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The absorption and transport scattering coefficients of biological tissues determine the radial depen-
dence of the diffuse reflectance that is due to a point source. A system is described for making remote
measurements of spatially resolved absolute diffuse reflectance and hence noninvasive, noncontact
estimates of the tissue optical properties. The system incorporated a laser source and a CCD
camera. Deflection of the incident beam into the camera allowed characterization of the source for
absolute reflectance measurements. It is shown that an often used solution of the diffusion equation
cannot be applied for these measurements. Instead, a neural network, trained on the results of Monte
Carlo simulations, was used to estimate the absorption and scattering coefficients from the reflectance
data. Tests on tissue-simulating phantoms with transport scattering coefficients between 0.5 and 2.0
mm21 and absorption coefficients between 0.002 and 0.1 mm21 showed the rms errors of this technique
to be 2.6% for the transport scattering coefficient and 14% for the absorption coefficients. The optical
properties of bovine muscle, adipose, and liver tissue, as well as chicken muscle 1breast2, were also
measured ex vivo at 633 and 751 nm. For muscle tissue it was found that the Monte Carlo simulation
did not agree with experimental measurements of reflectance at distances less than 2 mm from the
incident beam.
Key words: Tissue optics, reflectance, Monte Carlo, neural network. r 1996 Optical Society of

America
1. Introduction

Understanding the propagation and the distribution
of light in biological tissue is essential for effective
and safe applications in medical diagnostics and
therapeutics.1,2 Light propagation in biological tis-
sue, which is an optically turbid 1i.e., scattering and
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absorbing2 medium, can be described by the Boltz-
mann transport equation.3 This involves three opti-
cal properties: the absorption coefficient µa, the
scattering coefficient µs, and the scattering phase
function. In the diffusion approximation3 to the
Boltzmann equation, the phase function is repre-
sented by the mean cosine of the scattering angle g,
which is combined with the scattering coefficient to
give the reduced 1or transport2 scattering coefficient
µs8 5 µs11 2 g2.
The various methods of measuring the optical

properties of tissues have been recently reviewed by
Wilson4 and Cheong et al.5 Substantial discrepan-
cies are evident in the published data, which may be
attributed, at least in part, to the different experimen-
tal methods employed and the theoretical models
used to analyze the measurements. A number of
these methods are invasive, requiring excised tissue
specimens.6,7 Minimally invasive or noninvasive
techniques include interstitial measurements with



isotropic detectors,8 time-domain9 and frequency-
domain10 measurements of 1laser2 light reflectance or
transmittance, or coherent backscattering.11
Steady-state spatially resolved measurement of

diffuse reflectance from a point source or narrow
collimated beam has also been investigated12 by the
use of multiple fiber-optic detectors in contact with
the tissue surface at varying distances from the
source. This has the advantage of requiring rela-
tively simple technology compared with that of the
time-dependent techniques. However, measure-
ments are made at only a limited number of points
1typically 6–82 so that the estimates of the derived
optical properties may be biased by local tissue
inhomogeneities. Pressure that is due to the con-
tact probe may also affect the optical properties
derived, for example, because of altered local blood
content. Recently Bolt and ten Bosch13,14 intro-
duced an alternative diffuse reflectance technique
1video reflectometry2 based on a remote, noncontact,
video camera detector, which potentially may over-
come these limitations. Jacques et al.15 used this
method for measurements on ex vivo tissue. Re-
sults obtained with similar systems have also been
reported by Splinter et al.16 and by Dogariu and
Asakura.17
In either the remote or the contact diffuse reflec-

tance techniques, a model of light transport in tissue
is required for relating the diffuse reflectance values
to the optical absorption and reduced scattering
coefficients of the tissue in order to extract these
coefficients. This is usually done in an iterative
fashion by using the model to fit the measured data,
with the optical properties as free parameters.
Various authors have used solutions of the diffusion
equation for this purpose.12 Because diffusion
theory restricts the degree of anisotropy in the
radiance within the tissue, a particular problem
arises in handling the boundary conditions at the
tissue surface, where the radiance pattern is chang-
ing rapidly. Different models of varying degrees of
sophistication have been developed to describe these
boundary conditions. A primary objective of the
present work was to investigate the accuracy of
these analytic models, by the use of both simulated
reflectance data generated by a Monte Carlo code
and experimental measurements made in optical
phantoms and tissues with a video reflectometry
system similar to that of Jacques et al.15
In those cases in which an analytic model does not

accurately represent the reflectance, more exact
models of light propagation may be applicable. The
alternative approaches of using either higher-order
analytic solutions to the Boltzmann equation or
using Monte Carlo simulation of photon paths are
generally too complex or computationally expensive
to be used in iterative fitting of reflectance data.8
In an earlier paper19 we have demonstrated the use
of a neural network trained with data generated by a
diffusion model to derive the optical scattering and
absorption properties from spatially resolved diffuse
reflectancemeasurements. Such networksmay also
be trained by the use of either Monte Carlo simu-
lated data or experimental phantom data generated
over the range of optical properties of interest. This
approach does not rely on any approximate model of
radiation transport, and, once the network is trained,
it is computationally fast.
In the work of Farrell et al.,19 the neural network

