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Abstract

Despite the relative recency of its inception, the theory of compressive sampling (aka compressed
sensing) (CS) has already revolutionized multiple areas of applied sciences, a particularly
important instance of which is medical imaging. Specifically, the theory has provided a different
perspective on the important problem of optimal sampling in magnetic resonance imaging (MRI),
with an ever-increasing body of works reporting stable and accurate reconstruction of MRI scans
from the number of spectral measurements which would have been deemed unacceptably small as
recently as five years ago. In this paper, the theory of CS is employed to palliate the problem of
long acquisition times, which is known to be a major impediment to the clinical application of
high angular resolution diffusion imaging (HARDI). Specifically, we demonstrate that a
substantial reduction in data acquisition times is possible through minimization of the number of
diffusion encoding gradients required for reliable reconstruction of HARDI scans. The success of
such a minimization is primarily due to the availability of spherical ridgelet transformation, which
excels in sparsifying HARDI signals. What makes the resulting reconstruction procedure even
more accurate is a combination of the sparsity constraints in the diffusion domain with additional
constraints imposed on the estimated diffusion field in the spatial domain. Accordingly, the
present paper describes an original way to combine the diffusion-and spatial-domain constraints to
achieve a maximal reduction in the number of diffusion measurements, while sacrificing little in
terms of reconstruction accuracy. Finally, details are provided on an efficient numerical scheme
which can be used to solve the aforementioned reconstruction problem by means of standard and
readily available estimation tools. The paper is concluded with experimental results which support
the practical value of the proposed reconstruction methodology.
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I. Introduction

Among all contemporary methods of diagnostic medical imaging, magnetic resonance
imaging (MRI) is considered to be the modality of choice for diagnosing the majority of
neurological and spinal diseases. Central to MRI is the notion of contrast, which is typically
defined by the biochemical composition of interrogated tissue as well as by the morphology
of its parenchyma. The most prevalent contrast mechanisms used in the current practice are
those defined by T1/T2 relaxation times and proton density (PD). Despite their exceptional
importance to clinical diagnosis, however, none of the above contrasts allows delineating the
morphological structure of the white matter. It is only with the advent of diffusion MRI
(dMRI) that scientists have been able to perform quantitative measurements of the
diffusivity of white matter, based on which its structural delineation has become possible
[1]–[4]. Like any other MRI technique, however, dMRI still remains subject to artifacts and
pitfalls [1]. Whereas many of such artifacts can be overcome by means of advanced
hardware designs and/or more sophisticated imaging protocols [5], one particularly critical
limitation of many dMRI techniques stems from the physics of the acquisition of diffusion
MR images, and therefore is impossible to resolve by operational means. Specifically, since
collecting the diffusion data requires a repetitive acquisition of MR responses from the same
volume of interest for a number of diffusion-encoding gradients, it is the relatively long
acquisition times that greatly impair the practical value of this important imaging modality.
Accordingly, the practical value of many dMRI methodologies could be improved by
shortening the scanning times required for acquisition of diffusion data. A particular method
to achieve such an improvement is detailed in this paper.

In the focus of this paper is a specific instance of dMRI known as high angular resolution
diffusion imaging (HARDI) [6], [7], which excels in detecting the orientational distribution
of water diffusion in the cerebral tissue. In HARDI, it is standard to restrict the diffusion
measurements to a single shell in the q-space. In this case, at each spatial location r ∈ ℝ3

within a region-of-interest, its corresponding HARDI signal can be viewed as a real-valued
function of the spherical coordinate u ∈  : = {v ∈ ℝ3|||v||2 = 1}. Moreover, under some
general assumptions (see, e.g., [7, Sec. 3.1] for more details), such signals can be modelled
according to [6], [7]

(1)

where s0 denotes the diffusion signal obtained in the absence of diffusion encoding (i.e., the

so-called “b0-image”), αi(r) > 0 are positive weights obeying , b is defined as
a function of the shape and amplitude of diffusion-encoding gradients [8, Eq. (3.18)], and

 are 3×3 diffusion tensors associated with the M(r) neural fibre tracts passing
through the r coordinate.

In practical settings, the spherical coordinate u in (1) is sampled at K distinct points .
For each uk, its corresponding diffusion-encoded image is measured—the process that
results in a total of K scans. On the one hand, increasing K can be expected to provide more
information on the measured diffusion system. On the other hand, HARDI scanning times
are always limited, which necessitates restriction of K to a reasonably small value. This
brings us to the central question addressed in this paper: what is a sufficient number of
diffusion-encoding directions to use in HARDI?
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It turns out that, under certain assumptions, the above question can be answered in a
rigorous manner. Specifically, assuming that each voxel can support only one diffusion flow
at most corresponds to setting M(r) = 1 for all r in (1). In this case, at each spatial location,
its associated diffusion flow is fully described by a symmetric diffusion tensor D(r), whose
estimation is central to diffusion tensor imaging (DTI) [1]–[3], [9]. Since D(r) has only six
independent entires, a minimum of if K = 7 diffusion-encoded images are theoretically
sufficient to measure s0(r) and recover the values of D(r) by means of, e.g., a least-square
fit.1 Unfortunately, the accuracy of DTI is known to deteriorate dramatically at the sites
where the neural fibres (or bundles thereof) cross, touch upon each other, or diverge [7],
[11]–[14].

As opposed to DTI, HARDI is capable of capturing multimodal diffusion patterns by
sampling the unit sphere at a much greater number of orientations (usually between 60 and
100) [6], [11]–[16]. The increase in K makes it possible to describe the diffusion
measurements using much more accurate models. Among these are parametric models [17]–
[20] which allow HARDI signals to be expressed in terms of a relatively small number of
prototype functions. Unfortunately, fitting a parametric model entails minimization of
nonconvex cost functionals, which is a noise-sensitive and computationally intensive task,
prone to the problem of local minima. The need to predetermine the optimal number of
fitting terms is known to be another disadvantage of using the models of this type.

The problems associated with parametric modelling of HARDI signals can be overcome by
using nonparametric models, in which case the signals are recovered by projecting the
observed data onto properly defined functional subspaces. In particular, the applicability of
spherical Fourier analysis to HARDI has been demonstrated in [13], [14], [21], [22], where
HARDI signals are approximated by truncated series of spherical harmonics (SH). Despite
its stability and computational efficiency, however, the SH-parameterization involves a
relatively large number of SHs, which suggests that the latter cannot provide sparse
representation of HARDI signals. The main reason for this is rooted in the fact that the
energies of elementary signals di(u|r) := exp{−b(uT Di(r)u)} in (1) are concentrated
alongside the great circles2 of , whereas the energy of SHs is spread all over , and, as a
result, a relatively large number of SHs are needed to effectively “encode” di. The inability
of the basis of SHs to sparsely represent diffusion signals has led to the proposal of spherical
ridgelets in [23], where it was shown that it only takes 6–8 spherical ridgelets on average to
represent the HARDI signals with a precision exceeding the precision of their representation
using 45 SHs.

