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Spatially resolved edge currents and guided-wave
electronic states in graphene
M. T. Allen1, O. Shtanko2, I. C. Fulga3, A. R. Akhmerov4, K. Watanabe5, T. Taniguchi5,

P. Jarillo-Herrero2, L. S. Levitov2 and A. Yacoby1*

Exploiting the light-likeproperties of carriers ingraphene could
allow extreme non-classical forms of electronic transport to
be realized1–8. In this vein, finding ways to confine and direct
electronic waves through nanoscale streams and streamlets,
unimpeded by the presence of other carriers, has remained
a grand challenge9–12. Inspired by guiding of light in fibre
optics, here we demonstrate a route to engineer such a
flow of electrons using a technique for mapping currents at
submicron scales. We employ real-space imaging of current
flow in graphene to provide direct evidence of the confinement
of electron waves at the edges of a graphene crystal near
charge neutrality. This is achieved by using superconducting
interferometry in a graphene Josephson junction and recon-
structing the spatial structure of conducting pathways using
Fourier methods13. The observed edge currents arise from
coherent guided-wave states, confined to the edge by band
bending and transmitted as plane waves. As an electronic
analogue of photon guiding in optical fibres, the observed
states afford non-classical means for information transduction
and processing at the nanoscale.

Electrons in Dirac materials such as graphene can be
manipulated using external fields that control electron refraction
and transmission in the same way that lenses and optical elements
manipulate light1,2,6,7. Several of the key ingredients, including
phase-coherent Klein transmission and reflection3–5, ballistic
transport8 and transverse focusing on micrometre scales14,
have already been established. One promising yet unexplored
direction, which we investigate here, is the quasi-one-dimensional
confinement of electrons in direct analogy to refraction-based
confinement of photons in optical fibres. Electronic guided
modes formed by a line gate potential, although discussed in the
literature9–12, have so far evaded direct experimental realization.
Extending the fibre-optic techniques to the electronic domain is
key to achieving control of electron waves at a level comparable to
that for light in optical communication systems.

Rather than pursuing the schemes discussed in refs 9–12, here
we explore modes at the graphene edges. The atomically sharp
graphene edges provide a natural vehicle for band bending near
the boundary, which then confines the electronic waves in the
direction transverse to the edge. The resulting guided ‘fibre-optic’
modes are situated outside the Dirac continuum (see Fig. 1a,b),
propagating along the crystal edge as plane waves and decaying into
the bulk as evanescent waves. This approach to carrier guiding is
particularly appealing because of the ease with which band bending
at the graphene edge can be realized, as well as because there is

no threshold for fibre-optic states to occur: they are induced by an
edge potential of either sign, positive or negative, no matter how
weak (see discussion below and in the Supplementary Methods).
The presence of such guidedmodes enhances the density of current-
carrying states at the edge. The effects of electron confinement
and guiding are strongest near charge neutrality, where the edge
potential is unscreened, whereas uniform behaviour is recovered
away from neutrality (see Fig. 1c and Supplementary Fig. 1).

The edge currents associated with guided states, anticipated
at zero magnetic field, have so far eluded experimental detection
owing to the challenge of imaging current with submicron spatial
resolution. In particular, scanning tunnelling spectroscopy (STS)
images the density of states but not the current flow15,16, whereas
macroscopic conductivity cannot distinguish the edge and bulk
contributions17,18. With this motivation, we developed a technique
to spatially image electric current pathways and applied it to high-
mobility graphene. We employ superconducting quantum interfer-
ometry in a graphene Josephson junction to reconstruct the spatial
structure of the electronic stateswhich transmit supercurrent, which
allows edge and bulk contributions to be disentangled13,19.

Our approach employs gated Josephson junctions consisting
of graphene coupled to superconducting titanium/aluminium
electrodes (Fig. 1d). A gate electrode is used to tune the carrier
density, n, in the graphene. To access the intrinsic properties of
graphene at densities near charge neutrality, flakes are isolated from
substrate-induced disorder through placement on thin hexagonal
boron nitride (hBN) substrates20. A total of four bilayer devices
and one monolayer device are investigated, BL1, BL2, BL3, BL4
and ML1, all of which exhibit similar behaviour (Supplementary
Table 1). Measurements of the a.c. voltage drop dV across the
junction in response to an a.c. current modulation dI were
conducted using lock-in techniques in a dilution refrigerator at
10mK, well below the critical temperature of Al. Figure 1e–h
shows transport data from one of the bilayer devices. On sweeping
the d.c. current bias Id.c., a sharp transition in resistance between
dissipationless and normal metal behaviour appears at a critical
current Ic, a transport signature of the Josephson effect (Fig. 1e,f).

