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Abstract

In this work we propose an algorithm for robustly fusing digital surface models (DSM) with different ground sampling
distances and confidences, using explicit surface priors to obtain locally smooth surface models. Robust fusion of the DSMs is
achieved by minimizing the L1-distance of each pixel of the solution to each input DSM. This approach is similar to a pixel-
wise median and most outliers are discarded. We further incorporate local planarity assumption as an additional constraint to the
optimization problem, thus reducing the noise compared to pixel-wise approaches. The optimization is also inherently able to
include weights for the input data, therefore allowing to easily integrate invalid areas, fuse multi-resolution DSMs and to weight
the input data. The complete optimization problem is constructed as a variational optimization problem with a convex energy
functional, such that the solution is guaranteed to converge towards the global energy minimum. An efficient solver is presented to
solve the optimization in reasonable time, e.g. running in real-time on standard computer vision camera images. The accuracy of
the algorithms and the quality of the resulting fused surface models is evaluated using synthetic datasets and spaceborne datasets
from different optical satellite sensors.

Index Terms
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I. INTRODUCTION

W ITH an ever increasing amount of earth observation sensors, the problem of having data at all, increasingly shifts

towards the problem of how to make best use of an abundance of data. One aspect of remote sensing data is the

3D information contained in the observed images, resulting in digital surface models (DSM), constituting a basic component

for many applications, such as orthophoto creation, mapping, visualization and 3D planning. As many technologies for DSM

generation exist (airborne LiDAR, SAR interferometry, automatic image matching, ..) the corresponding results differ in their

characteristics and quality in general. Because of the decreasing revisit time for many parts of the Earth’s landmass, multiple

datasets of DSMs are available for these regions and it is therefore interesting to fuse these into a single DSM with higher

accuracy. Depending on the underlying satellite characteristics like ground sampling distance (GSD), the DSMs capture different

parts of the scene in different quality, which even can be mutually exclusive to some extent. For example, high resolution sensors

like WorldView-2 with a GSD of 0.5m perform very well in urban areas, whereas the results in forest areas are somewhat

moderate. In contrast, Cartosat-1 with a GSD of 2.5m performs quite opposite in these areas [1]. Even with the same sensor,

a different exposure time can drastically alter the results in shadow areas or in highly reflective areas like glaciers. Clouds are

posing an additional problem for optical image sensing, providing no valid data in these areas, thereby requiring these gaps

to be filled in by valid data from other sensors or another timestamp. A prominent example for a large data abundance is

aerial imaging, which typically produces large image streams with image overlaps >80%. For computing the corresponding 3D

reconstruction, many multi-view image matching techniques match stereo image pairs individually and later fuse the resulting

DSMs into a common height model, see e.g. [2], [3], [4].

Our work focuses on the fusion of 2.5D DSM grids, with a resolution from several decimeters to a few meters. We use the

common notation of 2.5D to explicitly distinguish between 3D point cloud registration / fusion and fusing their projections

in a common 2D reference frame. The latter consists of 2D images, each pixel containing its height above ground and is

commonly referred as 2.5D DSM, as it contains 3D height information but not to full extent (e.g. no bridges can be modelled).

DSM fusion has been considered by various authors previously. The simplest method is based on weighted averaging of two

or more height maps [5], [6]. As weighted averaging cannot deal with outliers or blunders in the DSMs, a median fusion is

often used for multi-DSM fusion, sometimes followed by weighted averaging of the inliers [2]. Both median and weighted

averaging process each pixel independently, and thus cannot take into account the local surface shape, which is regular for many

areas. Applying additional mean or median based filtering spatially reduces the amount of noise to some extent, at the cost of

blurring potentially sharp edges. An example for context aware fusion algorithms is the use of sparse representations [7], where

a DSM patch is computed as a sparse linear combination of dictionary DSM patches. Except for median fusion, pixel-wise

error maps are required by weighted averaging and sparse representations. A comparison between weighted averaging and

sparse representations [8] found that the quality of the fused DSMs is mostly determined by the quality of these pixel based

error maps.
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Fig. 1. (a)-(d): Four co-registered DSMs, obtained from optical stereo reconstruction using [9] for different camera view points / satellite positions (noticeable
by the different invalid occlusion areas in black).

