ∈ ℜn×n, and Ωvi(j+r) = ΩT

v(j+r)i ∈
ℜn×n, v ∈ M, i, j ∈ S such that

∆vij +∆vji ≤ Ωvij +Ωvji, v ∈ M, i, j ∈ S (15)

Λvij − 2∆vij −
r

∑

k=1

(∆+
vik +∆+

vkj)

≤ Ωvi(j+r) +Ωv(j+r)i, v ∈ M, i, j ∈ S (16)

Yv ,

[

Yv11 Yv12

∗ Yv11

]

, v ∈ M (17)

where ∆vij , Γvij −Υvij , ∆+
v,ij , Γvij +Υvij , i, j ∈ S,

Yv,11 ,







Ωv11 · · · Ωv1r

...
. . .

...

Ωvr1 · · · Ωvrr






, v ∈ M,

Yv,12 ,







Ωv1(r+1) · · · Ωv1(2r)

...
. . .

...

Ωvr(r+1) · · · Ωvr(2r)






, v ∈ M.

Proof: The proof of this lemma is easily done via Lemma

2 in [46] and thus omitted here.

Remark 2: LMI relaxation techniques have been proposed

in [45] and [46] by making assumptions on fuzzy membership

functions to reduce the fuzzy control design conservativeness.

These assumptions to some extent restrict the application of

the control design in [45] and [46]. In this paper, an LMI

relaxation technique is developed in Lemma 4 by removing

these assumptions made in [45] and [46]. Lemma 4 is a

special case of the LMI relaxation technique in [46], where

the positive parameters ςv,i are chosen as 1.

III. STATIC SAMPLED-DATA FUZZY CONTROL DESIGN

Let us consider a Lyapunov–Krasovskii functional candidate

of the following form for the system (9):

V (t) = V1(t) + V2(t) + V3(t), t ∈ [tk, tk+1), k ∈ ℘, (18)

where

V1(t) =

∫ L

0

yT (x, t)P1y(x, t)dx, (19)

V2(t) =

∫ L

0

yTx (x, t)P2yx(x, t)dx, (20)

V3(t) = Th

∫ L

0

∫ t

tk

(s− t+ Th)y
T
s (x, s)P3ys(x, s)dsdx,

(21)

with 0 < P1 ∈ ℜn×n, 0 < P2 ∈ ℜn×n, and 0 < P3 ∈
ℜn×n are Lyapunov matrices to be determined. Obviously,

the function V (t) given in (18) is continuous in time from

the right for y(x, t) satisfying the system (9) and absolutely

continuous for t ̸= tk, k ∈ ℑ. Along the jumps tk, k ∈ ℑ
V (t) satisfies V (tk) ≤ V (t−k ) , limt→t

−

k
V (t), k ∈ ℑ since

V3(t
−

k ) , limt→t
−

k
V3(t) ≥ 0 and V3(tk) = 0 after the jumps
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because y(x, t)|t=tk
= y(x, tk). Moreover, V (t) satisfies the

following inequality for any t ∈ [tk, tk+1), k ∈ ℘:

ρ1∥y(·, t)∥2
H1

n((0,L)) ≤ V (t) ≤ λmax(P1)

∫ L

0

yT (x, t)y(x, t)dx

+ λmax(P2)

∫ L

0

yTx (x, t)yx(x, t)dx

+ λmax(P3)T
2
h

×
∫ L

0

∫ t

tk

yTs (x, s)ys(x, s)dsdx, (22)

where ρ1 , min{λmin(P1), λmin(P2)}. For t = 0, the

following inequality can be obtained from (22)

V (0) ≤ ρ2∥y0(·)∥2H1
n((0,L)) (23)

where ρ2 , max{λmax(P1), λmax(P2)}.

Note that the proposed Lyapunov-Krasovskii functional

candidate of the form (18)-(21) is different from that reported

in [3]- [6], [9]- [11], and [28]- [38] for the sampled-data

control design of the systems which are modeled by O/DDEs,

due to that the system (1) is spatiotemporal and includes the

term Θyxx(x, t). Although the problem of sampled-data fuzzy

control design of nonlinear parabolic DPSs has been addressed

in [39] and [40], the proposed Lyapunov-Krasovskii functional

candidate is constructed based on the low-dimensional ODE

approximations obtained from the singular perturbation formu-

lation of Galerkin’s method. On the other hand, the Lyapunov-

Krasovskii functional candidate of the form (18)-(21) is also

different from the ones used in [20]- [22] for sampled-data

control design of semi-linear parabolic PDE systems, where

an exponential term exp(2α(s − t)) (α is a given positive

constant) is introduced in construction of Lyapunov-Krasovskii

functional candidates.