The present work takes the ideas of [23] one step further and shows that the availability of a
sparsifying basis for HARDI signals can be used to reduce the number of diffusion gradients
required for data acquisition. In particular, we suggest to use the theory of compressed
sensing (CS) [24], [25] to recover the HARDI signals using the number of spherical samples
K in a range of values typical for DTI (i.e., K ∈ [16,24]), thus allowing a multi-fibre analysis
of HARDI data to be performed at the “acquisition cost” of a standard DTI.

It is worthwhile noting that the ideas of CS have already paved their way into the field of
diffusion imaging [26]–[29]. In this regard, the conceptually closest to the proposed
approach is the method reported in [27]. In spite of this similarity, however, there are two
principal distinctions which make the present method a more powerful alternative. In

1In practice, however, a larger number of gradient directions is employed to reduce the estimation variance, with a typical K being
between 25 and 30 [10].
2A great circle of  is formed by the intersection of  with a plane passing though it origin. A more formal definition of the great
circles is given later in Section III.
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particular, the basis functions used in [27] are limited to represent an average dif-fusivity
and anisotropy of the white matter, thereby neglecting both intra- and inter-voxel variability
of tensors Di(r) in (1). The ridgelet representation, on the other hand, is a multiresolution
technique, which possesses an intrinsic ability to deal with a continuum of different
diffusion scales. Second, the approach in [27] is applied in a “voxel-by-voxel” manner and it
therefore does not take into consideration the spatial regularity of diffusion field. The
present paper, on the other hand, proposes a novel formulation of the problem of CS-based
reconstruction of diffusion signals, in which the sparsity constraints enforced in the diffusion
domain are augmented by regularity constraints enforced in the spatial domain. The
resulting reconstruction problem has the format of a convex minimization problem, which is
solved using a specially adapted version of the split Bregman algorithm [30], [31]. As will
be shown below, the proposed algorithm results in a particularly advantageous
computational structure which allows the solution to be computed via a sequence of simple
and easily parallelizable steps.

The rest of the paper is organized as follows. Section II provides additional comments on the
input-output structure of the proposed algorithm. The construction of spherical ridgelets is
briefly outlined in Section III, whereas Section IV gives a formal description of the proposed
reconstruction methodology. Some principal details on the numerical implementations of the
proposed algorithm are summarized in Section V, with the results of our experimental
studies reported in Section VI. Section VII finalizes the paper with a discussion and
conclusions.

II. Problem Statement

In the centre of our considerations is the HARDI signal s(u|r) which, when normalized by its
related b0-image s0(r), quantifies the attenuation of MR readout caused by the diffusion of
water molecules in the direction u ∈  through the spatial position r ∈ ℝ3. In practical
settings, both u and r are discretized. Specifically, restricting u to a discrete set of

orientations  prescribes the acquisition of diffusion data in the form of K diffusion-

encoded images , with each sk : ℝ3 → ℝ+ corresponding to a given uk. In this case,
for a fixed r0, the vector [s1(r0), s2(r0),…, sK(r0)]T ∈ ℝK represents a discretization of s(u|
r0). Note that such a discretization follows a linear measurement model, since each sample
sk(r0) can be represented as an inner product of s(u|r0) with a Dirac sampling function δuk
(u) := δ(1 − u · uk) (where the dot denotes the Euclidean dot product).

Next, given a collection of M spherical ridgelets  (defined below), HARDI signals
are assumed to be expandable as

(2)

with c(r) ∈ ℝM being a vector of spherical ridgelet coefficients which depend on the spatial
coordinate r. It is important to note that the set of spherical ridgelets is allowed to be

overcomplete, implying . A practical implication of this fact is that
the definition of coefficients c(r) in (2) is, in general, not unique. This nonuniqueness is
further aggravated by the fact that c(r) will have to be recovered from an under-sampled set
of diffusion measurements, in which case K ≪ M. Overcoming such a severe
underdetermination in the problem of estimating the ridgelet coefficients c(r) will be
possible based on the fundamental premise of the theory of CS that states that an accurate
estimation of c(r) is attainable if the latter is sufficiently sparse and if the sampling and

Michailovich et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 July 11.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



representation bases are sufficiently decorrelated. Whereas the sparsity of c(r) is rooted in
the very design of spherical ridgelets [23], the incoherency between the Dirac sampling
functions and spherical ridgelets stems from the fact that the former have an infinitely small
support, while the support of spherical ridgelets is “smeared” alongside the great circles of

. In particular, in the case of Dirac sampling, the mutual coherence between the Dirac and
ridgelet bases is defined as

(3)

where ||·||∞ denotes the supremum norm. Straightforward computations show that, for the
ridgelet analysis used in the present paper, μ is equal to 0.5659. Since the spherical ridgelets
are derived from a set of wavelet functions through the application of the Funk–Radon
transform, it is natural to ask what is the value of μ for the corresponding spherical wavelets
[32], [33]. It turns out that, for this case, μ would be equal to 2.2925, which is almost five
time higher than in the case of ridgelet analysis. Additionally, the mutual coherence of the
eighth-order spherical harmonic basis (as used, e.g., in [13]) with respect to the Dirac
sampling functions is equal to 1.1631, which is still about two times higher than that of the
spherical ridgelets. Thus, this is the relatively low coherence with respect to to the Dirac
sampling basis which, in combination with their sparsifying properties, makes the spherical
ridgelets an ideal candidate for CS-based reconstruction of HARDI signals. In particular, it
will be demonstrated below that it is possible to obtain a faithful reconstruction of HARDI
signals using as few as K = 16 diffusion-encoding gradients.

The proposed algorithm produces an estimate of the ridgelet representation coefficients c(r)
in (2). Once available, the coefficients provide an access to the analytical definition of
diffusion signals by virtue of (2). This can be used in a number of ways. One possibility is to
use the coefficients to compute their associated orientation distribution functions [6], based
on which a multi-fibre tractography analysis can be performed [34]. Alternatively, (2) could
be used to evaluate the diffusion signals over an arbitrarily fine grid of spatial orientations.
Such a refined set of “measurements” could be subsequently used to fit a different
representation model, whose application to the original data would not have been possible
without causing severe underestimation errors. Deconvolving the refined data to estimate the
underlying fibre orientation functions [35], [36] would be another important option to
follow. In this paper, however, we refrain from questioning which of the above possibilities
is more advantageous over the others. Our sole objective here is to specify a signal
processing algorithm, which can be used to recover HARDI signals using as small a number
K of diffusion-encoded images as possible.