Another direction of work aims at formulating a global energy functional, minimizing the distance of the fused result to all

input DSMs simultaneously and additionally incorporating the assumption of the world being locally planar ([10], [11], [12],

[13]). Due to its simple structure and theoretically well founded minimization procedure, we build upon this work and extend

it to a weighted, multi-resolution, fusion framework.

II. METHOD

A
S basic fusion algorithms we are looking at the following pixel-wise fusion methods: mean and median fusion, as well as

medmean fusion. We define the latter one as median based fusion that reduces the amount of outliers in the fused DSM

by averaging the median value for each pixel with all other DSM heights of this pixel being at a distance of less than 2m from

the median value. Note that this is an empirical threshold, depending on the overall height range and noise level. In contrast

to these simple pixel-wise fusion methods, advanced methods usually enforce some kind of spatial smoothness constraint to

get closer to a physical meaningful solution, with neighboring image pixels forced to have a similar height value. Note that

this constraint often is in contrast to the data term (height values) of the involved images, where neighboring pixels can differ

significantly in height. This leads to the general formulation of our DSM fusion problem as

min
u

{

R(u) + λd

K
∑

k=1

‖u− gk‖1
}

(1)

where u ∈ R
M ·N is the ‘optimal’ DSM to solve for, already written as stacked vector of pixels to simplify notation in the

following. The K (noisy) input DSMs are given as gk (see e.g. Figure 1), the scalar factor λd is balancing the impact of the

smoothness term and the data term and R(u) is depicting a general regularizer on u.

In the case of DSM fusion, these smoothness constraints (or regularizers) are the assumption of the world being locally planar,

meaning that the height value of each pixel of the DSM depends on its local context and e.g. is highly unlikely to have a

significantly different height value than its surrounding pixels.

This smoothness constraint typically is implemented by minimizing the sum of gradients of the resulting DSM in both x and

y-direction, resulting in large partial differential equation systems (PDE).

In recent years, Total Variation based methods (TV) for minimizing energy functionals have seen a lot of attention in the

research community. One reason is that these algorithms are very well-suited for parallelization and, together with the recent

advances of GPU-based computational power, lead to efficient algorithms, solving these optimization problems efficiently. And

as the energy functional of our image fusion problem is written in a convex formulation, the solution is globally optimal and

independent of its initialization. Since the second term of Equation 1 is always convex in the variable u to solve for (sum of

norms), the complete energy functional is convex, if the regularizer R(u) is convex. The two regularizers used in this paper are

described in Section II-A (namely TV and TGV) and are simply linear transformations of the type K ·u. Therefore throughout

this paper Equation 1 will always be convex.

A. TV-L1 Fusion

Based upon the Rudin-Osher-Fatemi image denoising model (ROF-model) [14], the extension for multiple image fusion,

together with replacing the quadratic data term by the more robust L1 norm as in [12] is written as

min
u

{

‖∇u‖1 + λd

K
∑

k=1

‖u− gk‖1
}

(2)

Note that the choice of the L1 norm for both the gradient and the data term plays an important role for the fusion of multiple

noisy DSMs (or images in general) for the following reasons: Applied to the regularizer (gradient) it still enables the solution



3

to exhibit strong edges / discontinuities (e.g. at the transition of house roof tops to street level), as these height value jumps

are only penalized linearly. Applying the L1 norm to the second term - the data term - makes the whole fusion process robust

to outliers as well, as these also are only weighted linearly in the optimization process and their influence therefore is limited

compared to e.g. a least squares minimization approach. While this model already provides good results by smoothing flat

areas and preserving sharp discontinuities, it suffers from the so-called staircasing effect. This effect is a direct result of the

regularizer, whose assumption is a locally planar world - where planar unfortunately refers to locally fronto-parallel. This

staircasing effect of the TV-L1 algorithm is visible in Figure 2(f), resulting in a slanted roof which is not smooth. One way to

overcome this issue is using the Huber norm instead of the pure L1 norm for the regularizer, thereby penalizing small height

differences quadratically and larger difference as before using the L1 norm. This results in a locally more smooth surface,

mitigating the staircasing effect to some extent. The authors of [12] added this Huber regularized fusion method as one baseline

method to compare their algorithms against. However, this does not solve the issue of reconstructing large non-fronto-parallel

surfaces (slanted planes). To achieve that goal, a more advanced smoothness assumption as in the following section is required.

For further details about the results of TV-Huber-based regularization, we refer to the work of [12].