Theorem 1: Consider the SLPPDE system (1) and the T-

S fuzzy PDE model (4). For given constants L > 0, Th >
0, an integer m > 0, and parameters x̃2v−1, x̃2v , v ∈ M,

x2, x3, · · · , xm, if there exist matrices 0 < X1 ∈ ℜn×n, 0 <
X2 ∈ ℜn×n, 0 < X3 ∈ ℜn×n and vectors zvj ∈ ℜn, v ∈ M,

j ∈ S such that the following LMIs are fulfilled:

Φvij ,

[

Φ1vij Φ2vij

∗ Φ3vij

]

< 0, v ∈ M, i, j ∈ S (24)

where

Φ1vij ,

[

[AiX1 + ∗]− π2

4φv
Φ1

π2

4φv
Φ1 + gvzTvj

∗ − π2

4φv
Φ1

]

,

Φ2vij ,

[

−X1AT
i X1AT

i −gvzTvj
−zvjgTv zvjgTv 0

]

,

Φ3vij ,





−[ΘX2 + ∗] X2Θ gvzTvj
∗ T 2

hX3 − 2X1 −gvzTvj
∗ ∗ −∆x̃v

∆xv
X3



 ,

in which

Φ1 , [ΘX1 + ∗],
φv , max{(x̃2v − xv)

2, (xv+1 − x̃2v−1)
2},

∆xv , xv+1 − xv, v ∈ M, (25)

then there exists a static sampled-data fuzzy controller (6) such

that the resulting closed-loop system is exponentially stable in

the sense of ∥ · ∥∞, where the control gain parameters kvj ,

v ∈ M, j ∈ S are given by

kTvj = zTvjX−1
1 , v ∈ M, j ∈ S. (26)

Proof: See the Appendix C.

By the Lyapunov-Krasovskii functional candidate (18) with

(19)-(21) and making use of integration by parts and Lem-

mas 1-3, Theorem 1 provides an LMI-based design of static

sampled-data fuzzy controller (6) exponentially stabilizing the

SLPPDE system (1) in the sense of ∥ · ∥∞. The corresponding

control gains kvi, v ∈ M, i ∈ S are constructed as (26) from

feasible solutions to the LMIs (24), which are directly solved

by feasp solver in Matlab’s LMI Control Toolbox [47].

Based on Theorem 1 and Lemma 4, we will give a less

conservative LMI-based design for static sampled-data fuzzy

controller (6).

Theorem 2: For given constants L > 0, Th > 0, an integer

m > 0, and parameters x̃2v−1, x̃2v , v ∈ M, x2, x3, · · · , xm,

consider the SLPPDE system (1) and the T-S fuzzy PDE model

(4). If there exist matrices 0 < X1 ∈ ℜn×n, 0 < X2 ∈ ℜn×n,

0 < X3 ∈ ℜn×n, vectors zvj ∈ ℜn, and matrices 0 > Πvij ∈
ℜ5n×5n, 0 > Nvij ∈ ℜ5n×5n, Σvij = ΣT

vji ∈ ℜ5n×5n,

Σvi(j+r) = ΣT
v(j+r)i ∈ ℜ5n×5n, v ∈ M, i, j ∈ S such that

the following LMIs hold:

X̄vij + X̄vji ≤ Σvij +Σvji, v ∈ M, i, j ∈ S (27)

Φvij − 2X̄vij −
r

∑

k=1

(X̄
+
vik + X̄

+
vkj)

≤ Σvi(j+r) +Σv(j+r)i, v ∈ M, i, j ∈ S (28)
[

Uv11 Uv12

∗ Uv11

]

< 0, v ∈ M (29)

where X̄vij , Πvij−Nvij , X̄
+
vij , Πvij+Nvij , Φvij (given

in Theorem 1), v ∈ M, i, j ∈ S,

Uv11 ,







Σv11 · · · Σv1r

...
. . .

...

Σvr1 · · · Σvrr






, v ∈ M,

Uv12 ,







Σv1(r+1) · · · Σv1(2r)

...
. . .

...

Σvr(r+1) · · · Σvr(2r)






, v ∈ M,

then there exists a static sampled-data fuzzy controller (6) for

the SLPPDE system (1) guaranteeing exponential stability of

the resulting closed-loop system in the sense of ∥ · ∥∞, where

the control gains kvj , v ∈ M, j ∈ S are given by (26).

Proof: The proof of this theorem is easily done with the

aid of Theorem 1 and Lemma 4 and thus omitted.

By Lemma 4, the exponential stabilization ability of static

sampled-data fuzzy controller (6) designed by Theorem 2 is

enhanced, which will be verified by Example 1 in Section IV.

Remark 3: The main results (i.e., Theorems 1 and 2) are also

applicable for the case of mixed Neumann-Dirichlet boundary

conditions yx(x, t)|x=0 = y(L, t) = 0. This is because

both the inequality (11) (it requires yx(x, t)|x=0 = 0 or
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yx(x, t)|x=L = 0) in Lemma 1 and the vector-valued Agmon’s

inequality (it requires y(0, t) = 0 or y(L, t) = 0) in Lemma 3

are employed in the development of these main results.

Remark 4: By Remark 1, the main results (i.e., Theorems 1

and 2) are also directly employed to solve static sampled-data

fuzzy control design for the SLPPDE system (1) in the sense

of ∥·∥2. In this situation, these main results are also applicable

for the case of Neumann boundary conditions yx(x, t)|x=0 =
yx(x, t)|x=L = 0 due to that they can be derived in the absence

of the vector-valued Agmon’s inequality given in Lemma 3.