was applied to a contact-probe instrument, and,
because of the possible variation in the optical
coupling between the fibers and the tissue, only the
relative shape of the reflectance versus the distance
curve was used, not the absolute values of local
reflectance. Furthermore, there are limitations on
the shortest radial distance at which measurements
can be made with a fiber-optic probe. Potential
advantages of video reflectometry are that absolute
measurements are possible and that the full range of
distances on the surface can be used.
To assess this potential, we have made spatially

resolved absolute diffuse reflectance measurements
at two different wavelengths in tissue-simulating
phantoms of known optical properties by using a
CCD camera video reflectometer. We found that
diffusion theory12 did not provide an accurate predic-
tion of the absolute local reflectance calculated by
Monte Carlo simulations, and its application gave
poor estimates of the optical properties. Therefore
a Monte Carlo trained neural network was used to
analyze the results. Experimental measurements
of representative mammalian soft tissues ex vivo
were alsomade for comparisonwith published values.
For tissues, we found that even Monte Carlo simula-
tions did not always provide a good description of the
reflectance close to the source. When absolute reflec-
tance data for 2–12-mm distances are used in the
neural network, we estimate that the transport
scattering coefficient can be determined with 3%–4%
accuracy and the absorption coefficient can be deter-
mined with 10–15% accuracy.

2. Theory and Modeling

In this section we describe the two models of radia-
tion transport that were used to derive the absorp-
tion and scattering coefficients from the spatially
resolved measurements of diffuse reflectance. The
first was a Monte Carlo simulation of photon trans-
port that involves no physical approximations but
that produces estimates of the reflectance subject to
statistical uncertainties. Reducing these uncertain-
ties to acceptable values, especially for locations far
from the source, requires that many photon histories
be traced. The time required for this precludes the
use of iterative Monte Carlo simulations, so, as
described below, results of many simulations were
used to train a neural network to derive µa and µs8
from experimental data. An alternative approach
is to use an approximate transport model to generate
an analytic expression for the spatially resolved
reflectance. Physical approximationsmust bemade,
but results can be generated quickly, so that conven-
1 May 1996 @ Vol. 35, No. 13 @ APPLIED OPTICS 2305



tional least-squares techniques can be used to gener-
ate best estimates of µa and µs8. We used a diffusion
model to generate analytical expressions for the
reflectance.
The principles of Monte Carlo simulation of par-

ticle transport have been thoroughly described,20,21
so we point out only the salient features of our
simulations. The tissue was assumed to be a semi-
infinite half-space with scattering coefficient µs, ab-
sorption coefficient µa, and index of refraction n,
which was n 5 1.4 for the simulations.22 The
scattering phase function was that originally used by
Henyey andGreenstein23 inwhich the angular depen-
dence is described by one parameter, g. All photons
were assumed to be normally incident at the origin;
the influence of the actual incident-beam shape was
incorporated by convolution, as described below.
Specular reflection at the tissue–air boundary was
handled with the assumption that the usual Fresnel
equations could be used to calculate the fraction of
photon weight transmitted and reflected.
Because we wish to calculate the absolute signal

received by the detector, it is necessary to estimate
the fraction of diffusely reflected photons that enters
the aperture of the detector. This can be done in
two ways. One is to track the direction of photons
that are emitted from the tissue surface and to score
only those that intercept the detector aperture.
Because most photons will not be detected, this is
inefficient. We accelerated theMonte Carlo simula-
tions with a variance-reduction method called last
flight estimation.7,24 In thismethod, at each interac-
tion point the probability that the photon will escape
the medium without further interaction and inter-
cept the detector is calculated. This variance-
reduction method is valid if the solid angle of detec-
tion is small 1i.e., the detector size is much smaller
than the distance from the detector to the sample, as
is the case in our experiment2. An alternative ap-
proach is to score all photons that are emitted from a
surface element but to assume that the reflectance is
Lambertian so that all directions are equally prob-
able. The detected signal is then derived from the
solid angle subtended by the aperture. Because all
emitted photons contribute to the calculated signal,
this method is computationally efficient, and its
validity was tested by a comparison of calculations
made with both techniques.
Another way to improve the efficiency of Monte