B. TGV-L1 Fusion

To overcome the fronto-parallel assumption of TV-L1 minimization, [15] introduced the mathematical model of Total

Generalized Variation (TGV) has been introduced as a higher-order extension of Total Variation which favors the solution

to consist of piecewise polynomial functions (e.g. fronto-parallel, affine, quadratic). Especially the 2nd order is of high interest,

as it forces the solution to consist of piecewise planar functions, which means that compared to the fronto-parallel TV-L1

model, the regularizer now also favors slanted planes. [12] applied this model to DSM fusion, resulting in the following

optimization problem

min
u,v

{

λs‖∇uu− v‖1 + λa‖∇vv‖1 + λd

K
∑

k=1

‖u− gk‖1
}

(3)

Now, before the variation of the image u is measured, a 2D vector field v is subtracted from the gradient of u. An affine

surface in the image u has a constant gradient ∇u, so by coupling and minimizing |∇u − v|, the vector field v will also

be constant and it’s gradient ∇v therefore zero. Regarding our overall optimization problem, this means that the energy term

will be lower, if affine functions can be found in the image, whereas non-affine functions get additional penalties by |∇v|.
The values λs, λa, λd are scalar weights and balance the impact of the smoothness term, the affine term and the data term.

Note that we now notationally need to differ between two gradient operators, ∇u ∈ R
MN×2MN and ∇v ∈ R

2MN×2MN as

the corresponding vector spaces are of different dimension (see Section III-A).

C. Weighted TGV-L1 Fusion

When fusing DSMs it is desirable to weight the input DSMs on a per pixel base, to be able to incorporate additional prior

knowledge into the fusion process. This prior knowledge for example can be based on the different sensor characteristics

used to generate the DSM, confidence measures during the 3D reconstruction process itself, information about occluded and

therefore unknown areas in each DSM, etc. We therefore extend Equation 3 with a weighting matrix Wk for each input DSM

min
u,v

{

λs‖∇u− v‖1 + λa‖∇v‖1 + λd

K
∑

k=1

Wk‖u− gk‖1
}

(4)

D. Parameters

This optimization problem (and the ones in Equation 2 and 3) is very parameter dependent, as we need to adapt the influence

of the data term λd manually for datasets with different ranges of g
(i,j)
k ∈ gk as well as for a different number K of input

images. To achieve independence of the data range of the input DSMs, we scale all input data to the interval [0..1]

g
(i,j)
k =

g
(i,j)
k − gmin

gmax − gmin

(5)

with gmin = mini,j,k g
(i,j)
k and gmax = maxi,j,k g

(i,j)
k . The independence from K is achieved by normalizing the influence of

the data term w.r.t. the two-image case and using the adaptive

λK
d =

2

K
λd (6)

Note that we do not need all 3 weighting factors λs, λa, λd, as we can multiply the whole energy functional with 1
λd

. We

therefore only have to deal with λs, λa and λd = 1 implicitly. Additionally it is a good choice to set λa = 4λs, which leaves
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us with only one parameter λs to choose between a large smoothing impact (λs >>) or a more data-driven fusion (λs <<).
Choosing λa too big results in oversmoothing of discontinuities – we loose some of our edge-preserving capability. When

choosing λa very small, we obtain results closer to pure TV-L1 (together with the staircasing effects). To avoid an additional

free parameter, we coupled the value to the smoothness weighting λs and experimented with different correlation factors. In

all our empirical tests over different artificial and natural datasets the choice λa = 4λs produced consistently good results.

All these extensions and modifications apply to the TV-L1 method similarly. In the next section we will go into detail about

how to solve these optimization problems numerically.

III. OPTIMIZATION

IN the following we describe the numerical optimization of our weighted TGV-L1 energy functional given in Equation 4.

The solution for the TV-L1 energy functional is similar and can be derived easily from the solution below.

To solve for the fused DSM u ∈ R
M×N (in the following written as stacked vector R

MN×1) in Equation 4, we need to

overcome the non-differentiable L1-norm, which complicates any gradient descent based minimization scheme. An efficient

algorithm which elegantly circumvents the differentiability problem of the gradient operator is the primal-dual algorithm of

[16]. By applying the Legendre-Fenchel transform to the terms involving the derivative of the primal variables we obtain the

dual formulation / conjugate of these terms as

λs‖∇u− v‖1 = max
p∈P

{〈∇u− v,p〉} (7)