We obtain real-space information by applying a magnetic flux
Φ through the junction area, which induces a position-dependent
superconducting phase difference parallel to the graphene/contact
interface21. As a result, the critical current Ic exhibits interference
fringes in the magnetic field B (Fig. 1e). The measured interference
patterns feature well-defined nodes, which indicates the absence
of field inhomogeneity such as that due to vortices22. The critical
current Ic can be expressed as the magnitude of the complex Fourier
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Figure 1 | ‘Fibre-optic’ modes and spatially resolved current imaging in a graphene Josephson junction. a,b, Guided edge modes induced by an intrinsic

band bending near crystal boundary, for monolayer and bilayer graphene (schematic), respectively. Mode frequencies positioned outside the Dirac

continuum ensure mode decoupling from the bulk states. Guided modes exist for any edge potential no matter how weak. In a monolayer, mode velocity

alternates in sign as the potential strength increases, see equation (5). In a bilayer, the modes occur in pairs (green and red curves: dispersion for positive

and negative potential strength, respectively). c, The guided modes are manifested through peaks in the density of current-carrying states at the crystal

boundaries, prominent near charge neutrality (monolayer graphene, red: n=0.05× 1011 cm−2; blue: n=2.5× 1011 cm−2). d, Schematics of superconducting

interferometry in a graphene Josephson junction, which is used to image the spatial structure of current-carrying states. A flux is threaded through the

junction area to produce interference patterns, as current bias Vsd is applied through the superconducting electrodes and the voltage drop across the

device is recorded. Carrier density n is tuned by a gate voltage Vb. e,f, The recorded interference pattern is of a single-slit Fraunhofer type at high carrier

density, turning into a two-slit SQUID-like interference near neutrality (device BL1). g,h, Current flow, extracted from the interference data using Fourier

techniques, is uniform at high carrier density (g) and peaks at the crystal edges for carrier density close to neutrality (h).

transform of the current density distribution J (x), providing a sim-
ple and concise description of our system. That is, Ic =|Ic(B)|, where

Ic(B)=

∫ W/2

−W/2

J (x)e2πiLBx/Φ0dx (1)

where Φ0 = h/2e is the flux quantum, h is Planck’s constant, e is
the elementary charge, W is the width of the flake (Fig. 1d). Here,
following the conventional treatment for wide junctions such that
L≪W , where L is the distance between contacts, we ignore the y
dependence. The spatial distribution of supercurrent thus dictates
the shape of the interference pattern13,21,23.

The results obtained with this technique show strikingly
different behaviour at high and low carrier densities. We observe
the conventional uniform-current behaviour at high density,
Ic(B)/Ic(0) ∼ |sin(πΦ/Φ0)/(πΦ/Φ0)|, which mimics single-
slit Fraunhofer diffraction (Fig. 1e). Defining features of such
interference include a central lobe of width 2Φ0 and side lobes with

period Φ0 and amplitude decaying as 1/B. However, near the Dirac
point, our results exhibit a striking departure from this picture
and show a two-slit ‘SQUID-like’ interference (Fig. 1f)24. Such
behaviour arises when supercurrent is confined to edge channels
and is characterized by slowly decaying sinusoidal oscillations of
periodΦ0. Importantly, these two regimes are easily distinguishable
without much analysis by the width of the central lobe, which is
twice as wide for the uniform case as for the case of edge flow.

The real-space current distribution can be obtained by inverting
the relation in equation (1) with the help of the Fourier techniques
of Dynes and Fulton13 (see Supplementary Methods). The resulting
current density map reveals strong confinement of supercurrent to
the edges of the crystal near the Dirac point (Fig. 1h), a robust
experimental feature seen in all five devices. The width of the edge
channel, extracted quantitatively from Gaussian fits, is of the order
of the electron wavelength (∼200 nm) and consistent across multi-
ple samples. This value is probably an upper bound because the peak
width ismanifested in the decay envelope of the interference pattern;
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Figure 2 | Gate-tunable evolution of edge and bulk current-carrying states in monolayer graphene. a, Edge-dominated SQUID-like interference pattern at

neutrality in deviceML1 (n=2.38× 109 cm−2). b, Real-space image of current flow confined to the boundaries over a range of densities near neutrality.