Finally, it should be noted that the primarily purpose of the proposed methodology is to
improve the value of HARDI in terms of its time efficiency. Since the improvement is
achieved through merely decreasing the number of diffusion-encoding gradients, the
proposed method by no means abrogates the use of fast imaging protocols [37], [38] to
further accelerate the data acquisition. Furthermore, an additional speed-up can be achieved
via applying CS to reconstruct the diffusion encoded images sk from their subcritical
samples in the k-space [39]–[41]. Generally speaking, we believe this is a combination of
such software and hardware technologies which will eventually lead to substantial
improvements in the practical value of HARDI-based diagnosing. In this paper, however, we
confine our contribution to showing one particular way of attaining this important objective.
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III. Spherical Ridgelets

It is the property of spherical ridgelets to provide sparse representation of diffusion signals
in (1) which makes them an unparalleled tool for CS-based reconstruction of HARDI data.
To avoid repetitions, in what follows, we present only the most principal points of ridgelets
design, while their detailed description can be found in [23].

Spherical ridgelets are constructed using the fundamental principles of wavelet theory [42],
[43]. Specifically, let x ∈ ℝ+ and ρ ∈ (0, 1) be a positive scaling parameter. Further, let κ(x)
= exp{−ρx(x + 1)} be a Gaussian function, which we subject to a range of dyadic scalings
which result in

(4)

with j ∈ ℕ := {0, 1, 2, …}. Subsequently, the Gauss–Weier-strass scaling function χj,v : 
→ ℝ at resolution j ∈ ℕ and orientation v ∈  is defined as given by [32]

(5)

where Pn denotes the Legendre polynomial of order n. It is worth noting that the  energy
of χj,v is concentrated around the spherical point v, with this concentration becoming more
and more localized when j approaches infinity.

The spherical ridgelets are designed with the help of the Funk–Radon transform which, for
an arbitrary continuous function f:  → ℝ, is defined as

(6)

with σ(v) denoting the great circle perpendicular to direction v, i.e., σ(v):= {u ∈ |u·v = 0}.
Subsequently, following [23], the semi-discrete frame  of spherical ridgelets can be defined
as

(7)

where the spherical ridgelet functions φj,v are obtained from χj,v according to

(8)

with χ−1,v(u) ≡ 0, ∀u ∈ . Using (5), the ridgelets (8) can be redefined in a closed form as
(see [44] for details)

(9)

where κ−1(n) = 0, ∀n and
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(10)

Note that the -norm of φj,v defined in (9) is given by

(11)

and, therefore, to make all the spherical ridgelets have a unit norm, they have to be
normalized through

(12)

The set  in (7) is infinite-dimensional, and hence is not suitable for practical computations.
To define a discrete counterpart of , one has first to restrict the values of the resolution
index j to a finite set

(13)

where J defines the highest level of “detectable” signal details. Additionally, the set of all
possible orientations v ∈  of spherical ridgelets needs to be discretized as well. To find a
proper discretization scheme, we first note that the construction in (9) suggests that the
bandwidth of the spherical ridgelets (and therefore the dimensionality of the functional
space they belong to) increases proportionally to 2j. Since the space of spherical harmonics
of degree n has a dimension of (n + l)2, we define the number of ridgelet orientations at
resolution j to be equal to Mj = (2j+1m0 + 1)2, with m0 being the smallest spherical order
resulting in κ0(m0) ≤ ε for some predefined 0 < ε ≪ 1 (e.g., ε = 10−6). Consequently, for
each j ∈ , there are a total of Mj ridgelet orientations, which results in a discrete
counterpart of  defined as

(14)

where the subscript d stands for “discrete.” It should be noted that, although the set  is
composed of continuously defined functions, its dimension is finite, since  consists of a

total of  spherical ridgelets. To slightly simplify our notation, in what
follows, the spherical ridgelets in  will be indexed as φm, with m = 1, 2, …, M being a
combined index accounting for both different resolutions and orientations.

Given a sampling set of K diffusion-encoding orientations , one can use (9) to
compute the values of the spherical ridgelets in  over this sampling set.3 The resulting
values can be stored into a K × M matrix A defined as

3Since the definition in (9) involves an infinite summation, the latter needs to be truncated to render the computations practical. In
practice, we truncate the summation to index nmax for which the magnitude of the summand drops below 10−9.
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(15)

Then, for a given vector s(r) := [s(u1|r), s(u2|r),…, s(uK|r)]T ∈ ℝK of the measured values
of a diffusion signal, s(u|r) at the spatial location r, the model (2) asserts the existence of
representation coefficients c(r) ∈ ℝM such that

(16)

where e(r) accounts for both model and measurement noises at location r. Clearly, the non-
negligibility of e(r) along with the fact that K ≪ M makes the problem of recovering the
representation coefficients c(r) from s(r) a very challenging inverse problem, our solution to
which is presented next.

IV. Proposed Reconstruction Framework

A. Composite Regularization of the Ridgelet-Based Reconstruction

Let Ω represent the volume within which diffusion measurements are acquired. Also known
as a region of interest, Ω is assumed to be a bounded rectangular subdomain of ℝ3, i.e., Ω :=
[0, Lx] × [0, Ly] × [0, LZ] ⊂ ℝ3. Let Ωd be a discrete subset of Ω which represents the spatial
locations at which the diffusion signal is measured. Specifically, Ωd is assumed to be a
uniform lattice which can be formally defined as

(17)

where 0 ≤ i < Nx, 0 ≤ j < Ny, and 0 ≤ l < Nz are sampling indices in the direction of x, y, and
z coordinates, respectively.

As before, let K and  denote the number of diffusion-encoding gradients used for
HARDI data acquisition and their associated spatial orientations, respectively. For each uk,
HARDI measurements yield a diffusion-encoded image sk, which can be stored and
manipulated as an Nx × Ny × Nz array of real numbers, namely sk ∈ ℝNx × Ny × Nz.
Alternatively, at a given coordinate r ∈ Ωd, one can combine the values s1(r), s2(r),…, sK(r)
into a column vector, s(r) := [s1(r), s2(r),…, sK(r)]T ∈ ℝK (as it was already done in (16)).
This vector can then be regarded as a vector of discrete measurements of s(u|r) sampled at

orientations . It is worth noting that, according to the above notations, the value sk(r)
admits a twofold interpretation, viz. either as the k-th coordinate of vector s(r) or as the
value of image sk at spatial position r.

When combined together, the continuum of vectors, s(r) can be regarded as a discrete vector
field s: Ω → ℝK, in which case. s(r) has a natural interpretation of the value of s
corresponding to position r. The vector space  of all such vector fields can be endowed
with the standard inner product and its related ℓ2-norm defined as
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(18)

where ||·||2 and ||·||F denote the Euclidean vector and Frobenius matrix norms, respectively.