λa‖∇v‖1 = max
q∈Q

{〈∇v,q〉}

such that the transformed saddle-point problem of Equation 4 in the primal variables u,v and the dual variables p,q with

constraints

P = {p ∈ R
2MN : ‖p‖∞ ≤ λs} (8)

Q = {q ∈ R
4MN : ‖q‖∞ ≤ λa}

is

min
u,v

max
p,q

{

〈∇u− v,p〉+ 〈∇v,q〉+ λd

K
∑

k=1

Wk‖u− gk‖1
}

(9)

A detailed explanation of the dual variables and the corresponding vector spaces is given in Section III-A. With the convex

saddle-point problem above (Equation 9), we can now directly apply the primal-dual algorithm of [16] to get the following

optimization scheme, which is basically iteratively performing gradient descents on the primal variables and gradient ascents

on the dual variables:

Input: u0,v0,p0,q0 = 0, ū0 = u0, v̄0 = v0, θ = 1, step sizes τi > 0
Iterations n ≥ 0:






























pn+1 = ΠP (pn + τpλs(∇ūn − v̄n))
qn+1 = ΠQ (qn + τqλa(∇v̄n))
un+1 = proxf

(

un + τuλs∇∗pn+1
)

vn+1 = vn + τv(λa∇∗qn+1 + λsp
n+1)

ūn+1 = un+1 + θ(un+1 − un)
v̄n+1 = vn+1 + θ(vn+1 − vn)

Listing 1. Primal-dual optimization algorithm for TGV-L1-based image fusion

For details about the linear operators ∇ and their negative adoints ∇∗, as well as the step sizes τi for the gradient descents

see Section III-A. To ensure the constraints of Equation 8, the corresponding proximal mappings of the dual variables are

given as simple point-wise projections

ΠP (p) =
p

max{1, ‖p‖/λs}
(10)

ΠQ(q) =
q

max{1, ‖q‖/λa}
The proximal mapping of the primal variable u, enforcing the data constraints min

∑

k ‖u− gk‖ is slightly more complicated.

In previous work, [12] and [17] added Lagrange multipliers for each observation (〈rk, u− gk〉) and optimized the energy

functional with an additional gradient descent scheme for these auxiliary variables. Here we build upon the work of [18]

to solve this constraint exactly and directly, thus avoiding an additional iterative scheme. We therefore don’t need further

dual variables for every observation as in [12], resulting in less memory consumption. As the closed-form solution of the
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proximal mapping is computationally simple, it further results in a noticeable speedup compared to solving it via an iterative

gradient-descent based primal-dual scheme. Defining

f(x) = λτ

K
∑

k=1

w(x, k) · ‖x− gk‖1 (11)

the proximal mapping is given as

proxf (x) = (12)

arg min
y

{

1

2
‖x− y‖22 + λτ

K
∑

k=1

w(y, k) · ‖y − gk‖1
}

whose solution is given by a generalized shrinkage formula according to [18]:

proxf (x) = median{g1, ..., gK , p0, p1, ..., pK} (13)

with

pi = x+ τλWi (14)

Wi = −
i
∑

j=1

w(x, j) +

K
∑

j=i+1

w(x, j) (15)

A. Implementation Details

For discretization of the gradient operators ∇u : R → R
2 and ∇v : R2 → R

4, we use forward finite differences with

Neumann boundary conditions

∇u =

(

∇x

∇y

)

, ∇v =









∇x 0
∇y 0
0 ∇x

0 ∇y









, ∇x,∇y ∈ R
MN×MN (16)

where

(∇xu)γ(i,j) =

{

uγ(i+1,j) − uγ(i,j) if i < M
0 if i = M

(∇yu)γ(i,j) =

{

uγ(i,j+1) − uγ(i,j) if j < N
0 if j = N

(17)

are the forward finite differences in x and y−direction and the function γ : Z× Z → Z mapping the indices from 2D image

space to 1D stacked vector notation

γ(i, j) = (i− 1)M + j (18)

The corresponding negative adoint operators ∇∗, needed for the gradient descent in the dual variables of Algorithm 1, are

simply the corresponding transposed and negated matrices ∇∗ = −∇T . Note that these are sometimes in literature also referred

to as divergence operators. When written explicitly, the above definition naturally reads as backward finite differences with

Dirichlet boundary conditions

∇∗

up = −
(

∇x ∇y

)

(

p1

p2

)