Carlo calculations is to employ the principle of
similarity. It has long been known that different
combinations of g and µs will yield similar results for
dependent quantities, such as the diffuse reflec-
tance.25 The simplest relationship, which is incorpo-
rated in diffusion theory, is that conservation of the
quantity 11 2 g2µs will ensure similarity. We tested
this relationship to determine whether Monte Carlo
simulations performed with one value of the anisot-
ropy parameter g were sufficient to derive µa and µs8
for materials with a range of µs and g.
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Two neural networks were set up to solve the
inverse problems. One 1NN12 consisted of 11 input
nodes, representing the reflectance at 11 distances,
and 11 hidden nodes linked to two output nodes.
The other 1NN22 had 9 input and hidden nodes with
two output nodes. In principle these output nodes
could represent µa and µs8 directly, but we followed
the alternative approach described in detail by Far-
rell et al.19 Instead of training the network with the
reflectance as a function of distanceR1r2, the function
loge3r2R1r24 was used. This function has two distinc-
tive features: a peak a few millimeters from the
source and a roughly exponential decrease far from
the source. The position of the peak depends
strongly on µt8 5 µs8 1 µa, and the slope of the
exponential part depends on the effective attenua-
tion coefficient µeff. In the diffusion approximation,
µeff 5 33µa1µa 1 µs8241@2. The neural networks were
trained with µt8 and µeff as the output nodes, as these
are the recognizable features of the loge3r2R1r24 versus
r curve. The coefficients µa and µs8 were then
calculated from these values. NN1 was trained
with the reflectance data at r 5 2, 3, 4, . . . , 12 mm,
and NN2 was trained with the data at r 5 2, 2.5,
3, . . . , 6 mm. The use of two networks accommo-
dates the wide range of attenuation encountered in
real tissues. 120 Monte Carlo simulations were
performed that covered the range of 0.2 , µs8 , 2.5
mm21 and 0.001 , µa , 0.5 mm21. The number of
photons N used in each Monte Carlo simulation was
calculated from the empirical formula

N [ 31µa@µs821@241@2 3 106

in order to give comparable statistics over the re-
quired distance range. The radial bin in the Monte
Carlo simulations was 40 µm. If the ratio of reflec-
tance at 12 mm to the reflectance at the origin was
greater than 3 3 1025, the data from that simulation
were used to train NN1; if the ratio was less than 23

1024, the data formed part of the training set for NN2
1note that a few simulations were used to train both
networks2. After training, the rms error in µeff and
µt8were 4.6% for NN1 and 3.5% for NN2. Assuming
that the errors in µt8 and µeff are uncorrelated, the
expected errors in µa and µs8 would be approximately
8% and 5%, respectively, for NN1 and approximately
6% and 4% for NN2. The reasons for using data
only for distances greater than 2 mm are discussed
below.
The diffusion model used to generate an analytic

expression for the reflectance has been described by
Farrell et al.12 The final result is

R1r2 5
a8

4p 3
1

µt8 1µeff 1
1

r12
exp12µeffr12

r12

1 1 1µt8 1 2zb21µeff 1
1

r22
exp12µeffr22

r22
, 112



where

r1 5 31 1µt82
2

1 r24
1@2

,

r2 5 31 1µt8 1 2zb2
2

1 r24
1@2

,

a8 5 µs8@1µa 1 µs82,

and zb is the distance from the tissue surface to an
extrapolated boundary at which the fluence rate is
forced to be 0. In deriving Eq. 112 it was assumed
that all incident photons are isotropically scattered
at a depth 1@µt8. As described by Farrell et al.,12
calculations were also performed with an extended
source,

S1z2 5 a8µt8 exp12µt8z2, 122

where the initial scatter events are exponentially
distributed along the z axis. Acylindrically symmet-
ric three-dimensional source function was also ap-
plied:

S1r, z2 5
9a8µt3

2p
exp32µt1z 1 3r24. 132

We used a three-dimensional convolution to calcu-
late the spatially resolved reflectance from Eq. 132.

3. Materials and Methods

Figure 1 shows a schematic of the experimental
setup for spatially resolved absolute diffuse reflec-
tancemeasurements. AHe–Ne laser 1Spectra Phys-
ics, Mountain View, Calif.2 emitting at 633 nm 1beam
diameter 0.4 mm2 or a 751-nm laser diode 1Oriel,
Stamford, Conn.2 served as light sources. The laser
beam was deflected onto the specimen by a mirror at
an angle of incidence of 5° to 10° to avoid the
detection of specularly reflected light. 1We con-
firmed by Monte Carlo simulation that this small