c, The raw interference data corresponding to b, taken from the white box in d. d, A real-space map of current flow as a function of electron concentration

reveals the coexistence of edge and bulk modes at intermediate densities. Over the entire scan, the full range of carrier modulation extends into the high

1011 range cm−2. e, Conventional Fraunhofer pattern for uniform-current flow at high electron density (n=7× 1011 cm−2). f, Comparison of current

amplitudes along the edge (red) and bulk (blue) from the plot in c. Current flow is edge-dominated near neutrality. Note that minima for both contributions

coincide in n, indicating that a positional edge/bulk density offset is not present.

external factors that suppress the critical current amplitude at high
B, such as thermal activation of quasiparticles and suppression of the
Al superconducting gap,may also contribute to peak broadening. At
high electron density, a conventional Fraunhofer-like behaviour is
recovered (Fig. 1e), suggesting a uniform distribution of supercur-
rent (Fig. 1g). Amore numerically expensive Bayesian estimation of
the current distribution produces current maps and standard error
estimates that agree with the Fourier techniques (see Supplementary
Methods and Supplementary Fig. 2).

By tuning carrier concentration with a gate electrode, our mea-
surements reveal coexistence of edge and bulk modes at intermedi-
ate densities. This is illustrated in Fig. 2, for a monolayer graphene
device. The SQUID-like quantum interference at charge neutrality,
which is similar to that for bilayer graphene in Fig. 1, gives the spa-
tial image of supercurrent that confirms edge-dominated transport
(Fig. 2a–c,f). As density is increased, bulk current flow increases
monotonically and crosses over to mostly uniform flow across the
sample (Fig. 2d), signified by conventional Fraunhofer-like interfer-
ence at high electron density (Fig. 2e). To track the evolution of edge
and bulk currentswith density, line cuts of the corresponding contri-
butions are provided in Fig. 2f. Notably, the gate voltage correspond-
ing to the charge neutrality point, identified as a dip in the current
amplitude for edge and bulk, appear at similar carrier density values,
which indicates the absence of edge doping in our system.

Similarly, we systematically explore the interplay between edge
and bulk flow in bilayer graphene (Fig. 3). As the Fermi energy ap-
proaches the Dirac point from the hole side, the bulk contribution is
suppressed faster than the edge contribution, leading to emergence
of robust edge currents near zero carrier density (Fig. 3a,b). In this
device, current distributions are not plotted at the immediate Dirac
point owing to suppression of proximity-induced superconductivity

at high normal state resistances. We note that the range in hole den-
sity over which the bulk contribution is recovered varies in different
devices. Further, application of an interlayer electric field E breaks
crystal inversion symmetry and induces a bandgap25,26, manifested
as a gate-tunable insulating state at the Dirac point (Fig. 3c,d). In
this regime, conductance is mediated by edge currents that enclose
the bulk, even in the presence of a field-induced gap (Fig. 3e,f).

In both the monolayer and the bilayer cases, raw interference
near the Dirac point and at high electron concentration exhibit
the salient features that distinguish edge-dominated from bulk-
dominated transport, including a width of φ0 versus 2φ0 of the
central lobe, as well as Gaussian versus 1/B decay of the lobe
amplitudes for low and high densities, respectively.

As a simple model of electronic fibre-optic states we consider
massless Dirac particles in graphene monolayer in the presence of
a line potential:

H =vσ ·p+V (x) (2)

where p is momentum, σi are pseudospin Pauli matrices and
v ≈ 106 ms−1. We seek plane-wave solutions of the Schrödinger
equation, ψ(x ,y)=eikyφ(x), where k is the wavevector component
along the line and φ(x) is a two-component spinor wavefunction
depending on the transverse coordinate. This problem can be
tackled by a matrix gauge transformation ψ(x) = U (x)ψ̃(x),
which eliminates the potential V (x) and generates a mass
term in the Dirac equation. Namely, U (x) = e−iθ(x)σx , with
θ(x)=(1/h̄v)

∫ x

0
V (x ′)dx ′, yields

H̃ = U−1(x)HU (x)

= h̄v[−iσx∂x +kσy cos2θ(x)−kσz sin2θ(x)] (3)
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(black). c, Measurement schematic for superconducting interferometry in a dual-gated bilayer graphene Josephson junction. A dual-gated device consists

of a bilayer graphene flake on hBN with a suspended top gate, where application of voltages Vt and Vb on the top and back gates enables independent

control of the transverse electric field E and carrier density n. d, Resistance map as a function of Vb and Vt for bilayer BL4. Enhanced resistance at high E

fields indicates the emergence of a gate-tunable insulating state due to broken crystal inversion symmetry. e, Spatially resolved boundary currents as a

function of E field. The vertical axis is a trace along the red path labelled in b. f, Sequence of Fraunhofer measurements at various locations on the current

map in e.