, (∇∗

up)i,j =







p1
i,j − p1

i−1,j if 1 < i < N
p1
i,j if i = 1

−p1
i−1,j if i = N

+







p2
i,j − p2

i,j−1 if 1 < j < M
p2
i,j if j = 1

−p2
i,j−1 if j = M

(19)

The implementation is similar for the second operator ∇v and its negative adjoint. Although the mathematical notation may

imply a very large optimization problem (e.g. ∇x ∈ R
MN×MN ), the corresponding matrices are very sparse: ∇u,∇v only

have two non-zero elements per matrix row. Therefore implementation can be done efficiently either using a sparse matrix

representation, or avoiding this overhead by directly computing the gradient and divergence per pixel using Equations 17 and

19.
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To ensure convergence of the primal-dual algorithm, the step sizes of the gradient ascents/descents are bound to the operator

norm of the linear operators described in Equation 16 according to [16] as follows

τuτp ≤ 1

||∇u||2op
and τvτq ≤ 1

||∇v||2op
. (20)

Due to the simple structure of the forward differences the step sizes can be explicitly computed as τu = τp = τv = τq = 1/
√
8.

The whole algorithm stops, if either a predefined maximum number of iterations has been reached or the energy change between

successive iterations drops below a relative threshold. Due to the stacked vector notation, the input weights are denoted as

diagonal matrices Wk and the corresponding multiplications are actually a pixel-wise multiplication.

Since the algorithm is inherently suited for parallelization, the algorithm was implemented on GPU, allowing for a processing

speed of 40ms for 10 images with a size of 640×480 (using a Nvidia GTX 970). Since GPU memory cannot be easily swapped

to the harddrive and the DSMs to fuse are usually quite large (near Gigapixel range for satellite data), we process larger data

by tiling it into overlapping smaller regions, solving these separately. The overlap is chosen as 5% of the corresponding width

of the tiles, means that for e.g. quadratic tiles of 1000 pixel width, the overlap w.r.t. to the neighboring tile amounts to 50 pixel.

To further account for the less accurate results at the tile borders, we employ the same strategy as used by [2]. Instead of just

computing the mean value of neighboring tiles in the overlapping area, a weighted mean is used, such that the corresponding

weights decrease linearly towards the tile border. Of course, when handling such large DSMs and processing them in tiles the

overall solution is not globally optimal anymore. The tiling size is computed as large as possible while the complete data still

fits into GPU memory. With the memory overhead of TGV-L1 based optimization and e.g. 5 input DSMs, this amounts to

tiles of roughly 8000× 8000 pixel for a current GPU having 8GB of memory.

IV. EVALUATION

A. Artificial Tests

The first evaluation is done on synthetic data. A given ground truth DSM g with a height range of [0..170] is perturbed

with Gaussian noise and with salt and pepper noise to simulate different noisy observations of the scene. Five of these noisy

DSMs are then given as input to the fusion algorithms and the accuracy of the output DSM u is measured by the logarithmic

signal-to-noise ratio:

SNR = 10 log10

(

I2signal

I2noise

)

= 10 log10

( ||g||2
||u− g||2

)

(21)

In Figure 2, visual and numerical results are given, showing a significantly higher accuracy of the global optimization methods

for DSM fusion over simple mean and median based fusion. We can also remark the staircasing effects provided by TV-L1

fusion resulting in a non-smooth roof in Figure 2 (f), as well as the smoothness of TGV-L1 fusion, which has both the best

SNR and the best visual aspect. To obtain a fair comparison between TV-L1 and TGV-L1 based fusion, we ran the algorithms

for varying λd values and chose the parameter which resulted in the highest SNR value – compare Figure 3. Furthermore the

noise was fixed for the different runs as well.

B. Artificial Tests - Weights

In this experiment, we compare the basic fusion of Equation 2 and 3 against the formulation using an explicit weighting

scheme as proposed in Equation 4. To this end, we add a wrong systematic bias to 3 of our 5 input images (compare Figure 4

(c) and set corresponding weights w = 0.2 for these areas, whereas the rest is set to w = 1.0. Note that we deliberately did not

set the weights for the wrong areas to zero, to simulate some uncertainty about our knowledge of these areas. As can be seen

in Figure 4 (e) and (h), the absence of an explicit weighting results in fused DSMs with a remaining systematic error in the

two modified areas, as 3 out of 5 images exhibit the same systematic offset, although with different noise. When incorporating

additional prior information (here: down-weighting the image areas with the wrong offset), the optimization process is able to

reconstruct the intended surface, compare Figure 4 (f) and (i). To obtain a fair comparison of the 4 different energy functionals,

we ran the algorithm for varying λd values and chose the parameter which resulted in the highest SNR value – compare Figure

4 (g) and (j). Furthermore the noise was fixed for the different runs as well.