Another norm on  that we shall make use of is the total variation (TV) semi-norm which is
defined as follows. First, let us define the total variation of the kth component sk of the field
s (or, equivalently, of the kth diffusion-encoded image sk) in a standard manner as

(19)

where

is a three-neighborhood (causal) clique of voxel r. Consequently, the TV norm of the
discrete vector field s can be defined in terms of the TV-norms of its K components as [45]

(20)

In this paper, we use α = 1.

Now, let  be a set of spherical ridgelets defined by (14), which is assumed to be
sufficiently dense to allow each HARDI signal to be expressed according to (2).
Analogously to the discrete measurements s(r), the representation coefficients c(r)
corresponding to different voxels r can be aggregated into a vector field c ∈ , where  : Ωd
→ ℝM (with c(r) being the value of c observed at r). The ℓ1-norm of the elements of  is
defined in the standard manner as

(21)

Using the definitions of the vector fields  and  as well as the definition of A in (15), a
connection between  and  is established by means of a linear map  :  →  that is
defined as given by

(22)

Consequently, using , the HARDI data formation model can be concisely described by

(23)
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with e ∈  (||e|| ,2 ≤ ε) accounting for both measurement noise and modelling errors.

The model (23) reduces of the problem of estimation of HARDI signals to the problem of
estimation of their corresponding representation coefficients c from the discrete and noisy
measurements s. Moreover, since our main intension is to recover the coefficients c using as
few diffusion-encoding gradients as possible (implying K ≪ M), there is an infinite number
of solutions which would fit the constraint || {c} − s|| ,2 ≤ ε. However, if it is known a
priori that, for each r ∈ Ωd, the vector of representation coefficients c(r) is sparse, then a
useful estimate of c can be obtained as a solution to the following convex optimization
problem [24], [25]

(24)

(25)

It is important to note that, under the assumption of spatially homogeneous noise e, the
problem (24) is separable in the spatial coordinate r. Indeed, due to the way the ℓ2 and ℓ1
norms are defined in (18) and (21), an optimal field c can be recovered by solving for its
components

(26)

(27)

independently at each r ∈ Ωd.

While computationally attractive, the above solution is sub-optimal, since it completely
disregards the dependencies which are likely to exist between spatially adjacent HARDI
signals. A possible way to take such dependencies into consideration is to require the noise-
free version of the measured signal s to possess a minimal TV norm among all possible
candidate solutions. This requirement can be translated into the following minimization
problem:

(28)

where the role of γ > 0 is to balance the relative influence of the sparse and TV terms in the
above cost function. The optimization problem (28) can be rewritten in its equivalent
Lagrangian form

(29)

for some optimal values of λ > 0 and μ > 0 [46].

Below, we are going to specify a particular, computationally efficient method for solving
(29). In this connection, it is instructive to outline the following two instances of (29).
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B. Sparse-Only Reconstruction

When μ = 0, the functional in (29) becomes separable in the spatial variable r in the sense
that, in such a case, an optimal c can be recovered by solving

(30)

for each c(r) independently. Note that (30) can be considered to be a Lagrangian form of the
optimization problem (26). There exist a broad spectrum of methods which could be used
for solution of (30). Some particularly attractive algorithms seem to be those exploiting the
principle of iterative shrinkage (IS) (aka iterated thresholding) [47], [48]. The main
advantage of such methods consists in their ability to find a solution of (30) through
recursive application of a first-order, fixed-point update rule. Specifically, many IS methods
take advantage of the update rule given by

(31)

where {t} = sign(t)(|t| − τ)+ denotes the operator of soft thresholding and ν is chosen to
obey ν > ||AAT||. In the present paper, a modification of the iterative update in (31), known
as the fast iterative shrinkage thresholding algorithm (FISTA) [49], was employed due to its
considerably faster convergence as compared with many alternative “accelerated” methods.

It should be emphasized that, although suboptimal from the viewpoint of spatial-domain
regularity, the solution of (30) by means of iterative shrinkage is advantageous for the
following practical reasons. First, it suggests a considerable reduction in the data storage,
since the thresholding operator  in (31) sets to zero the representation coefficients with
amplitudes less or equal to λ/ν in absolute value. It makes it possible to use sparse data
formats to store and manipulate the representation coefficients. Second, the fact that the
estimation of c(r) is performed at each voxel independently suggests a natural way to speed
up the overall estimation process though parallel computing on a multicore system.

C. TV-Only Reconstruction

When λ = 0, solving the optimization problem (29) is equivalent to simultaneously solving
K optimization problems of the form

(32)

where k = 0, 1, …, K − 1 and [ {c}]k denotes the kth component of the vector field {c} ∈
. Let [ {c}]k be denoted by uk, i.e., uk := [ {c}]k. Then, reformulated with respect to uk,

the problem (32) can be rewritten as

(33)

in which case it can be recognized as the problem of TV-de-noising of the diffusion-encoded
image sk [50]. It is important to note that, in contrast to (32), the problem (33) can be solved
for each k independently, in which case we say that the estimation becomes separable in the
diffusion direction. The current arsenal of methods which can be used for solving (33) is
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broad [51]–[53]. In the present paper, we employ the algorithm of [54] for the simplicity and
elegancy of its implementation as well as for its outstanding convergence properties.

V. Solution Using Split Bregman Algorithm

Directly solving the original problem (29) is difficult because of the compound nature of the
regularization it involves. The split Bregman approach [30] allows one to reduce (29) to a
simpler form through introduction of an auxiliary variable u ∈ , which can be viewed as a
noise-free version of the data field s. Particularly, using u, (29) can be redefined as

(34)

Then, starting from an arbitrary p0 ∈ , the Bregman algorithm [55] finds optimal c and u
through the following iterations:

(35)

for some γ > 0.4 The functional in (35) is supposed to be minimized over two variables, i.e.,
u and c. However, due to the way the ℓ1 and TV components of this functional have been
split, the minimization can now be performed by sequentially minimizing with respect to u
and c separately. The resulting iteration steps are

(36)

(37)

Note that the functional at Step 2 contains two quadratic terms which can be combined
together to result in

(38)

To yield a substantial reduction in the value of the cost functional in (35), Step 1 and Step 2
should be applied recursively a number of times before the Bregman parameter pt is updated
according to (35). It was argued in [56], however, that the extra precision gained through
such a repetitive application of Step 1 and Step 2 is likely to be “wasted” when pt is updated.
Consequently, it was suggested in [56] to perform these steps only once per iteration cycle.
It is interesting to note that, in this case, the split Bregman algorithm transforms into the
alternating directions method of multipliers (ADMM) [31], whose convergence is
guaranteed by the Eckstein-Bertsekas theorem [57] (see also [31, Theorem 3.1]).