As a simple example, we consider the case of an armchair edge, for
which the problem on a half plane for carriers in valleys K and
K ′ is equivalent to the problem on a full plane for a single valley.
Applying the above method to a potential localized in an interval
−d<x<d and focusing on the long-wavelength modes such that
kd ≪ 1, we can use a step approximation θ(x)≈ (u/2v) sgn (x)
with the parameter u=(1/h̄)

∫ d

−d
V (x ′)dx ′. We arrive at the seminal

Jackiw–Rebbi problem for a Dirac equation with a mass kink

H̃ = h̄v(−iσx∂x +σy k̃+σzm(x)) (4)

where k̃= k cos(u/v), m(x)= −k sin(u/v) sgn (x). This problem
can be solved directly and explicitly27, yielding guided-wave states
as products of the zero-mode state found from H̃ for k̃= 0 and
the plane-wave factors eiky . The energies of these states are simply
ǫ=ηh̄vk̃ with the sign η= sgn (m(0+)−m(0−)). This gives a linear
dispersion ǫ= h̄ṽ|k|, with the velocity

ṽ=v cos(u/v)sgn(sin(u/v)) (5)

As |ṽ|< v, for each k the energies of these states lie outside the
bulk continuum |ǫ|≥ h̄v|k| (see Fig. 1a). Decoupling from the bulk

states ensures confinement to the region near the x = 0 line. The
connection with the theory of zero modes renders robustness to our
confinement mechanism. Similar guided-wave states are obtained
for an edge potential in graphene bilayer (see Fig. 1b).

In Fig. 4, we compare supercurrent density measurements with
a theoretical prediction for density of states. Current density traces
J (x) measured in the bilayer device BL3 at different densities
have a strong edge component near neutrality, gradually evolving
to the bulk flow away from neutrality. Traces of the density of
states, obtained from the above model, exhibit qualitatively similar
behaviour (Fig. 4b). For the simulation, a delta function potential
approximation was used with the best-fit value h̄u=0.7 eVnm (see
Supplementary Methods).

Another key feature borne out by the above model is the
robustness of the guided states in the presence of edge disorder.
Indeed, as the length scales defined by the evanescent waves
are of the order of electron wavelength λ, the resulting modes
are weakly confined to the edge at low carrier density. Such
modes tend to decouple from the short-range edge disorder by
diffracting around it. In particular, our analysis of monolayer
graphene yields a mode damping that quickly vanishes at long
electron wavelengths near charge neutrality, scaling as γ (k)∼ k2
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(see Supplementary Methods). This resembles the behaviour of
optical guided states in so-called ‘weakly guiding’ optical fibres,
where a similar suppression of disorder scattering occurs due to
evanescent waves diffracting around edge disorder.

One appealing aspect of the fibre-optic model is that it can
naturally accommodate a wide range of different microscopic
physical mechanisms discussed theoretically in the literature27–31

that may produce an edge potential. Examples include pinning
of the Fermi energy to the low-energy states due to broken A/B
sublattice symmetry29–31, density accumulation caused by dangling
bonds or trapped charges at the boundaries, or electrostatics27,28. The
competition of these effects can produce a complex dependence of
the edge potential V (x) on carrier density. Pinpointing the precise
microscopic origins of the edge potential requires further study.

To the best of our knowledge, the fibre-opticmodes is perhaps the
simplest model fully consistent with the observations. In particular,
we eliminate edge density accumulation, which can influence the
edge potential and in principle also support guided edge currents.
The fact that the charge neutrality points for both edge and bulk
roughly coincide in density n suggests an absence of a positional
charge imbalance on a large scale (Fig. 2f). In addition, edge-
dominated current flow is observed near the Dirac point, but
not at higher densities, behaviour not expected for strong edge
doping. Explanations involving electron–hole puddles are excluded
by the reproducibility of edge currents with widths of the order
of the electron wavelength across many samples, as well as the
observation that edge currents tend to be stronger in clean samples
with ballistic Fabry–Pérot interference32 (see Supplementary Fig. 6
for normal state characterization of the graphene). Large charge
inhomogeneities across the sample would suppress Fabry–Pérot
interference and are thus unlikely.