Remark 5: Although the main results (i.e., Theorems 1 and

2) only address the case of single input for each actuator’s

active area (see Eq. (2)), they are also revised for the case of

multi-input for this active area. On the other hand, by using

the technique of spatial differential linear matrix inequality

(SDLMI) reported in [41] and [42], the main results of this

paper can be revised to address the problem of sampled-

data fuzzy control design of the SLPPDE system (1) where

f(y(x, t)) is replaced by f(y(x, t), x).
Remark 6: In comparison to most recent results in [44]-

[46] for fuzzy control design of nonlinear DPSs whose control

input is continuous in time, one of the main differences of

this paper lies in that fuzzy control design is developed in

this paper for semi-linear parabolic PDE systems, where the

control input is sampled-data and discontinuous in time. Apart

from the sampled-data case, another main difference is that

by a variation of vector-valued Poincar-Wirtinger inequality

in 1D space (i.e., Lemma 2) and a vector-valued Agmon’s

inequality (i.e., Lemma 3), the suggested fuzzy control design

proposed in this paper is addressed in the sense of ∥ · ∥∞,

which is stronger than the control design results in [44]- [46]

discussed in the sense of ∥ · ∥2 by Remark 1. Moreover,

the implementation of the proposed fuzzy controller of this

paper requires the sensors only active over some partial areas

of the spatial domain, while the sensors are required to be

distributed continuously over the entire spatial domain for the

implementation of the fuzzy controller proposed in [44] and

located at some specified points of the spatial domain for the

fuzzy controllers reported in [45] and [46].

IV. NUMERICAL SIMULATION

To illustrate the satisfactory and better performance of the

proposed design method, this section considers two semi-linear

parabolic PDE systems: the first one is a scalar one subject

to mixed Dirichlet-Neumann boundary conditions and the

second one is a multi-variable one subject to mixed Neumann-

Dirichlet boundary conditions.

Example 1: Consider a semi-linear parabolic PDE system:
{

yt(x, t) = yxx(x, t) + f(y(x, t)) + gT (x)u(t)
y(0, t) = yx(x, t)|x=1 = 0, y(x, 0) = y0(x),

(30)

where y(x, t) is state, u(t) , [u1(t) u2(t)]
T ∈ ℜ2 is manip-

ulated control input, g(x) , [g1(x) g2(x)]
T is control influ-

ence function describing distribution of piecewise actuators.

Set f(y(x, t)) = 3 sin(y(x, t)), g1(x) =

{

1 x ∈ [0, 0.5)
0 otherwise

,

g2(x) =

{

2 x ∈ [0.5, 1)
0 otherwise

, u(t) = 0 and y0(x) =

(a)

0 4 8 12

0.5

0.7

0.9

1.1

t

‖
y
(·
,
t)
‖
∞

(b)

Fig. 2: Open-loop numerical simulation results: (a) profile of

evolution of y(·, t) and (b) trajectory of ∥y(·, t)∥∞

0.5 sin(0.5πx), x ∈ [0, 1], Fig. 2 provides open-loop numerical

simulation results: profile of evolution of y(·, t) and trajectory

of ∥y(·, t)∥∞. It is obvious from Fig. 2 that the equilibrium

profile y(·, t) = 0 of the open-loop system of (30) is unstable

in the sense of ∥ · ∥∞.

According to Example 1 in [46], when y(x, t) ∈ (−π, π),
x ∈ [0, 1], the semi-linear system (30) is exactly represented

by the following T-S fuzzy PDE system of two rules:

Plant Rule 1:

IF y(x, t) is “about 0”, THEN
{

yt(x, t) = yxx(x, t) + a1y(x, t) + gT (x)u(t)
y(0, t) = yx(x, t)|x=1 = 0, y(x, 0) = y0(x)

Plant Rule 2:

IF y(x, t) is “about −π or π”, THEN
{

yt(x, t) = yxx(x, t) + a2y(x, t) + gT (x)u(t)
y(0, t) = yx(x, t)|x=1 = 0, y(x, 0) = y0(x)

where a1 = 3 and a2 = 3ϖ. The overall fuzzy PDE system

is written as






yt(x, t) = yxx(x, t)

+
∑2

i=1 hi(y(x, t))aiy(x, t) + gT (x)u(t)
y(0, t) = yx(x, t)|x=1 = 0, y(x, 0) = y0(x),

(31)

where

h1(y(x, t)) =

{

sin(y(x,t))−ϖy(x,t)
(1−ϖ)y(x,t) y(x, t) ̸= 0

1 y(x, t) = 0

h2(y(x, t)) = 1− h1(y(x, t)), (32)

with ϖ , 0.01/π.

Set x̃1 = 0.2, x̃2 = 0.3, x̃3 = 0.7, and x̃4 = 0.8, we

thus have φ1 = φ2 = 0.09. Let Th = 0.1360, Θ = 1,

g1 = 1, g2 = 2, and Ai = ai, i ∈ {1, 2}. By Theorem 2,

solving the LMIs (27)-(29) by feasp solver [47] and using
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(a)

0 0.3 0.6 0.9
0

0.3

0.5

t

‖
y
(·
,
t)
‖
∞

(b)

0 0.3 0.6 0.9

−1.8

−1.2

−0.6

0

t

u
(t
)

 

 

u1(t)
u2(t)

(c)

Fig. 3: Closed-loop numerical simulation results: (a) profile

of evolution of y(x, t), (b) trajectory of ∥y(·, t)∥∞, and (c)

trajectory of sampled-data fuzzy control input u(t)