Fig. 1. Experimental arrangement for the measurement of spa-
tially resolved absolute diffuse reflectance. Components are M,
mirror; F, neutral-density filter; P1, P2, linear polarizers; O,
camera lens; A, aperture. For characterization of the incident
laser beam, a second mirror was used to reflect the beam into the
detector aperture.
angle did not cause a significant difference in the
spatially resolved reflectance.2 The diffusely re-
flected light was detected by a CCD camera 1Photo-
metrics, Tucson, Ariz.2 mounted coaxially with the
normal to the specimen surface. The sample was
viewed through a 2.62-mm aperture in front of an
imaging objective 1 f 5 50 mm; Nikon, Japan2. The
purpose of the aperture was to define the acceptance
angle of the detector for the calculation of absolute
reflectance. The distance between the aperture and
the sample was fixed at 110 mm, and a 4 cm 3 4 cm
area was imaged onto the 1024 3 1024 pixels of the
CCD. The CCD was equipped with a 14-bit analog-
to-digital converter, giving a dynamic range of ap-
proximately 104. Total incident power in the
1–100-µW range was sufficient for these experi-
ments in which the image acquisition time was 1 s.
Neutral-density filters were used to adjust the inci-
dent laser power to avoid saturation of the detector
system. Control of the CCD readout, data process-
ing, and storage was executed by a PC. For data
reduction and analysis, the radial distance of each
pixel to the center of the laser beam was calculated
and the pixel values were sorted into bins that
correspond to a radial width of 40 µm at the sample.
In some experiments, linear polarizers in the light
delivery and detection paths were used to investi-
gate the influence of the polarization state on diffuse
reflectance.
The accuracy and the limitations of the system

were tested in tissue-simulating phantoms that com-
prised Intralipid 1Liposyn, 20% stock solution; Ab-
bott Lab., Montreal, Quebec2, a lipid emulsion that
provided light scattering, and Trypan Blue dye
1Sigma, East St. Louis, Ill.2 as the absorber. The
reduced scattering coefficient of Intralipid was mea-
sured by an established frequency-domain diffuse
reflectance technique26 as µs8 5 1.40 6 0.05 mm21 for
a 1% volume concentration at 633 nm. The scatter-
ing coefficient µs was determined with collimated
transmission measurements to be µs 5 7.1 mm21.18
Thus for the anisotropy factor we used g 5 0.8. The
absorption coefficient of Intralipid was determined
with the video reflectometry apparatus described in
this paper to be µa 5 0.0005 mm21. This compares
well with µa 5 0.0006 mm21 measured by Fishkin et
al.27 The absorption coefficient of trypan blue was
determined by a conventional spectrophotometer for
each solution. The total volume of the phantom
was 400 mL 17.5 cm 3 7.5 cm 3 7.0 cm2, and bound-
ary effects were not significant.
Careful characterization of the laser beam is essen-

tial, as this method is based on absolute values of the
spatially resolved reflectance. We measured the
laser beam by replacing the turbid phantom with a
mirror and directing the beam into the camera
aperture. Reflectance losses by this second mirror
have to be considered and weremeasured separately.
A Gaussian profile was fitted to the measured laser
beam and convolved with the pencil-beam reflec-
tance calculated by the models described in Section
1 May 1996 @ Vol. 35, No. 13 @ APPLIED OPTICS 2307



2. The total power in the laser beam was also
measured by an optical power meter 1Newport, Ir-
vine, Calif.2. This measurement was repeated be-
fore all sample measurements were taken so that
correction could be made for drifts in source power.
Fresh tissue samples were obtained from a local

butcher, stored at 14 °C, and used within 8 h for the
ex vivo experiments. The samples had not been
frozen nor were they treated to remove blood.
Measurements were done after the samples had
reached room temperature at locations where there
were no obvious inhomogeneities.
The optical properties of bovine fat, muscle, and

liver, and chicken breast were determined, and
measurements were made at three to six different
locations on each tissue sample. For bovine liver
and chicken breast, the sample thickness was lim-
ited to ,20 mm but was greater than 40 mm for
bovine muscle and fat. The tissue surface was
aligned approximately horizontally.

4. Results

In this section we first present results concerning
variance reduction and similarity in theMonte Carlo
simulations. This is followed by a comparison of
Monte Carlo simulations and diffusion-theory calcu-
lations together with a discussion of the errors
incurred in using the diffusion model to estimate µa
and µs8. Next, experimental measurements on tis-
sue-simulating phantoms are presented as well as
an assessment of the accuracy of the optical proper-
ties derived with the Monte Carlo–neural-network
approach. Finally, we present data obtained for a
range of animal tissue ex vivo.
Figure 2 shows calculations of the dependence of

the diffuse reflectance on polar angle at three dis-
tances from the source for the case µs8 5 1.0 mm21,
µa 5 0.01 mm21, and g 5 0.9. Also shown is the
perfectly diffuse or Lambertian distribution. In
general, the angular distribution is more peaked