The final algorithm is summarized below. Lines 3–4 of Algorithm 1 correspond to Step 1 in
(36), while lines 5–6 correspond to Step 2. An even more important fact to notice is that the

4Note that the algorithm is guaranteed to converge for any γ > 0. In this work we use γ = 0.5.
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optimization problem in line 4 is separable in the spatial coordinate r. This optimization,
therefore, can be performed at each voxel independently as discussed in Section IV-B.
Moreover, the optimization problem in line 6 is separable in the diffusion coordinate k, and
hence it amounts to applying TV-denoising to each of the K components of u independently
as discussed in Section IV-C.

VI. Results

A. Performance Criteria for Evaluation of Reconstruction Results

Both the choice of diffusion-encoding directions  and of the orientations of spherical
ridgelets require the use of a method for discretizing . Conventional in HARDI are the
methods based on the electrostatic repulsion algorithm (aka the Thomson problem).
However, since the diffusion signals are symmetric (i.e., s(u|r) = s(−u|r)), it is a unit
hemisphere, not the entire , which actually has to be discretized. In view of the absence of
a formulation of the Thomson problem for hemispherical domains, a common practice is to
run the standard procedure for twice as many points as needed, followed by keeping only a
half of the resulting configuration. However, as the retained points are not explicitly
constrained to lie on a hemisphere, they may include nearly antipodal pairs which are likely
to introduce undesirable dependencies between the diffusion measurements as well as
between the basis functions. This limitation can be overcome by adapting a different
sampling strategy. Particularly, in this paper, both the diffusion-encoding directions as well
as the orientations of spherical ridgelets have been defined using the method of generalized
spiral points [58], in which the sampling points are arranged along a spherical spiral in such
a way that the distance between the points along the spiral is approximately equal to the
distance between its coils. This method is straightforward to adapt for sampling of the
“northern” hemisphere [i.e., {u ∈ |u · [0,0,1]T ≥ 0}], which provides a nearly uniform,
unique and analytically computable coverage which is in no respect inferior to the one
produced by solving the Thomson problem.

To assess the performance of the proposed algorithm under controllable conditions,
experiments with simulated data sets have been performed. In this case, the HARDI signals
were generated according to model (1) with different values of M(r), Di(r), and s0(r) = 1,
∀r. The resulting signals were contaminated by variable levels of Rician noise, giving rise
to a set of different SNRs. In this work, we adapt the standard definition of the SNR as

(39)

where s and s̃ denote an original signal and its noise-contaminated version, respectively, and
the norms are computed as defined by (18). It should be noted that, while conventional in
the engineering literature in general, the definition (39) is alien to the MRI community,
where it is standard to define signal-to-noise ratio as the ratio between the mean magnitude
of MR signal and the standard deviation of noise. For the convenience of referencing, when
specifying the values of SNR based on (39), its corresponding values in the alternative units
will be provided below as well.

In general, the optimal values of parameters λ and μ in (29) should be expected to vary as a
function of the noise level. In the present paper, however, no attempts have been extended to
optimize these values for different SNRs. Instead, it was found that λ = 0.03 and μ = 0.05
provided acceptable estimation results in all the simulation scenarios, and hence these values
have been used throughout the whole study. Following [23], the scaling parameter ρ in (4)
was set to 0.5 and the resolution parameter J in (14) was set to be equal to 1, corresponding
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to a total of three resolution levels. The number of spherical ridgelet orientations were
predefined with m0 = 4, resulting in M−1 = 16, M0 = 49, and M1= 169 ridgelets spanning the
resolution levels j = −1, j = 0, and j = 1, respectively. Thus, the total number of spherical
ridgelets used in the reconstruction was equal to 234.

To quantitatively compare the reconstruction results produced by the proposed and
references methods for different numbers of sampling directions K and various SNRs, three
performance measures were used. The first of the three was the normalized mean-squared
error (NMSE) defined as

(40)

with s(r) being a reference HARDI signal corresponding to location r and ŝ(r) being its
estimate. Depending on the nature of a specific experiment, the reference signal can be
either a simulated signal discretized at 642 spherical points obtained by the third-order
tessellation of the icosahedron or a signal reconstructed using a maximum possible number
of diffusion-encoding orientations.

One of the most valuable outcomes of HARDI is in providing access to computation of
orientation distribution functions (ODFs)—the functions whose modes are likely to coincide
with the direction of local diffusion flows [6]. Both the SH-based [22] and ridgelet-based
[23] methods of reconstruction of HARDI signals come with analytical expressions which
relate the HARDI signals to their corresponding ODFs. The latter can in turn be used to
recover the directions of local diffusion flows (or, equivalently, the orientations of their
related fibre tracts) using, e.g., the steepest ascent procedure detailed in [23]. Suppose u0 is
the true direction of a diffusion flow and ũ is its estimate. Then, the angular orientation error
δ can be defined (in degrees) as

(41)

In this paper, as a performance measure, we use an average angular orientation error which
is obtained by averaging the values of δ computed for all “fibres” within a specified Ωd.

The last performance measure used in this work is the probability Pd of false fibre detection.
To define Pd, let M(r) be the true number of fibre tracts passing through voxel r [as defined
by model (1)]. Also, let M̂(r) be an estimated number of fibres, which is equal to the number
of modes (maxima) of the ODF recovered at position r. Then, one can define

(42)

In addition to the quantitative comparison, the reconstruction results will be evaluated
through visual comparison as well. In this paper, we choose to visualize spherical functions
by means of 3-D surface plots. Such a plot tends to project away from the origin of ℝ3 in the
directions along which a spherical function is maximized, while passing near the origin in
the directions where the function approaches zero (for a formal definition see, e.g., [59, Def.
1]).
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Finally, our choice of reference methods was motivated by the scope of the main statements
made in this paper. First, since we argue that the frame of spherical ridgelets is optimally
suited for CS-based reconstruction of HARDI signals, its performance has to be compared
with that of alternative representation systems. In particular, the basis of spherical harmonics
up to the order eight inclusive has been used for a different definition of the sensing matrix
A in (15). (Note that, in the case of a real and symmetric analysis, this SH-basis consists of
45 functions.) Additionally, the representation system proposed in [27] has been exploited in
the comparative study as well. This system is formed by applying a set of rotations to a
Gaussian kernel of the form d(u) = exp{−b(uTD0u)}, with b defined as in (1) and D0 equal
to a (diagonal) diffusion tensor having a mean diffusivity of 766 mm2/s and a fractional
anisotropy of 0.8. Following [27], the number of rotations (and hence the number of
Gaussian basis functions) was set to be equal to 253. For the convenience of referencing, the
CS-based reconstruction methods using the spherical ridgelets, the eighth-order spherical
harmonics, and the rotated Gaussian kernels will be referred below to as the RDG, SH8, and
GSS algorithms, respectively.

To assess the significance of the proposed spatial regularization, all the above algorithms
have been applied with two different values of μ in (29), viz. μ = 0 and μ = 0.05. Note that,
in the first of these cases, the spatial regularity is ignored, which leads to the sparse-only
reconstruction discussed in Section IV-B. In the second case, on the other hand, the spatial
regularity is taken into account and the reconstruction is performed by means of the split
Bregman algorithm of Section V.