(26), we obtain control parameters kvi, v ∈ {1, 2}, i ∈ {1, 2}
as k11 = −3.4965, k12 = −3.4935, k21 = −1.7482, and

k22 = −1.7467. Applying the sampled-data fuzzy controller

(6) with the aforementioned control parameters to the system

(30), the resulting closed-loop numerical simulation results:

profile of evolution of y(x, t), trajectory of ∥y(·, t)∥∞, and

the corresponding trajectory of the sampled-data fuzzy control

input u(t) are shown in Fig. 3. What is apparent from Fig. 3 is

that the suggested sampled-data fuzzy controller (6) stabilizes

the system (30) in the sense of ∥ · ∥∞. On the other hand,

by Theorem 1, when Th = 0.1360, it has been verified

that the LMIs (24) are infeasible. Setting Th = 0.03654,

solving the LMIs (24) and using (26), we can get the control

parameters kvi, v ∈ {1, 2}, i ∈ {1, 2} as k1i = −3.2784 and

k2i = −1.6392, i ∈ {1, 2}. In this situation, the sampled-data

fuzzy controller (6) will be reduced to a linear one. Obviously,

the exponential stabilization ability of the sampled-data fuzzy

controller (6) designed by Theorem 2 is significantly enhanced

by Lemma 4 for this example.

Next, we will provide a comparison study for the system

(30) between the sampled-data fuzzy controller (6) and a

sampled-data fuzzy modal-feedback controller from [39] and

[40]. By following the main idea of the control design in [39]

and [40], we construct a sampled-data fuzzy modal-feedback

0 0.3 0.6 0.9
0

0.13

0.26

0.39

t

‖y
(·
,
t)
‖ 2

 

 
Sampled−data fuzzy controller (6)
Sampled−data fuzzy controller (33)

Fig. 4: Closed-loop trajectory of ∥y(·, t)∥2 using sampled-data

fuzzy controllers (6) and (33)

controller as follows:

uv(t) =
2

∑

i=1

hi(xs(tk))kvixs(tk),

v ∈ {1, 2}, t ∈ [tk, tk+1), k ∈ ℑ, (33)

where ν(x) =
√
2 sin(0.5πx), xs(t) ,

∫ 1

0
ν(x)y(x, t)dx,

k11 = −5.1, k12 = −5.2, k21 = −2.4, k22 = −2.3, and

h1(xs(t)) =

{

ϖ2xs(t)−f(xs(t))
(ϖ2−ϖ1)xs(t)

xs(t) ̸= 0
ϖ2−1
ϖ2−ϖ1

xs(t) = 0

h2(xs(t)) = 1− h1(xs(t)),

with f(xs(t)) =
∫ 1

0
ν(x) sin(xs(t)ν(x))dx,

df(xs(t)) =
∫ 1

0
ν2(x) cos(xs(t)ν(x))dx, ϖ1 ,

minxs(t)∈[−0.4,1.2]{df(xs(t))}, and ϖ2 ,

maxxs(t)∈[−0.4,1.2]{df(xs(t))}.

Applying the sampled-data fuzzy modal-feedback controller

(33) to the system (30), the closed-loop trajectory of ∥y(·, t)∥2
is shown in Fig. 4. According to Remark 4, the sampled-data

fuzzy controller (6) can also exponentially stabilize the system

(30) in the sense of ∥y(·, t)∥2. The closed-loop trajectory of

∥y(·, t)∥2 is also given in Fig. 4 for the system (30) driven by

the sampled-data fuzzy controller (6). It is clear from Fig. 4

that in comparison to the sampled-data fuzzy modal-feedback

controller from [39] and [40], the suggested sampled-data

fuzzy controller (6) provides a better control performance.

To further illustrate the improvement of Lemma 4, we

provide a numerical comparison among Lemma 2 in [45],

Lemma 2 in [46] and Lemma 4. It is easily observed from

the fuzzy membership functions h1(y(x, t)) and h2(y(x, t))
defined in (32) that Lemma 2 in [45] cannot be utilized to

reduce the conservativeness of the fuzzy control design due

to that h2(y(x, t)) = 0 when y(x, t) = 0. By Theorem 1 and

Lemma 2 in [46] with ςv,i = 1.2, v, i ∈ {1, 2}, it has been

verified that the corresponding LMI conditions are infeasible

for Th = 0.1360. That is, the improvement of Lemma 4

is better than that of Lemma 2 in [46] with ςv,i = 1.2,

v, i ∈ {1, 2}.

Example 2: Consider piecewise sampled-data control of

multi-variable parabolic PDE systems with piecewise control
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(a)

(b)

Fig. 5: Open-loop numerical simulation results: (a) profiles

of evolution of y1(·, t) and y2(·, t), and (b) trajectories of

∥y1(·, t)∥∞ and ∥y2(·, t)∥∞

inputs and mixed Neumann-Dirichlet boundary conditions






















y1,t(x, t) = y1,xx(x, t) + 3y1(x, t)
−y2(x, t)− y31(x, t) + ḡT (x)u(t),

y2,t(x, t) = y2,xx(x, t) + 0.45y1(x, t)− 0.1y2(x, t)
yi,x(x, t)|x=0 = yi(1, t) = 0, i ∈ {1, 2}
yi(x, 0) = yi,0(x), i ∈ {1, 2}

(34)

where yi(x, t), i ∈ {1, 2} are state variables, u(t) ,

[u1(t) u2(t)]
T ∈ ℜ2 is manipulated input, ḡ(x) ,

[ḡ1(x) ḡ2(x)]
T is influence function describing distribution

of piecewise actuators, where ḡ1(x) =

{

1 x ∈ [0, 0.5)
0 otherwise

and ḡ2(x) =

{

2 x ∈ [0.5, 1)
0 otherwise

. yi,0(x), i ∈ {1, 2} are

initial conditions. The PDE in the system (34) is a FitzHugh-

Nagumo (FHN) equation that is widely applied to model

wavy behavior in excitable media in biology [49] and chem-

istry [50], where the state variables yi(x, t), i ∈ {1, 2}
are usually termed as the concentrations of “activator” and