Fig. 2. Angular distribution of diffusely reflected light as calcu-
lated by Monte Carlo simulation for µs8 5 1.0 mm21, µa 5 0.01
mm21, g 5 0.9, and an incident pencil beam. Results are shown
for three radial bins: 0–1.5 mm, 1.5–3.0 mm, and 0–0.3 mm.
The Lambertian distribution is also shown as a solid curve.
Deviation from the Lambertian distribution is greatest for regions
close to the source.
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toward small angles than the Lambertian distribu-
tion, and the difference is greatest at positions small
distances from the source. Of more direct interest
is Fig. 3, in which the diffuse reflectance through the
detector aperture is plotted versus distance from the
source. Here a direct comparison is made between
calculations based on the true angular distribution
of the remitted photons by the use of last flight
estimation as a variance-reductionmethod and calcu-
lations based on a Lambertian distribution. Except
for locations closer than 0.05 mm to the source, there
is no significant difference in the curves. Because
of the large increase in efficiency, all Monte Carlo
results presented hereafter were obtained with the
assumption of a Lambertian distribution.
The issue of similarity is addressed in Fig. 4. In

Fig. 41a2 the spatially resolved reflectance is shown
as a function of distance for three Monte Carlo
simulations. For all three simulations, 11 2 g2µs 5
1.0 mm21 and µa 5 0.01 mm21, but three values of g
were used: 0, 0.8, and 0.95, and µs was adjusted
accordingly. If the simple similarity relation were
true, all three curves would be identical. This is
clearly not the case for g 5 0 compared with g 5 0.8,

1a2

1b2

Fig. 3. Spatially resolved diffuse reflectance calculated byMonte
Carlo simulations, assuming a Lambertian distribution of emitted
light 1solid curve2 and explicit calculations based on the actual
angular distribution 1dashed curve2. Conditions for the simula-
tions are the same as those in Fig. 2. A pencil beam is used for
the incident beam. As shown in 1b2, the only significant deviation
occurs within 0.05 mm of the incident pencil beam.



but the difference between the curves for g 5 0.8 and
g 5 0.95 is at most 8%. This is similar even when
µs8 is reduced to 0.2 mm21. Although Monte Carlo
simulations could be greatly accelerated by the use
of an isotropic phase function 1g 5 02, this is not
justified here. However, because the simple similar-
ity relationship does appear to hold over the range
0.8 , g , 0.95, which is typical of mammalian soft
tissues in the visible and near infrared,5 all the
following Monte Carlo data were obtained for g 5
0.9.
In Fig. 5 we compare the results of a Monte Carlo

simulation for µs8 5 1.0 mm21, µa 5 0.1 mm21, and
g 5 0.9 with those obtained from Eq. 112. There are
large differences even far from the source, although
the diffusion curve eventually takes on the correct
shape. Implementing themore complex one-dimen-
sional and three-dimensional sources does little to
improve the agreement with theMonte Carlo results.
To assess the effect this disagreement would have on
estimates of µa and µs8 made with the diffusion
model, the Monte Carlo results were treated as
experimental data and µa and µs8 were altered to
generate the best fit of Eq. 112 to these data. The
results are summarized in Table 1, for which the

1a2

1b2

Fig. 4. Tests of the similarity relation that use Monte Carlo
simulations for spatially resolved reflectance. For 1a2, µs8 5 1.0
mm21, µa 5 0.01 mm21, and g 5 0 1short-dashed curve2, 0.8
1long-dashed curve2, 0.95 1solid curve2. The incident beamwas 0.4
mm in diameter. Conditions were the same for 1b2 except that
µs8 5 0.2 mm21.
fitting has been performed over different distance
ranges. When the full range 10–12.8 mm2 was used,
the estimates of µa and µs8 were the most accurate
but the fit to the experimental reflectance data was
poorest. As the data closer to the source were
excluded, the goodness of fit improved but the error
in the fitted optical properties increased to greater
than 50%. We conclude that the diffusion expres-
sion in Eq. 112 is inadequate for the analysis of
absolute reflectance data.
In Table 2 we present the estimates of µa and µs8

obtained by theMonte Carlo–neural networkmethod
for 13 tissue-simulating phantoms together with the
true optical properties measured independently by
the frequency-domain technique. In three solu-
tions with different concentrations of Intralipid,
different amounts of Trypan Blue were successively
added to alter the absorption coefficient. In Fig. 6
we show the experimental reflectance data for five of
the phantoms as well as Monte Carlo results gener-
ated with the known values of µa and µs8 from Table
2. 1Note that these simulations incorporate the
measured shape of the incident beam.2 The agree-
ment is quite good for all cases over the full distance
range. From Table 2 it is evident that the scatter-
ing coefficient is determined more accurately than

Fig. 5. Comparison of the spatially resolved diffuse reflectance
estimated by Monte Carlo simulation 1long-dashed curve2 to
diffusion-theory calculations for an incident pencil beam. Diffu-
sion theory used a single scatter source 1dotted curve2, an extended
one-dimensional source 1short-dashed curve2, or a three-dimen-
sional source 1solid curve2. The optical properties were µs8 5 1.0
mm21, µa 5 0.1 mm21, and g 5 0.9.