C. Artificial Tests - Varying DSM resolution / Sparse DSM

In this experiment, we compare the fusion results of the following two cases

• One noisy input DSM is given. This reduces the algorithm to a pure denoising algorithm.

• Additionally to the noisy DSM given before, an additional accurate DSM is given, exhibiting strong sparsity. This can

be the result of either projecting a coarse-resolution DSM to the coordinate frame of a fine-resolution DSM or general

depth priors resulting from completely different sensors as for example radar satellites.
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(a) Groundtruth data (b) 1 of 5 noisy input images

(c) Fusion using pixel based mean filtering,
SNR = 22.55

(d) Fusion using pixel based median filtering,
SNR = 28.39

(e) Fusion using combined medmean filtering,
SNR = 29.35

(f) TV-L1 fusion, SNR = 42.72 (g) TGV-L1 fusion, SNR = 43.30

Fig. 2. Comparison of local fusion method versus global optimization methods. Both numerical results and visual appearance show the benefit of the latter
ones.

(a) Groundtruth data (b) 1 of 5 noisy input images

Fig. 3. SNR values with varying λd to obtain best parameter.

In Figure 5 the two abovementioned synthetic input DSMs are depicted, together with the corresponding fusion results of either

using only one input DSM or adding the second sparse DSM to the optimization process as well. The latter case improves the

accuracy, if not by very much. But please note that the sparsity of the second DSM is only 1/16 = 6.25% compared to the
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(a) Groundtruth data (b) 2 of 5 input images with added
noise

(c) 3 of 5 input images with added
noise and having wrong systematic
errors

(d) Corresponding weights used in the
optimization scheme: The areas with
systematic error are given a weight
w = 0.2 (dark gray), for the rest
w = 1.0 (light gray).

(e) TV-L1 fusion, SNR = 22.91 (f) Weighted TV-L1 fusion, SNR = 41.80 (g) Plotting SNR with varying λd

(h) TGV-L1 fusion, SNR = 21.31 (i) Weighted TGV-L1 fusion, SNR = 43.50 (j) Plotting SNR with varying λd

Fig. 4. Evaluation of using explicit weights for simulated systematic errors in some of the input data (c). Standard TV-L1 or TGV-L1 fusion is not able to
remove this systematic error, since it is consistent in 3 of 5 input images. When explicitly down-weighting these areas, (f) and (i), the surface is reconstructed
as intended.

first input DSM. For this experiment, both DSMs (or their valid depth pixels respectively) are weighted equally.

D. Unimodal DSM fusion

In our second evaluation, we created 14 different DSMs of the same 4.5km2 area of the inner city of Las Vegas using a

stereo reconstruction framework as proposed in [3]. For this we have a collection of 60 Skybox images, taken from different

positions. The ground sampling distance (GSD) of these images are 1.5m and for evaluation purposes, we obtained a LiDAR

measurement of the same area by aerial laser scanning having a point density of 0.375 points per m2. As the Skybox images

were taken from with a high off-nadir angle, areas behind high buildings are occluded, and cannot be reconstructed. Points in

the occluded areas were not considered during the statistical evaluation.

We also created 20 different DSMs of two different areas of London, using 5 in-track WorldView-2 images with a GSD of 0.5

m. First, we focused on a 1km × 1km area of the inner city of London, and second on a 1.5km × 1km park area. A LiDAR

dataset, with a GSD of 1.0 m is used as reference. A satellite image of each area is shown in Figure 6. Figure 7 shows the

computed fused DSMs of the inner city of London using medmean, TGV-L1 and TV-L1 fusion.

The accuracy of the fused DSMs with respect to the LiDAR ground truth for the Las Vegas and London data set is given

in Tables I, II and III in the common error metrics Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and

Normalized Median Absolute Deviation (NMAD). Here the improvements are hardly detectable at all, with all algorithms

exhibiting similar numerical results. As of yet we do not have further explanation for these results, but strongly suspect the

quality of the input DSMs, and of the LiDAR ground truth. Indeed, we noticed and removed some strong outliers in the LiDAR

points, but we imagine some less strong outliers were still used during the evaluation.