“inhibitor”, respectively. The initial conditions in (34) are

assumed to be y1,0(x) = 0.4 cos(0.5πx) and y2,0(x) =
0.2 cos(0.5πx) sin(πx). Fig. 5 shows open-loop profiles of

evolution of y1(x, t) and y2(x, t), and open-loop trajectories

of ∥y1(·, t)∥∞ and ∥y2(·, t)∥∞. It is easily seen from Fig. 5

that operating steady profiles yi(·, t) = 0, i ∈ {1, 2} of the

system (34) are unstable in the sense of ∥ · ∥∞.

Let y(x, t) , [y1(x, t) y2(x, t)]
T , g1 = [1 0]T , and g2 =

[2 0]T , the system (34) is rewritten as the form (1), where

Θ = I, m = 2, x1 = 0, x2 = 0.5, x3 = 1, and

f(y(x, t)) =

[

3y1(x, t)− y2(x, t)− y31(x, t)
0.45y1(x, t)− 0.1y2(x, t)

]

.

It is clear from Fig. 5 that y1(·, t) ∈ [−0.6, 0.6], t ≥ 0. The

operating domain S is chosen as S = [−1.2, 1.2]. By the

T-S fuzzy PDE modeling approach in Section IV [41], when

y1(·, t) ∈ S, the system (34) can be exactly represented by

the following T-S fuzzy PDE system of two rules:

Plant Rule 1:

IF ξ(x, t) is “Big”, THEN
{

yt(x, t) = Θyxx(x, t) + A1y(x, t) + G(x)u(t)
yx(x, t)|x=0 = y(1, t) = 0, y(x, 0) = y0(x)

Plant Rule 2:

IF ξ(x, t) is “Small”, THEN
{

yt(x, t) = Θyxx(x, t) + A2y(x, t) + G(x)u(t)
yx(x, t)|x=0 = y(1, t) = 0, y(x, 0) = y0(x)

where ξ(x, t) = y21(x, t),

A1 =

[

3− ϑ −1
0.45 −0.1

]

and A2 =

[

3 −1
0.45 −0.1

]

with ϑ , maxy1(·,t)∈S y21(·, t) = 1.44. The overall fuzzy

model is written as follows:






yt(x, t) = Θyxx(x, t)

+
∑2

i=1 hi(ξ(x, t))Aiy(x, t) + G(x)u(t)
yx(x, t)|x=0 = y(1, t) = 0, y(x, 0) = y0(x),

where the fuzzy membership functions h1(ξ(x, t)) and

h2(ξ(x, t)) are chosen as

h1(ξ(x, t)) = ϑ−1ξ(x, t) and h2(ξ(x, t)) = 1− h1(ξ(x, t)).

For more details, please refer to [41].

Set x̃1 = 0.2, x̃2 = 0.3, x̃3 = 0.7, and x̃4 = 0.8, we

thus have φ1 = φ2 = 0.09. Let Th = 0.14. By solving LMIs

(27)-(29) and using (26), the control gain parameters kTvi, v ∈
{1, 2}, i ∈ {1, 2} are given as:

[

kT11
kT21

]

=

[

−3.4059 0.2105
−1.7029 0.1053

]

,

and
[

kT12
kT22

]

=

[

−3.4073 0.2104
−1.7036 0.1052

]

.

By applying the suggested sampled-data fuzzy controller

(6) with above control gain parameters, closed-loop numer-

ical simulation results: profiles of evolution of y1(x, t) and

y2(x, t), trajectories of ∥y1(·, t)∥∞ and ∥y2(·, t)∥∞, and tra-

jectory of sampled-data fuzzy control input u(t) are shown

in Fig. 6. What is apparent from Fig. 6 is that the suggested

sampled-data fuzzy controller (6) can stabilize the system (34)

in the sense of ∥ · ∥∞.

V. CONCLUSIONS

This paper has proposed an LMI-based static sampled-

data fuzzy local state feedback control design for a class of

SLPPDE systems in the sense of ∥·∥∞. In the proposed design

development, three types of spatial integral inequalities are

utilized, i.e., vector-valued Wirtinger’s inequalities, a variation

of vector-valued Poincaré–Wirtinger inequality in 1D spatial

domain, and a vector-valued Agmon’s inequality, respectively.
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(a)

(b)

0 0.6 1.2 1.8
−3

−2

−1

0

t

u
(t
)

 

 

u1(t)
u2(t)

(c)

Fig. 6: Closed-loop numerical simulation results: (a) pro-

files of evolution of y1(x, t) and y2(x, t), (b) trajectories of

∥y1(·, t)∥∞ and ∥y2(·, t)∥∞, (c) trajectory of sampled-data

fuzzy control input u(t)

It has been shown by constructing an appropriate Lyapunov–

Krasovskii functional candidate and utilizing integration by

parts and these three integral inequalities that the suggested

sampled-data fuzzy controller exponentially stabilizes the PDE

system in the sense of ∥ · ∥∞, if the LMI-based sufficient

conditions are satisfied. Moreover, the exponential stabiliza-

tion ability of the suggested sampled-data fuzzy controller

is enhanced by proposing an LMI relaxation technique. Fi-

nally, the satisfactory and better performance of the suggested

sampled-data fuzzy controller are demonstrated by numerical

simulation results of two examples.