Table 1. Optical Properties Derived when Eq. A1B is Fit to Monte
Carlo-Generated Data for ms8 5 1.0 mm21, ma 5 0.01 mm21 and g 5 0.9a

Fitted
Values

Fitting Range 1mm2

0–12.8 1–12.8 2–12.8 3–12.8 4–12.8

µs8 1mm212 1.07 1.46 1.58 1.76 1.49
µa 1mm212 0.0083 0.0049 0.0040 0.0026 0.0046
s 0.218 0.118 0.087 0.104 0.093

as is the rms difference between the logarithm of the Monte
Carlo data and the logarithm of diffuse reflectance calculated
according to Eq. 112. As points close to the source are excluded,
the fit is improved, but the error in µa and µs8 is increased.
1 May 1996 @ Vol. 35, No. 13 @ APPLIED OPTICS 2309



the absorption coefficient: the rms error in µs8 is
2.6%, whereas the rms error in µa is 14%. These are
comparable with the errors observed in the training
of the neural network.
In Table 3 we show the values of µa and µs8

obtained from measurements at five different loca-
tions on one sample of bovine muscle. Both net-
works were used to analyze the data, and the
differences in the estimates obtained with the two
networks do not exceed the training errors. The
rms variation among different locations was 16% in
µa and 9% in µs8.
Examples of the diffuse reflectance measured for

different tissues at 633 nm are shown in Fig. 7.
Data for liver tissue were analyzed with NN2; for all
other tissues NN1 was used. The results for 633

Table 2. Estimates of ma and ms8 Obtained by Neural Networks for a
Series of Tissue-Simulating Phantoms Compared with True Values

Based on Independent Measurements a

True Optical Properties Neural Network Results

µa 1mm212 µs8 1mm212 µa 1mm212 µs8 1mm212

0.0022 1.99 0.0023 1.99
0.0057 1.98 0.0047 1.95
0.0143 1.97 0.0150 1.97
0.0033 0.98 0.0034 1.00
0.0088 0.98 0.0083 1.03
0.025 0.97 0.022 0.99
0.070 0.94 0.075* 0.95*
0.100 0.93 0.107* 0.96*
0.0022 0.50 0.0017 0.52
0.0065 0.50 0.0053 0.52
0.020 0.49 0.020 0.51
0.043 0.49 0.048* 0.49*
0.073 0.49 0.083* 0.48*

aValues marked with an asterisk were obtained with NN2; all
others are the results of NN1.

Fig. 6. Comparison of experimental measurements of spatially
resolved diffuse reflectance 1symbols2 for five phantoms to Monte
Carlo simulations 1solid curves2 generated with the true values of
µa and µs8. The Monte Carlo simulations were obtained for
pencil beams and convolved with the measured incident-beam
profile. The optical properties for the five phantoms were µs8 5

0.98, µa 5 0.0033 1top curve2; µs8 5 0.98, µa 5 0.0088; µs8 5 0.97,
µa 5 0.025; µs8 5 0.94, µa 5 0.070; µs8 5 0.93, µa 5 0.100 mm21

1bottom curve2. Note that no parameter was fit.
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and 751 nm are presented in Table 4, in which the
standard deviations were derived from measure-
ments made at different locations on the same
sample. These data are consistent with general
findings in Ref. 5, namely:

112 Although the reduced scattering coefficient
varies by a factor of 3 from one tissue to another, the
absorption coefficient can be different by 2 orders of
magnitude. This reflects the difference in concentra-
tion of various chromophores such as hemoglobin.
122 The reduced scattering coefficient is lower at

751 nm than at 633 nm for all tissue samples
measured.
132 Tissues with a higher hemoglobin content

1bovine muscle and liver2 show a larger decrease in µa
at 751 nm compared with 633 nm than do less
perfused tissues 1adipose, chicken muscle2.

As shown in Table 4, the only marked discrepancy
between our results and published data is for µa in
chicken muscle, which we found to be 3–4 times
lower than that reported in other studies.
In the analysis above, the neural networks were

trained with only the data beyond 2 mm from the
source. In Fig. 6 we showed that good agreement
between Monte Carlo simulations and experimental
measurements could be obtained over the complete
distance range for tissue-simulating phantoms.
This was not the case for tissues, however. Initially

Table 3. Optical Properties of Bovine Muscle at 633 nm Derived from
Diffuse Reflectance Measurements at Five Different Locations on the

Same Sample

Location

Neural Network 1 Neural Network 2

µa 1mm212 µs8 1mm212 µa 1mm212 µs8 1mm212

1 0.076 0.55 0.075 0.54
2 0.10 0.60 0.10 0.61
3 0.12 0.54 0.11 0.53
4 0.12 0.47 0.11 0.48
5 0.082 0.48 0.090 0.45

Fig. 7. Spatially resolved diffuse reflectancemeasured for chicken
breast 1short-dashed curve2, bovine muscle 1long-dashed curve2
and bovine liver 1solid curve2 ex vivo at 633 nm. No polarizers
were used.