In fact, the statistics appear to be a little better for medmean fusion than for TGV and TV fusion. However, visual inspection

of TGV and TV results show less noise and better definition of building boundaries and small streets. This may be due to the

fact that for each LiDAR point, we do not calculate the z-axis distance between this point and the DSM, but the Euclidian
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(a) Noisy input DSM #1 (b) Accurate but sparse input DSM #2. For
illustration purpose the sampling points where
thickened - the real input DSM has a sparsity
of 1/16 = 6.25%.

(c) TV-L1 denoising (1 DSM), SNR = 37.75 (d) TV-L1 fusion (2 DSMs of different resolu-
tion), SNR = 38.59

(e) Plotting SNR with varying λd

(f) TGV-L1 denoising (1 DSM), SNR =

38.41
(g) TGV-L1 fusion (2 DSMs of different reso-
lution), SNR = 39.51

(h) Plotting SNR with varying λd

Fig. 5. Evaluation of fusing DSMs with different ground sampling distance (simulated by a sparsity of 1/16 = 6.25% of the second DSM.

MAE [m] RMSE [m] NMAD [m]

Medmean 1.82 4.06 1.16

TV-L1 1.93 4.23 1.21

TGV-L1 1.95 4.22 1.22

TABLE I
LAS VEGAS DATASET: ACCURACY OF THE FUSED DSM W.R.T. GROUND TRUTH OBTAINED BY AERIAL LASERSCANNING (LIDAR)

MAE [m] RMSE [m] NMAD [m]

Medmean 1.36 2.20 1.01

TV-L1 1.62 2.72 1.16

TGV-L1 1.63 2.72 1.15

TABLE II
LONDON DATASET (INNER CITY): ACCURACY OF THE FUSED DSM W.R.T. GROUND TRUTH OBTAINED BY AERIAL LASERSCANNING (LIDAR)

MAE [m] RMSE [m] NMAD [m]

Medmean 1.05 1.85 0.65

TV-L1 1.13 1.99 0.67

TGV-L1 1.17 2.06 0.68

TABLE III
LONDON DATASET (PARK): ACCURACY OF THE FUSED DSM W.R.T. GROUND TRUTH OBTAINED BY AERIAL LASERSCANNING (LIDAR)

distance between LiDAR point and DSM surface. This leads to not taking big outliers into account in the evaluation. For
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example, huge outliers located between two buildings will lead to reasonably small errors.

Furthermore, we also noticed that medmean fusion leads to a few visually erroneous results in areas for which the LiDAR

data are not defined, and thus are not taken into account in the statistics. We can see those phenomena in Figure 8 : First, on

the right side of the building (Zone A), we remark that medmean fusion yields artifacts which are not taken into account in

the statistics as no LiDAR points were available for this region.

Second, on the upper edge of the building (Zone B), medmean fusion yields slowly decreasing artifacts, which are approximately

30m high, the building being 255m high, the neighbouring building 85m, and the artifacts having a height of 115m. But as

we are taking the Euclidian distance into account for the evaluation, the calculated error in this place is only about 2m which

is even a little smaller than for the correct TV-L1 result.

Last, upper the building (Zone C) we notice an artifact which is a 50m high crane, and which was removed using TV-L1.

Despite this, we observe an error of about 3m for TV-L1 fusion, and about 50cm for medmean fusion there. Moreover, we

can also observe visual differences between TGV-L1 and medmean fusion in Figure 9. Indeed, the edges seem to be sharper

and the surfaces more regular using TGV-L1 fusion than using medmean fusion. Finally, we also notice two points visualizing

the height profiles in Figure 9: First, medmean fusion is indeed less smooth and contains more noise than TV-L1 and TGV-

L1 fusion. Second, the LiDAR ground truth also contains some outlier points inside and below the buildings, which might

additionally compromise the evaluation results.

(a) London inner city (1) (b) London inner city (2) (c) London park (d) Las Vegas

Fig. 6. Input images

(a) Medmean fusion (b) TV-L1 fusion (c) TGV-L1 fusion

Fig. 7. London dataset: medmean, TV-L1 and TGV-L1 fusion for inner city (1)

E. Multimodal DSM fusion

Our third evaluation is investigating the results of fusing DSMs derived from different sensors and different spatial resolutions.