B. Simulation Experiments

To assess the performance of the proposed and reference methods under controllable
conditions, two simulated data sets were used. The first set (referred to below as Phantom
#1) had a spatial dimension of 12 × 12 pixels, and consisted of two “fibres” crossing each
other at the right angle as it is shown in the upper row of subplots of Fig. 1. In addition, each
pixel in the set was assigned an extra diffusion flow in the direction perpendicular to the
image plane. As a result, the number of diffusion components M(r) in Phantom #1 varied
between 1 and 3. Subsequently, model (1) was used to generate corresponding diffusion-

encode images  for a range of different values of K. Two different values of b, namely
b = 1000 s/mm2 and b = 3000 s/mm2 were used for data generation. The diffusion tensors
Di(r) in (1) were obtained by applying rotations to a tensor of the form D0 = diag([α, β,β])
where α and β were equal to 1700 · 10−6 mm2/s and 300 · 10−6 mm2/s, respectively. Note
that the mean diffusivity and fractional anisotropy of D0 are equal to 766 mm2/s and 0.8,
correspondingly. Thus, the same diffusion tensors were used for data synthesis and for the
construction of basis functions in the GSS algorithm, thereby allowing the latter to perform
under the best possible conditions.

The lower row of subplots in Fig. 1 depict four examples of diffusion-encoded images
obtained for Phantom #1 before their contamination by Rician noise. One can see that the
images are piecewise constant functions, which appears to be in a good agreement with the
bounded-variation model suggested by (29). However, real images may be more
complicated than that. Accordingly, to test the robustness of the proposed regularization
scheme, a different simulation phantom was designed. Phantom #2 had a spatial dimension
of 16 × 16 pixels and it was obtained through supplementing the configuration of Phantom
#1 by an additional circular “fibre” as shown in the upper row of subplots in Fig. 2. The
lower row of subplots of the figure show a subset of the resulting diffusion-encoded images,
which can be seen to no longer exhibit a piecewise constant behavior characteristic for
Phantom #1.

Michailovich et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 July 11.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



The simulated diffusion-encoded images were contaminated by three different levels of
Rician noise, giving rise to SNR of 24, 18, and 12 dB. (Note that, in the alternative SNR
units, the above values correspond to 14.4, 7.2, and 3.6, respectively.) Some typical
examples of resulting images are demonstrated in Fig. 3, where the upper row of subplots
depict a noise-free version of one of the diffusion-encoded images pertaining to Phantom #1
along with its noise-contaminated counterparts. The lower row of subplots in Fig. 3 depict
an analogous set of examples for Phantom #2. Observing the figure, one can see that the
SNR values have been chosen so as to cover a range of possible noise scenarios, which
could be characterized as moderate-to-severe contamination.

As it was mentioned earlier, in our simulation study we compared the performance of three
different representation bases, i.e., spherical harmonics (SH8), Gaussian kernels (GSS), and
spherical ridgelets (RDG). All the resulting algorithms have been further subdivided into
two different types, depending on whether or not the spatial regularization was engaged.
Thus, in the absence of the spatial regularization (corresponding to μ = 0), the reconstruction
has been performed on a voxel-by-voxel basis, as detailed in Section IV-B. For the
convenience of referencing, the corresponding algorithms will be referred to below as SH8-
CS, GSS-CS, and RGD-CS. In the case of μ > 0, the estimation has been carried out using
the split Bregman method of Section V. The corresponding algorithms will be referred
below as SH8-TV, GSS-TV, and RGD-TV.

The upper subplot of Fig. 4 shows the original field of ODFs of Phantom #1 (corresponding
to b = 3000 s/mm2), which have been computed based on Tuch’s approximation [6] (i.e., by
applying the Funk-Radon transform to the diffusion signals). At the same time, the middle
row of subplots of Fig. 4 show the ODFs recovered by (from left to right) SH8-CS, GSS-CS,
and RDG-CS with K = 16 and SNR = 18 dB. One can see that the inability of the SH basis
to sparsely represent HARDI signals results in a poor performance of SH8-CS. A better
result is obtained with GSS-CS, which uses a basis of rotated Gaussian kernels, and
therefore has a potential to represent the HARDI signals in a sparse manner. Unfortunately,
the excessive correlation between the Gaussian basis functions adversely affects the ability
of this method to withstand the effect of noise. Consequently, the reconstruction obtained
using GSS-CS suffers from sizeable errors. The RDG-CS method, on the other hand,
provides an estimation result of a much higher quality, albeit some inaccuracies are still
noticeable in the central part of the phantom. The reconstruction accuracy improves
dramatically when the spatial regularization is “switched on,” as it is demonstrated by the
bottom row of subplots in Fig. 4. Specifically, while SH8-TV is still unable to provide a
valuable reconstruction, the estimates obtained using GSS-TV and RDG-TV represent
correctly the “flow structure” of Phantom #1. Moreover, among the latter two methods,
RDG-TV is clearly the best performer, resulting in a close-to-ideal recovery of the original
ODFs. The superiority of RDG-TV over the alternative methods is further evident in the
results presented by Fig. 5, which depicts the reconstructions obtained for Phantom #2 (with
the same values of b, K and SNR as above).

In general, the reconstruction results obtained using SH8-CS and SH8-TV have been
observed to be of a lower quality in comparison to the other methods under consideration.
For this reason, in what follows, only the GSS and RDG methods are compared. Thus, Fig. 6
contrasts the performances of GSS-CS, GSS-TV, RDG-CS, and RDG-TV in terms of the
NMSE criterion. One can see that the best performance here is attained by the RDG-TV
algorithm, which results in the smallest values of NMSE for both phantoms and for all the
tested values of b, SNR, and K. It is also interesting to note that the incorporation of spatial
regularization allows GSS-TV to outperform RDG-CS, with the effect of the regularization
becoming more pronounced at lower SNRs. On the whole, all the NMSE curves demonstrate
an expected behavior, with the error values increasing proportionally with a decrease in
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SNR, while going down with an increase in the number of diffusion-encoding gradients K.
However, as opposed to the others, the NMSE curves obtained with RDG-TV are
characterized by a relatively low rate of convergence, which indicates a reduced sensitivity
of RDG-TV to the value of K.