Lastly, it is widely known that the A/B sublattice imbalance
for broken bonds at the edge can lead to edge modes in pristine
graphene at neutrality. Such dispersing zero-mode states can exist
even in the absence of a line potential, forming edge modes for
an atomically perfect zigzag edge29–31. However, our simulations
for a disordered edge show that these states are highly localized

on the disorder length scale, and also that edge roughness induces
strong scattering between the states at the boundary and in the bulk,
which hinders ballistic propagation. Similarly, valley Hall currents
predicted at the boundaries of a gapped bilayer due to momentum-
space Berry curvature of the bands33,34 are eliminated because they
are highly sensitive to disorder scattering at the boundaries.

Our measurements establish that edge currents are present in
graphene even at zero magnetic field, near the Dirac point. The
observed edge currents are linked to electronic guided-wave states
formed owing to band bending at the edge. This demonstrates
confinement of electron waves at a level comparable to that for light
in photonic systems and defines a new mode for the transmission
of electronic signals at the nanoscale. We anticipate this work will
inspire more detailed investigations of boundary states in graphene
and othermaterials. Such capabilities are also of great interest owing
to the predicted topological nature of edge states along stacking
domain boundaries in bilayer graphene35,36.

Received 27 May 2015; accepted 28 September 2015;
published online 9 November 2015

References
1. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K.

The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
2. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the

Klein paradox in graphene. Nature Phys. 2, 620–625 (2006).
3. Young, A. F. & Kim, P. Quantum interference and Klein tunnelling in graphene

heterojunctions. Nature Phys. 5, 222–226 (2009).
4. Campos, L. et al. Quantum and classical confinement of resonant states in a

trilayer graphene Fabry–Perot interferometer. Nature Commun. 3, 1239 (2012).
5. Varlet, A. et al. Fabry–Pérot interference in gapped bilayer graphene with

broken anti-Klein tunneling. Phys. Rev. Lett. 113, 116601 (2014).
6. Cheianov, V. V., Fal’ko, V. & Altshuler, B. L. The focusing of electron flow and a

Veselago lens in graphene p–n junctions. Science 315, 1252–1255 (2007).
7. Shytov, A. V., Rudner, M. S. & Levitov, L. S. Klein backscattering and

Fabry–Perot interference in graphene heterojunctions. Phys. Rev. Lett. 101,
156804 (2008).

8. Mayorov, A. S. et al.Micrometer-scale ballistic transport in encapsulated
graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).

132

© 2016 Macmillan Publishers Limited. All rights reserved

NATURE PHYSICS | VOL 12 | FEBRUARY 2016 | www.nature.com/naturephysics

http://dx.doi.org/10.1038/nphys3534
www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS3534 LETTERS

9. Pereira, J. M., Mlinar, V., Peeters, F. M. & Vasilopoulos, P. Confined states and
direction-dependent transmission in graphene quantum wells. Phys. Rev. B 74,

045424 (2006).
10. Zhang, F.-M., He, Y. & Chen, X. Guided modes in graphene waveguides. Appl.

Phys. Lett. 94, 212105 (2009).
11. Hartmann, R. R., Robinson, N. J. & Portnoi, M. E. Smooth electron waveguides

in graphene. Phys. Rev. B 81, 245431 (2010).
12. Williams, J. R., Low, T., Lundstrom, M. S. & Marcus, C. M. Gate-controlled

guiding of electrons in graphene. Nature Nanotech. 6, 222–225 (2011).
13. Dynes, R. C. & Fulton, T. A. Supercurrent density distribution in Josephson

junctions. Phys. Rev. B 3, 3015–3023 (1971).
14. Taychatanapat, T., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Electrically

tunable transverse magnetic focusing in graphene. Nature Phys. 9,
225–229 (2013).

15. Ritter, K. A. & Lyding, J. W. The influence of edge structure on the electronic
properties of graphene quantum dots and nanoribbons. Nature Mater. 8,
235–242 (2009).

16. Tao, C. et al. Spatially resolving edge states of chiral graphene nanoribbons.
Nature Phys. 7, 616–620 (2011).

17. Oostinga, J. B., Heersche, H. B., Liu, X., Morpurgo, A. F. & Vandersypen, L. M.
K. Gate-induced insulating state in bilayer graphene devices. Nature Mater. 7,
151–157 (2007).