The test data is taken from the ISPRS benchmark [19] and consists of 3 different scenes (hilly forest = Vacarisses, city =

Terrassa) near Barcelona, Spain. For each scene, we compute DSMs from the a Pleiades triplet and a Worldview-1 stereo

pair with a GSD of 1 m. As reference we use a LiDAR point cloud a density of 0.3 points per square meter. DSMs for all

3 possible image pairs of the Pleiades were computed and merged. To evaluate the filtering effect of TV-L1 and TGV-L1

the WorldView-1 DSM was additionally processed with the TV and TGV algorithms. The numerical results of local median

fusion, global TV-L1, and TGV-L1 fusion are given in Table IV.
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(a) Medmean fusion (b) Medmean fusion distance map

(c) TV-L1 fusion (d) TV-L1 fusion distance map

Fig. 8. London dataset: medmean and TV-L1 fusion together with distance to LiDAR ground truth

Algorithm Terrassa Vacarisses

MAE[m] RMSE[m] NMAD[m] MAE[m] RMSE[m] NMAD[m]

WV-1 1.05 2.23 0.59 1.62 2.88 1.09
WV-1 TV-L1 1.04 2.20 0.59 1.81 3.48 1.11

WV-1 TGV-L1 1.06 2.24 0.59 2.45 6.41 1.12

PL medmean 0.97 1.73 0.68 1.43 2.28 1.30
PL TV-L1 1.03 1.84 0.67 1.58 2.54 1.38

PL TGV-L1 1.03 1.85 0.67 1.64 2.76 1.39

PL & WV-1 medmean 0.88 1.62 0.61 1.22 1.98 1.12
PL & WV-1 TV-L1 1.03 1.84 0.67 1.58 2.54 1.38

PL & WV-1 TGV-L1 0.98 1.80 0.64 1.41 2.26 1.26

TABLE IV
RESULTS OF LOCAL MEDIAN FUSION AND GLOBAL TGV-L1 FUSION FOR HETEROGENOUS SENSOR DATA (PLEIADES AND WORLDVIEW-1 SATELLITE

IMAGES). THE FIRST ROW SHOWS THE UNFUSED RESULT FOR WORLDVIEW-1 STEREO PAIR, THE NEXT 2 LINES A “SMOOTHING” WITH TV AND TGV.
RESULTS FOR MERGING THE INDIVIDUAL STEREO PAIRS OF THE PLEIADES TRIPLET ARE SHOWN IN LINE 3 TO 6, AND A FUSION OF PLEIADES AND

WORLDVIEW-1 DSMS IS SHOWN IN THE LAST 3 LINES.

While the filtering of the WorldView-1 DSM does not significantly change the statistics for the Terrassa dataset, which to

a larger extend consists of manmade structures and fields, the filter has a stronger smoothing effect on the mainly forested

and hilly landscape of the Vacarisses area. A larger RMSE value is observed for the TGV-L1 solution. In this special case,

the TGV solution propagated outliers in the textureless shadow areas, and at steep slopes, leading to worse results. As in the

London areas, objects such as building contours and bridges appear sharper, but this effect cannot be mesured properly by the

relatively sparse LiDAR reference data.

V. CONCLUSION

IN this paper we proposed a global optimization algorithms for fusing multi-resolution DSMs obtained by heterogenous

sensors. These global optimization algorithms are based on adaptively weighted TV-L1 and TGV-L1 optimization problems,

allowing for fusion of multiple DSMs enforcing additional spatial regularization. As a result, single pixels are not fused

independently but a local consensus about the optimal height is achieved by taking all valid measurements in a local

neighborhood into account and additionally enforcing a local planarity assumption.

In all different evaluations, both synthetic and real world data sets, a significant improvement of the visual accuracy was

shown. However, the numerical accuracy is only superior for the synthetic data sets, as the ground truth for the real world

data sets is too sparse and unevenly distributed - we again refer strongly to Figure 9 illustrating this problem. As a result, our
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(a) Result of medmean fusion (b) Result of TGV fusion
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(c) Height profile, see Figure 6(a)
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Fig. 9. London dataset inner city: Fusion results

(a) WorldView-1, Terrassa (b) fused DSM, Terrassa (c) WorldView-1, Vacarisses (d) fused DSM, Vacarisses

Fig. 10. ISPRS dataset: Exemplary WorldView-1 images of the scenes used in the evaluation

future work will especially focus on obtaining detailed 3D ground truth within ground sampling distance of the corresponding

sensors to evaluate.
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