Table 4. Optical Properties of Different Tissues Ex Vivo at 633 and 751 nm Derived by the Neural Networks from Spatially Resolved Absolute Diffuse
Reflectance Measurements a

Sample

l 5 633 nm l 5 751 nm

µa 1mm212 µs8 1mm212 µa 1mm212 µs8 1mm212

Bovine muscle 0.096 6 0.015 0.53 6 0.05 0.037 6 0.007 0.34 6 0.03
10.04–0.172 10.44–0.702

Bovine fat 0.0026 6 0.0007 1.20 6 0.07 0.0021 6 0.0006 1.00 6 0.05
Chicken breast 0.0038 6 0.0008 0.42 6 0.05 0.0027 6 0.0010 0.28 6 0.03

10.012–0.0172 10.33–0.802
Bovine liver 0.30 6 0.01 1.01 6 0.08 0.17 6 0.01 0.32 6 0.02

10.27–0.322 10.52–1.72

aThe standard deviation was calculated from multiple measurements at different locations on each sample. The values in
parentheses are the ranges reported in Ref. 5.
we believed that this was due to the detection of light
that was directly reflected from the relatively rough
tissue surface. We attempted to exclude this light
by polarizing the incident light and acquiring the
CCD image through a crossed polarizer because the
directly reflected light does not change its polariza-
tion. However, with these measurements, not only
the directly reflected light but also light that has
been remitted but not completely depolarized by the
scattering processes is excluded. Thus the theoreti-
cal data for theMonte Carlo simulations, which were
calculated for unpolarized light, should lie between
the experimental curves measured with crossed and
perpendicularly oriented polarizers. If the differ-
ence of the experimental curves is caused mainly by
the directly reflected light, the theoretical curve of
the Monte Carlo simulation should be close to the
measurement with crossed polarizers.
In some cases the use of the crossed polarizers

resulted in a data set that could be matched to a
Monte Carlo simulation over the full distance range.
For example, in Fig. 81a2 data for bovine fat obtained
by the use of parallel and crossed polarizers are
compared with the results of a Monte Carlo simula-
tion generated with optical coefficients determined
from the neural network. In contrast, a similar
comparison for bovine muscle 3Fig. 81b24 shows that a
good fit could not be achieved for distances of less
than 2 mm, even when crossed polarizers were used.
If the main reason for the difference between the
experiments with crossed and parallel polarizers is
due to light scattered from the surface, one might
expect the effect to be reduced for a larger angle of
incidence. However, Fig. 9 shows that, even for an
angle of incidence of 45%, the difference between
parallel and cross-polarization results persists for
bovine muscle. Because of the failure of the model
to predict accurately and consistently the reflectance
close to the source, these data were not included in
the analysis.

5. Discussion and Conclusions

Building on earlier work in video reflectometry,13–17
we have described a different approach for acquiring
and analyzing spatially resolved diffuse reflectance
data from which estimates of the optical properties
of tissues can be made. The novel features of the
method are

112 Absolute reflectance data are acquired when
the reflectance images are referenced to images of

1a2

1b2

Fig. 8. 1a2 Spatially resolved diffuse reflectance measured for
bovine adipose tissue at 751 nm with the detector polarizer
parallel to the source polarizer 1short-dashed curve2 and with
crossed polarizers 1long-dashed curve2. The solid curve is the
result of a Monte Carlo simulation generated with the optical
coefficients from the neural network with g 5 0.9. Good agree-
ment between the simulation and the result for crossed polarizers
was obtained over the complete distance range. 1b2Data obtained
as above for bovine muscle at 751 nm. The Monte Carlo simula-
tion agrees well beyond 2 mm, but closer to the source, even the
data for crossed polarizers does not match the simulation.
1 May 1996 @ Vol. 35, No. 13 @ APPLIED OPTICS 2311



the incident beam. Other investigators have relied
on relative reflectance data12,13 or have made an
auxiliary measurement of the total diffuse reflec-
tance relative to a standard.15

122 Aneural network is used to extract the optical
properties from the reflectance data. The network
was trained with data fromMonte Carlo simulations
so, in this sense, an exact implementation of the
radiation transport equation is used rather than an
approximate model. To our knowledge, this is the
first time a neural network trained with data from
Monte Carlo simulations had been used for determi-
nation of the optical properties with reflectance
measurements. When the neural network is used,
the computation time needed for determination of
the optical coefficients can be reduced by several
orders ofmagnitude comparedwith that for a conven-
tional fit routine. The neural network could also be
trained with experimental data if materials with an
appropriate range of known optical properties were
available.