Note that main results of this paper are developed by Lemma

2. To utilize this lemma, we assume 0 < Θ ∈ ℜn×n in the

SLPPDE system (1) such that the inequality [P1Θ+] > 0 (see

Eq. (49)) is fulfilled for any P1 > 0. Indeed, this assumption

limits the scope of the application of the main results. In the

further study, we will study the problem of sampled-data fuzzy

control design for the SLPPDE system (1) with any general

matrix Θ ∈ ℜn×n.
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APPENDIX A

PROOF OF LEMMA 2

Proof: In the light of the eigendecomposition for the

matrix S ≥ 0, we get

S = UΛUT , (35)

where U is an orthogonal matrix and 0 ≤ Λ ,

diag{λ1, λ2, · · · , λn} whose entries are eigenvalues of S. By

using (35) and setting

z̃(x, t) , UT y(x, t) and z̃l(t) , UT yl(t), (36)

where z̃(x, t) = [z̃1(x, t) z̃2(x, t) · · · z̃n(x, t)]
T and

z̃l(t) = [z̃l,1(t) z̃l,2(t) · · · z̃l,n(t)]
T , with

z̃l,i(t) =
1

l2 − l1

∫ l2

l1

z̃i(x, t)dx, i ∈ {1, 2, · · · , n}. (37)

By first mean value theorem for definite integrals [51], for

any y(·, t) ∈ H1
n((0, L)) (̃z(·, t) ∈ H1

n((0, L)), obviously),

there exists scalars l̄i,t ∈ [l1, l2], i ∈ {1, 2, · · · , n} such that

∫ l2

l1

z̃i(x, t)dx = (l2 − l1)z̃i(l̄i,t, t), i ∈ {1, 2, · · · , n} (38)

where z̃i(l̄i,t, t) is called mean value of z̃i(x, t) on [l1, l2]. The

scalars l̄i,t, i ∈ {1, 2, · · · , n} such that the Eq. (38) is fulfilled

are not unique and their accurate value is unknown in general.

From (36)-(38), we get

∫ L

0

(y(x, t)−yl(t))
T S(y(x, t)− yl(t))dx

=

∫ L

0

(z̃(x, t)− z̃l(t))
TΛ(z̃(x, t)− z̃l(t))dx

=

n
∑

i=1

∫ L

0

λi(z̃i(x, t)− z̃i(l̄i,t, t))
2dx, (39)

For each i ∈ {1, 2, · · · , n}, by applying extended scalar

Wirtinger’s inequality [48] and considering l̄i,t ∈ [l1, l2], the

following inequality is easily derived

∫ L

0

(z̃i(x, t)−z̃i(l̄i,t, t))
2dx

≤
4max{l̄2i,t, (L− l̄i,t)

2}
π2

∫ L

0

z̃2i,x(x, t)dx

≤ 4ϕ

π2

∫ L

0

z̃2i,x(x, t)dx. (40)
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It is deduced from (36), (40) and λi ≥ 0, i ∈ {1, 2, · · · , n}
that

n
∑

i=1

∫ L

0

λi(z̃i(x, t)− z̃i(l̄i,t, t))
2dx

≤ 4ϕ

π2

n
∑

i=1

∫ L

0

λiz̃
2
i,x(x, t)dx

=
4ϕ

π2

∫ L

0

z̃Tx (x, t)Λz̃x(x, t)dx

=
4ϕ

π2

∫ L

0

yTx (x, t)Syx(x, t)dx. (41)

The inequality (12) is directly derived from (39) and (41).

APPENDIX B

PROOF OF LEMMA 3

Proof: Using integration by parts and considering

y(0, t) = 0, we have for any t ≥ 0
∫ x

0

yT (ς, t)yς(ς, t)dς = yT (x, t)y(x, t)

−
∫ x

0

yTς (ς, t)y(ς, t)dς. (42)

In the light of Cauchy–Schwarz inequality, the expression (42)

is rewritten as for any x ∈ [0, L] and t ≥ 0

yT (x, t)y(x, t) = 2

∫ x

0

yT (ς, t)yς(ς, t)dς

≤
√

∫ x

0

∥y(ς, t)∥2dς
√

∫ x

0

∥yς(ς, t)∥2dς

≤ ∥y(·, t)∥2∥yx(·, t)∥2. (43)

As it is fulfilled for any x ∈ [0, L], the inequality (43) is fur-

ther written as maxx∈[0,L] ∥y(x, t)∥2 ≤ 2∥y(·, t)∥2∥yx(·, t)∥2,

t ≥ 0, which implies the first inequality in (13) for the case of

y(0, t) = 0. By using the triangle inequality and considering

the definition of ∥·∥H1
n((0,L)), we have 2∥y(·, t)∥2∥yx(·, t)∥2 ≤

∥y(·, t)∥2
H1

n((0,L)), t ≥ 0, which is the second inequality in

(13). The inequality (13) is easily derived for the case of

y(L, t) = 0 in a similar manner.