The above algorithms have been also compared in terms of the angular error (41). The
results of this comparison are summarized in Fig. 7, which again indicates that the most
accurate reconstruction is obtained using the RDG-TV method. As expected, the angular
error grows as SNR decreases and converges to a minimum as K increases. As opposed to
the case of NMSE, however, there is an additional dependency of the angular error on the
type of a phantom in use as well as on the b-value. In particular, the errors obtained for
Phantom #2 are (on average) greater than those obtained for Phantom #1. This discrepancy
is rooted in the fact that Phantom #2 has a more complex “fibre structure” as compared to
Phantom #1. In particular, while the “fibers” of Phantom #1 are designed to cross each other
at the right angle, the “fibres” of Phantom #2 are allowed to decussate at much smaller
angles, which makes them much harder to resolve. Moreover, this effect becomes more
noticeable with a decrease in the b-value, which reduces the resolution of q-ball imaging.
Finally, we notice that, on average, GSS-TV performs better than RDG-CS (though still
worse than RDG-TV), which justifies the value of spatial regularization.

The comparison in terms of the rate of false fibre detection Pd (42) was last in the line of our
simulation performance tests; its results are shown in Fig. 8. One can see that, in the case of
Phantom #1, RDG-TV yields a virtually zero false detection rate for both values of b,
whereas the other methods result in considerably higher values of Pd (mainly due to the
detection of spurious local maxima in the estimated ODFs). The situation is different for
Phantom #2, where all the compared methods yield sizeable errors (especially for b = 1000
s/mm2). However, in comparative terms, the most accurate reconstruction is still obtained by
means of the proposed RDG-TV algorithm.

C. In Vivo Results

As the next validation step, experiments with real HARDI data were carried out. The
proposed algorithm was tested on human brain scans acquired on a 3T GE system using an
echo planar imaging (EPI) diffusion-weighted image sequence. A double echo option was
used to suppress eddy-current related distortions. To improve the spatial resolution of EPI,
an eight channel coil was used to perform parallel imaging by means of the ASSET
technique with a speed-up factor of 2. The data were acquired using 51 gradient directions
(quasi-uniformly distributed over the northern hemisphere) with b = 1000 s/mm2. In
addition, eight baseline (b0) scans were acquired, averaged and used for normalization. The
following scanning parameters were used: TR = 17000 ms, TE = 78 ms, FOV = 24 cm, 144
× 144 encoding steps, and 1.7 mm slice thickness. All scans had 85 axial slices parallel to
the AC-PC line covering the whole brain.

As it was mentioned earlier, using RDG-CS for reconstruction of HARDI signals is
advantageous for computational reasons. On the other hand, applying the TV-based
regularization has an effect of spatial filtering of the HARDI data. Accordingly, the main
question addressed through the in vivo experiments has been whether or not it is possible to
supersede the spatial regularization by pre-filtering of HARDI signals. To this end, the
RDG-CS algorithm was applied first to the HARDI data containing the full set of K = 51
diffusion gradients. (Note that such dense reconstruction is analogous to the one reported in
[23], where the latter is shown to outperform the SH-based estimation [22].) The resulting
ODFs have been used as a fiducial against which different reconstruction results were
compared.
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As the next step, three different subsets of 16, 24, and 32 spherical points were composed
out of the original set of 51 diffusion gradients. Within each of these subsets, their
corresponding points were chosen so as to result in a quasi-uniform coverage of the northern
hemisphere. Accordingly, the HARDI data were rearranged into three data sets of size 144 ×
144 × 85 × 16, 144 × 144 × 85 × 24, and 144 × 144 × 85 × 32 to emulate compressed
sensing data acquisition. The above sets were used to assess the performance of different
reconstruction methods.

Unfortunately, we have not succeeded to find conditions under which the SH8 and GSS
algorithms would provide stable reconstruction results (either with or without pre-filtering).
The reasons for this fact are easy to discern. First, as it was already noted earlier, the SH8
algorithm uses spherical harmonics which are not suitable for CS-based reconstruction,
since they do not provide sparse representation of HARDI signals. Consequently, the
reconstructions produced by SH8 are prone to sizable distortions—the result which has
already been observed in the computer simulation study. Second, the GSS method is based
on a “single resolution” model, in which the bandwidth of the generating Gaussian kernel is
matched to the mean diffusivity of the white matter. The local diffusivities of the white
matter, however, can deviate substantially from their mean value, with the effect of this
deviation exacerbating the overall level of noise. On the other hand, the set of rotated
Gaussian kernels is extremely redundant and highly correlated, which adversely affects the
restricted isometry property of sensing matrix A [24]. As a result, the GSS-based
reconstruction becomes unstable for the values of K used in this study. Accordingly, for the
reasons detailed above, only the RDG-CS and RDG-TV algorithms are compared below.

The upper row of subplots in Fig. 9 show the generalized fractional anisotropy (GFA) [6]
image of a coronal cross-section of the brain along with the reference field of ODFs
corresponding to the region indicated by the yellow rectangular. Anatomically, this region is
expected to contain the fibre bundles of corona radiata as well as those of superior
longitudinal and arcuate fasciculi. The middle row of subplots in the same figure depict the
ODFs reconstructed by RDG-CS using K =16, 24, and 32 diffusion gradients. One can see
that the quality of reconstruction progressively improves as K increases. It is important to
note that, before applying the RDG-CS algorithm, the diffusion-encoded images had been
preprocessed by a TV filter to reduce the effect of measurement noises on the estimation
result. However, this preprocessing appears to be not nearly as effective as the spatial
regularization of the RDG-TV algorithm, whose reconstruction results are shown in the
bottom row of subplots in Fig. 9. The above conclusion is further supported by an additional
example of Fig. 10, which shows the reconstructions pertaining to the indicated area within
an axial cross-section of the brain. (The relevant fibre bundles here are those of cingulum
and corpus callosum). As in the previous example, one can see that the most accurate
reconstruction is attained by means of the proposed RDG-TV method. The superiority of
RDG-TV is also confirmed by the quantitative figures of Table I, which summarizes the
NSME obtained by the compared algorithms for different values of K.

VII. Discussion and Conclusion

When taken all together, the HARDI signals pertaining to a given volume of interest can be
described as multi-valued (or, more generally, measure-valued) functions from a subset of
ℝ3 to the space of square-integrable spherical functions ( ). Such functions can be
thought of as if they had two “modes of variation”—one in the spatial and another in the
diffusion domain. Although applying various inverse problems along the spatial and
diffusion coordinates independently is not new to the community of medical imaging
scientists, formulating a CS reconstruction problem in both domains simultaneously has not
been proposed before. Accordingly, the present paper introduced the RDG-TV algorithm
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which exploits the above idea and can be used for reliable reconstruction of HARDI signals
from as few as K = 16 diffusion-encoded scans (as compared to 60–100 scans required by
existing reconstruction tools). The algorithm exploits the fact that HARDI signals can be
sparsely represented by spherical ridgelets in the diffusion domain, while their associated
diffusion-encoded images have bounded variation in the spatial domain. Moreover, it has
been shown experimentally that either using different representation bases or excluding the
spatial regularization would result in less accurate reconstruction results.