Regarding the first point, it is possible to train a
neural network to use relative reflectance data 1i.e.,
only the shape of the reflectance versus distance
curve2, and we have done this for a surface probe that
mimics a matched boundary.12 In the case of a
mismatched boundary, however, we found that the
training errors for µt8 and µeff were ,12%, compared
with 4% reported above for absolute reflectance data.
Recalling that the rms errors associated with phan-
toms were ,2.6% in µs8 and 14% in µa for absolute
data, we conclude that the uncertainty for relative
measurements would be ,3 times larger and too
high for many applications. As in the case of
matched boundary conditions, this might be im-
proved if points closer to the source were included.
We found, however, that, for real tissues, transport
theory that did not include polarization-dependent
scattering did not always provide an accurate descrip-

Fig. 9. Spatially resolved diffuse reflectance for bovine muscle at
751 nm. Measurements were made with the beam incident at
10° with parallel 1solid curve2 and crossed 1dotted curve2 polarizers
and at 45° with parallel 1long-dashed curve2 and crossed 1short-
dashed curve2 polarizers.
2312 APPLIED OPTICS @ Vol. 35, No. 13 @ 1 May 1996
tion of the reflectance close to the source, even when
crossed polarizers were used.
In this study we have used a mirror to reflect the

incident beam into the camera so that it may be
characterized for themeasurement of absolute reflec-
tance. An alternative approach would be to mea-
sure the spatially resolved reflectance for a material
with known optical properties. As long as the source
characteristics remain unchanged, data obtained for
unknownmaterials could then be referenced to these
data at each distance. Training the neural network
on these ratios would be equivalent to using absolute
reflectance values.
We also demonstrated in this paper that diffusion

theory does not provide a sufficiently accurate calcu-
lation of the absolute diffuse reflectance at distances
between 2 and 12 mm from the source if the refrac-
tive index is not the same inside and outside the
turbid medium. Again this is in contrast to our
previous experience with a matched surface probe,12
in which diffusion theory was adequate at distances
greater than one transport mean-free path from the
source. This is also contrary to the experience of
Jacques et al.,15 who used diffusion theory to analyze
their measurements of spatially resolved as well as
total diffuse reflectance. Their analysis differed in
that Eq. 112 was also integrated over r to provide an
expression for the total diffuse reflectance. Be-
cause a separate measurement of total diffuse reflec-
tance was made, this additional information was
used to restrict the search for µa, µs8 to those
combinations that yielded the correct total diffuse
reflectance. The combination chosenwas thatwhich
gave the best agreement between Eq. 112 and the
spatially resolved data. Jacques et al.15 did not
state specifically what distance range was used in
their fitting, but they did not include ‘‘data too close
to the point source.’’ Measurements were made on
only three phantoms, and rms errors of 3.6% in µa
and 7.4% in µs8 were reported, compared with our
rms errors 1on a larger data set2 of 13.6% in µa and
2.6% in µs8. It is interesting to note that Jacques et
al.15 report larger errors in µs8 than in µa, whereas
the opposite was found in our study. A more com-
plete comparison would be necessary to determine if
this is characteristic of the two different methods.
We assume that the separate measurement of the
total diffuse reflectance by Jacques et al.15 must
contribute substantially to the accuracy of their
results because, as shown above, reliance on the
spatially resolved reflectance at some distance from
the source as calculated by diffusion theory yields
poor results.
Because our method does not rely on diffusion

theory, in principle it can be applied to any combina-
tion of µs8 and µa, although we have tested it only
over the range 0.5 , µs8 , 2.5 mm21 and 0.002 ,
µs8 , 0.1 mm21. Of course, there would be practical
problems associated with reflectance measurements
on highly absorbing tissues.
Reasons for the disagreement between the theoreti-



cal values and the tissue experiments at small
distances 1i.e., less than 2 mm2 from the incident
beam could be

112 In the Monte Carlo simulations we assume
that g 5 0.9. If the anisotropy parameter is smaller
than this value, the reflectance at small distances is
greater 1see Fig. 42 and therefore the theoretical
curves are closer to the experimental data.
122 Because the disagreement is greater formuscle

than for fat, there might be light piping effects in the
fibers of the muscle that are not described by the
simulations.

132 The assumption of the Lambertian distribu-
tion causes an underestimation of R1r2 at small r 1see
Fig. 32.

We are currently investigating a number of im-
provements that would expand the potential of this
technique. Although data close to the source were
not used in the analysis, saturation of the pixels that
correspond to these positions causes blooming in the
detector and limits the exposure time. It should be
possible to mask the CCD detector to avoid this
problem. Simultaneousmultiwavelengthmeasure-
ments could also be made by using a white-light
source and a combination of beam splitters and
filters in the detector optics. We have also begun to
extend the analysis to layered tissues, although
preliminary studies28 indicate that additional infor-
mation, such as layer thickness, must be known
before reasonable estimates can be made of the
optical properties of the different layers.
The method we have described avoids many of the

problems inherent in contact-probe measurements.
Because a full two-dimensional map of reflectance is
obtained, future studies will be aimed at assessing
the heterogeneity of real tissues and the impact of
such heterogeneity on the estimation of average
absorption and scattering coefficients.
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