APPENDIX C

PROOF OF THEOREM 1

Proof: Assume that the LMIs (24) are fulfilled for matri-

ces 0 < X1 ∈ ℜn×n, 0 < X2 ∈ ℜn×n, 0 < X3 ∈ ℜn×n and

vectors zvj ∈ ℜn, v ∈ M, j ∈ S. By applying integration by

parts and considering the boundary conditions in (1), we get

for any P1, P2 and Θ

∫ L

0

yT (x, t)P1Θyxx(x, t)dx = −
∫ L

0

yTx (x, t)P1Θyx(x, t)dx,

(44)
∫ L

0

yTx (x, t)P2yxt(x, t)dx = −
∫ L

0

yTxx(x, t)P2yt(x, t)dx.

(45)

Define

ỹv(x, t) , y(x, t)− 1

∆x̃v

∫ x̃2v

x̃2v−1

y(x, t)dx, v ∈ M, (46)

ȳv(t, tk) ,

∫ x̃2v

x̃2v−1

∫ t

tk

ys(x, s)dsdx, v ∈ M, k ∈ ℘, (47)

where ∆x̃v, v ∈ M are defined by (7). Using (44) and (47),

the time derivative of V1(t) in (19) along the solution to the

system (9), we get for any t ∈ [tk, tk+1), k ∈ ℘

V̇1(t) = −
∫ L

0

yTx (x, t)[P1Θ+ ∗]yx(x, t)dx

+

∫ L

0

r
∑

i=1

hi(ξ(x, t))y
T (x, t)[P1Ai + ∗]y(x, t)dx

+ 2

m
∑

v=1

∫ xv+1

xv

yT (x, t)P1gvdx

×
r

∑

j=1

hvj(tk)
kTvj

∆x̃v

∫ x̃2v

x̃2v−1

y(x, t)dx

− 2

m
∑

v=1

∫ xv+1

xv

yT (x, t)P1gvdx

×
r

∑

j=1

hvj(tk)
kTvj

∆x̃v

ȳv(t, tk). (48)

It can be obtained from P1 > 0 and Θ > 0 that

Ψ , [P1Θ+ ∗] > 0. (49)

By using the inequality (12) in Lemma 2 and considering (49)

and [x̃2v−1, x̃2v] ⊂ [xv, xv+1], we get for any v ∈ M,

−
∫ xv+1

xv

yTx (x, t)Ψyx(x, t)dx

≤ − π2

4φv

∫ xv+1

xv

ỹTv (x, t)Ψỹv(x, t)dx, (50)

where φv, v ∈ M are defined by (25). Substituting (50) into

(48) and considering
∪m

v=1[xv, xv+1] = [0, L], we get

V̇1(t) ≤
m
∑

v=1

∫ xv+1

xv

r
∑

i=1

r
∑

j=1

hi(ξ(x, t))hvj(t)

× ŷ
T
v (x, t)Ψ̄1vij ŷv(x, t)dx

− 2

m
∑

v=1

∫ xv+1

xv

yT (x, t)P1gvdx

×
r

∑

j=1

hvj(tk)
kTvj

∆x̃v

ȳv(t, tk), (51)

where ŷv(x, t) , [yT (x, t) (∆x̃v)
−1

∫ x̃2v

x̃2v−1
yT (x, t)dx]T and

Ψ̄1vij ,

[

[P1Ai + ∗]− π2

4φv
Ψ π2

4φv
Ψ+ P1gvkTvj

∗ − π2

4φv
Ψ

]

,

v ∈ M, i, j ∈ S.
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Similarly, using (45), (47), and
∪m

v=1[xv, xv+1] = [0, L],
for t ∈ [tk, tk+1), k ∈ ℘, the time derivative of V2(t) defined

in (20) along the solution to the system (9) is given as follows:

V̇2(t) = −
∫ L

0

yTxx(x, t)[P2Θ+ ∗]yxx(x, t)dx

− 2

∫ L

0

r
∑

i=1

hi(ξ(x, t))y
T
xx(x, t)P2Aiy(x, t)dx

− 2
m
∑

v=1

∫ xv+1

xv

yTxx(x, t)P2gvdx

×
r

∑

j=1

hvj(tk)
kT
vj

∆x̃v

∫ x̃2v

x̃2v−1

y(x, t)dx

+ 2
m
∑

v=1

∫ xv+1

xv

yTxx(x, t)P2gvdx

×
r

∑

j=1

hvj(tk)
kT
vj

∆x̃v

ȳv(t, tk). (52)

Based on the Jensen’s inequality [52], we get for any t ∈
(tk, tk+1), P3 > 0 and x ∈ [0, L]

−
∫ t

tk

yTs (x, s)P3ys(x, s)ds

≤ −T−1
h

∫ t

tk

yTs (x, s)dsP3

∫ t

tk

ys(x, s)ds. (53)

When t = tk, the inequality (53) is also fulfilled obviously

due to that for any x ∈ [0, L],

lim
t→tk

1

t− tk

∫ t

tk

yTs (x, s)dsP3

∫ t

tk

ys(x, s)ds

= 2 lim
t→tk

∫ t

tk

yTs (x, s)dsP3yt(x, t) = 0.