At the practical level, the reconstruction is implemented based on the split Bregman
approach (with 20 being the maximum number of Bregman iterations used in this study).
The resulting algorithm alternates between two estimation stages (36): first, a sequence of
basis pursuit de-noising problems are solved independently on a voxel-by-voxel basis,
followed by applying a TV filter to a total of K discrete images. In terms of computational
times, applying the FISTA algorithm of [49] to a single voxel with 234 spherical ridgelets, K
= 16 and SNR = 18 dB takes MATLAB about 60 ms to complete on a 2.33 GHz Intel Core 2
Duo with a 2 GB SDRAM. At the same time, the TV denoising method of [54] can be
executed in about 50 ms on a 128×128 image using the same computational platform.
Consequently, depending on the size of a given data set, the proposed RDG-TV method can
take from a few to tens of minutes to run in MATLAB. However, the computational times
are straightforward to reduce to the scale of seconds by taking advantage of the separable
computational structure of RDG-TV, which suggests a considerable speed-up by means of
parallel computing. This option constitutes another advantage of the proposed reconstruction
algorithm.

In the current paper, the discrete orientations  of diffusion-encoding gradients have
been distributed over  in a quasi-uniform manner. Provided that the samples of e(r) in (16)
are i.i.d., such a sampling scheme can be shown to be optimal in the MSE sense [60]. It is
unclear, however, whether the quasi-uniform sampling remains optimal on the conditions of
severe under-sampling (i.e., when K ≪ M) and sparse approximation. In this case, it seems

to be theoretically possible to find a better design for  in terms of an optimization of
the restricted isometry property [24] of the sensing matrix A in (15). Finding such optimal
sampling schemes constitutes a very interesting and important research question, which well
deserves an independent and ample treatment.

We believe that the algorithm presented in this paper can be improved in a number of ways.
First, the square metric used to assess the model fidelity could be replaced by a different
metric, which would be more specific to the nature of Rician noise. Second, the fact that
diffusion signals are positive-valued could be explicitly incorporated into the reconstruction
process in the form of additional constraints. Lastly, the bounded variation model could be
substituted by an alternative model, which could (possibly) provide a better account for the
spatial regularity of HARDI signals. Among alternative regularization models are the
diffusion-based method of [59], the LMMSE filtering of [61], the weighted least-square
regularization approach of [62], and the recent nonlocal mean denoising of [63]. Exploring
the above options constitutes essential part of our ongoing research.

Finally, as the experimental study reported in this paper was comparative in its nature, it was
not really important what method to use for approximation of ODFs. Specifically, the
present results have been obtained using Tuch’s approximation [6]. However, more accurate
computation of ODFs is possible based on the solid angle formulation as detailed in [64],
[65].5 It should also be noted that the technique proposed in [64] can be applied to multi-
shell HARDI data (i.e., the data acquired for a range of b-values). Until recently, collecting
such data has been deemed impractical due to extremely long acquisition time required. We
believe, however, that the proposed method for CS-based reconstruction of HARDI data has
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a potential to help multi-shell HARDI develop into a clinically relevant tool of diagnostic
imaging.
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Fig. 1.
Phantom #1: (Upper row of subplots) The orientations of the individual diffusion flows and
their combination. (Lower row of subplots) Examples of the resulting (noise-free) diffusion-
encoding images corresponding to four different diffusion-encoding directions.
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Fig. 2.
Phantom #2: (Upper row of subplots) The orientations of the individual diffusion flows and
their combination. (Lower row of subplots) Examples of the resulting (noise-free) diffusion-
encoding images corresponding to four different diffusion-encoding directions.
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Fig. 3.
(Upper row of subplots) Diffusion-encoding images of Phantom #1 corresponding to

 and SNR = ∞, 24, 18, and 12 dB. (Lower row of subplots) Diffusion-
encoding images of Phantom #2 corresponding to the same u and the same values of SNR.
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Fig. 4.
(Upper subplot) Original ODFs of Phantom #1. (Middle row of sub-plots) The ODFs
recovered by the SH8-CS, GSS-CS, and RDG-CS algorithms, respectively. (Bottom row of
subplots) The ODFs recovered by the SH8-TV, GSS-TV, and RDG-TV algorithms,
respectively. The results are shown for the case of K = 16 and SNR = 18 dB.
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Fig. 5.
(Upper subplot) Original ODFs of Phantom #2. (Middle row of subplots) The ODFs
recovered by the SH8-CS, GSS-CS, and RDG-CS algorithms, respectively. (Bottom row of
subplots) The ODFs recovered by the SH8-TV, GSS-TV, and RDG-TV algorithms,
respectively. The results are shown for the case of K = 16 and SNR = 18 dB.
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Fig. 6.
NMSE as a function of K obtained using the compared methods for different phantoms,
SNRs and b-values.
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Fig. 7.
Average angular error δ as a function of K obtained using the compared methods for
different phantoms, SNRs and b-values.
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Fig. 8.
The rate of false fibre detection Pd as a function of K obtained using the compared methods
for different phantoms, SNRs and b-values.
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Fig. 9.
(Upper row of subplots) A coronal GFA image and the ODF field of the indicated region
recovered by RDG-CS with K = 51. (Middle row of subplots) Estimated ODF fields
obtained using RDG-CS with K = 16, K = 24 and K = 32 applied to TV-prefiltered HARDI
data. (Bottom row of subplots) Estimated ODF fields obtained using RDG-TV with K = 16,
K = 24 and K = 32.
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Fig. 10.
(Upper row of subplots) An axial GFA image and the ODF field of the indicated region
recovered by RDG-CS with K = 51. (Middle row of subplots) Estimated ODF fields
obtained using RDG-CS with K = 16, K = 24 and K = 32 applied to TV-prefiltered HARDI
data. (Bottom row of subplots) Estimated ODF fields obtained using RDG-TV with K = 16,
K = 24 and K = 32.
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TABLE I

(NMSE ± σ) × 100 Computed Between the Dense and CS-Based Reconstructions Obtained With RDG-CS
and RDG-TV

K = 16 K = 24 K = 32

Fig. 9
RDG-CS 9.72 ± 2.32 6.45 ± 1.46 4.31 ± 1.05

RDG-TV 2.19 ± 0.46 1.10 ± 0.23 0.35 ± 0.07

Fig. 10
RDG-CS 9.11 ± 2.23 5.31 ± 1.23 3.74 ± 0.87

RDG-TV 1.78 ± 0.37 0.92 ± 0.21 0.24 ± 0.06
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Algorithm 1

ADMM algorithm for sparse-TV reconstruction of HARDI signals

1: p ⇐ 0, u ⇐ s

2: while “c keeps changing” do

3: d ⇐ u − p

4: 

5: d ⇐ (1 + γ)−1(s + γ( {c} + p))

6: 

7: p ⇐ p + ( {c} − u)

8: end while
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