Utilizing
∪m

v=1[xv, xv+1] = [0, L] and (53), for t ∈ [tk, tk+1),
k ∈ ℘, the time derivative of V3(t) defined in (21) is obtained

as follows

V̇3(t) ≤ T 2
h

m
∑

v=1

∫ xv+1

xv

yTt (x, t)P3yt(x, t)dx

−
m
∑

v=1

∫ xv+1

xv

∫ t

tk

yTs (x, s)dsP3

∫ t

tk

ys(x, s)dsdx. (54)

With the help of the Jensen’s inequality again and
∪m

v=1[x̃2v−1, x̃2v] ⊂ [0, L] =
∪m

v=1[xv, xv+1], we know for

any v ∈ M and t ∈ [tk, tk+1), k ∈ ℘

−
∫ xv+1

xv

∫ t

tk

yTs (x, s)dsP3

∫ t

tk

ys(x, s)dsdx

< −(∆x̃v)
−1ȳTv (t, tk)P3ȳv(t, tk). (55)

Substitution of (55) into (54), we rewrite (54) as

V̇3(t) < T 2
h

m
∑

v=1

∫ xv+1

xv

yTt (x, t)P3yt(x, t)dx

−
m
∑

v=1

1

∆xv∆x̃v

∫ xv+1

xv

ȳTv (t, tk)P3ȳv(t, tk)dx, (56)

where ∆xv, v ∈ M are defined by (25).

On the other hand, by considering
∪m

v=1[xv, xv+1] = [0, L],
from (9) and (47), it is clearly seen for any t ≥ 0 that

0 = 2
m
∑

v=1

∫ xv+1

xv

yTt (x, t)P1Θyxx(x, t)dx

+ 2

m
∑

v=1

∫ xv+1

xv

r
∑

i=1

hi(ξ(x, t))y
T
t (x, t)P1Aiy(x, t)dx

+ 2

m
∑

v=1

∫ xv+1

xv

yTt (x, t)P1gvdx

×
r

∑

j=1

hvj(tk)
kTvj

∆x̃v

∫ x̃2v

x̃2v−1

y(x, t)dx

− 2
m
∑

v=1

∫ xv+1

xv

yTt (x, t)P1gvdx
r

∑

j=1

hvj(tk)
kTvj

∆x̃v

ȳv(t, tk)

− 2
m
∑

v=1

∫ xv+1

xv

yTt (x, t)P1yt(x, t)dx. (57)

By using (51), (52), (56), and (57), for t ∈ [tk, tk+1), k ∈ ℘,

the time derivative of V (t) defined in (18) along the solution

to the system (9) is given as follows:

V̇ (t) <
m
∑

v=1

∫ xv+1

xv

r
∑

i=1

r
∑

j=1

hi(ξ(x, t))hv,j(t)

× ζT
v (x, t, tk)Ψ̄vijζv(x, t, tk)dx, (58)

where

ζv(x, t, tk) ,

[

ŷ
T
v (x, t) yTxx(x, t) yTt (x, t)

ȳTv (t, tk)

∆x̃v

]T

,

Ψ̄vij ,

[

Ψ̄1vij Ψ̄2vij

∗ Ψ̄3vij

]

, v ∈ M, i, j ∈ S

in which

Ψ̄2vij ,

[

−AT
i P2 AT

i P1 −P1gvkTvj
−kvjgT

v P2 kvjgT
v P1 0

]

,

Ψ̄3vij ,





−[P2Θ+ ∗] ΘP1 P2gvkTvj
∗ T 2

hP3 − 2P1 −P1gvkT
vj

∗ ∗ −∆x̃v

∆xv
P3



 .

Let

X1 = P−1
1 , X2 = P−1

2 , X3 = P−1
1 P3P−1

1 ,

zTvj = kTvjX1, v ∈ M, j ∈ S. (59)

By pre- and post-multiplying the LMIs (24) with a block-

diagonal matrix P , diag{P1,P1,P2,P1, P1}, respectively,

and using (59), we obtain

Ψ̄vij < 0, v ∈ M, i, j ∈ S. (60)

One can find an appropriate scalar ρ > 0 such that

Ψ̄vij + ρI ≤ 0, v ∈ M, i, j ∈ S. (61)
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Substituting (61) into (58) and considering (5) and (8), we

obtain for t ∈ [tk, tk+1), k ∈ ℘

V̇ (t) < −ρ

∫ L

0

yT (x, t)y(x, t)dx

− ρ

∫ L

0

yTxx(x, t)yxx(x, t)dx− ρ

∫ L

0

yTt (x, t)yt(x, t)dx.

(62)

By applying the inequality (11) in Lemma 1 and considering

yx(x, t)|x=L = 0, we get for any t > 0

∫ L

0

yTx (x, t)yx(x, t)dx ≤ 4L2

π2

∫ L

0

yTxx(x, t)yxx(x, t)dx.

(63)

By following proofs of Theorem 3 in [48] and Theorem 1

in [53], it is easily shown from the inequalities (62) and (63)

that for any tf ≥ 0 there exists a constant κ > 0 such that

V (tf ) ≤ V (0) exp(−κtf ). (64)

By (22) and (23), the inequality (64) is written as

∥y(·, tf )∥2H1
n((0,L)) ≤ ρ2ρ

−1
1 ∥y0(·)∥2H1

n((0,L)) exp(−κtf ).

Based on Lemma 3, we further get ∥y(·, tf )∥∞ ≤
√

ρ2ρ
−1
1 ∥y0(·)∥H1

n((0,L)) exp(−0.5κtf ). Hence, we conclude

from the above inequality and Definition 2 that the system (9)

is exponentially stable in the sense of ∥ ·∥∞. Consider D ⊂ S

and the equivalence between the SLPPDE in (1) and the fuzzy

PDE (4) in the operating domain S, the suggested sampled-

data fuzzy controller (6) can locally exponentially stabilize the

system (1) in the sense of ∥ · ∥∞. From (59), we obtain (26).
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