18. Bischoff, D., Libisch, F., Burgdrfer, J., Ihn, T. & Ensslin, K. Characterizing wave
functions in graphene nanodevices: Electronic transport through ultrashort
graphene constrictions on a boron nitride substrate. Phys. Rev. B 90,

115405 (2014).
19. Barone, A. & Paterno, G. Physics and Applications of the Josephson Effect

(John Wiley, 1982).
20. Dean, C. R. et al. Boron nitride substrates for high-quality graphene

electronics. Nature Nanotech. 5, 722–726 (2010).
21. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, 1975).
22. Cuevas, J. C. & Bergeret, F. S. Magnetic interference patterns and vortices in

diffusive SNS junctions. Phys. Rev. Lett. 99, 217002 (2007).
23. Hui, H.-Y., Lobos, A. M., Sau, J. D. & Sarma, S. Das Proximity-induced

superconductivity and Josephson critical current in quantum spin Hall
systems. Phys. Rev. B 90, 224517 (2014).

24. Jaklevic, R. C., Lambe, J. & Mercereau, J. E. Quantum interference effects in
Josephson tunneling. Phys. Rev. Lett. 12, 159–160 (1964).

25. McCann, E. Asymmetry gap in the electronic band structure of bilayer
graphene. Phys. Rev. B 74, 161403 (2006).

26. Castro, E. V. et al. Biased bilayer graphene: Semiconductor with a gap tunable
by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007).

27. Jackiw, R. & Rebbi, C. Solitons with fermion number. Phys. Rev. D 13,

3398–3409 (1976).
28. Silvestrov, P. G. & Efetov, K. B. Charge accumulation at the boundaries of a

graphene strip induced by a gate voltage: Electrostatic approach. Phys. Rev. B
77, 155436 (2008).

29. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in
graphene ribbons: Nanometer size effect and edge shape dependence. Phys.
Rev. B 54, 17954–17961 (1996).

30. Akhmerov, A. R. & Beenakker, C. W. J. Boundary conditions for Dirac
fermions on a terminated honeycomb lattice. Phys. Rev. B 77,

085423 (2008).
31. Castro, E. V., Peres, N. M. R., dos Santos, J. M. B. L., Neto, A. H. C. & Guinea, F.

Localized states at zigzag edges of bilayer graphene. Phys. Rev. Lett. 100,
026802 (2008).

32. Allen, M. T. et al. Visualization of phase-coherent electron interference in a
ballistic graphene josephson junction. Preprint at http://arxiv.org/abs/
1506.06734 (2015).

33. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene:
Magnetic moment and topological transport. Phys. Rev. Lett. 99,
236809 (2007).

34. Jung, J., Zhang, F., Qiao, Z. & MacDonald, A. H. Valley-Hall kink and edge
states in multilayer graphene. Phys. Rev. B 84, 075418 (2011).

35. Zhang, F., MacDonald, A. H. & Mele, E. J. Valley Chern numbers and boundary
modes in gapped bilayer graphene. Proc. Natl Acad. Sci. USA 110,

10546–10551 (2013).
36. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene.

Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

Acknowledgements
The authors thank O. Dial, B. Halperin, V. Manucharyan and J. Sau for helpful
discussions. This work is supported by the Center for Integrated QuantumMaterials
(CIQM) under NSF award 1231319 (L.S.L. and O.S.) and the US DOE Office of Basic
Energy Sciences, Division of Materials Sciences and Engineering under award
DE-SC0001819 (P.J.-H., M.T.A., A.Y.). Nanofabrication was performed at the Harvard
Center for Nanoscale Systems (CNS), a member of the National Nanotechnology
Infrastructure Network (NNIN) supported by NSF award ECS-0335765. A.R.A. was
supported by the Foundation for Fundamental Research on Matter (FOM), the
Netherlands Organization for Scientific Research (NWO/OCW). I.C.F. was supported by
the European Research Council under the European Union’s Seventh Framework
Programme (FP7/2007–2013)/ERC Project MUNATOP, the US–Israel Binational Science
Foundation, and the Minerva Foundation.

Author contributions
M.T.A. and A.Y. designed and fabricated the devices, performed the experiments,
analysed the data, and wrote the paper. O.S. and L.S.L. developed the theoretical model of
guided edge modes and wrote the paper. A.R.A. and I.C.F. performed the Bayesian
analysis of the Fraunhofer patterns. P.J.-H. contributed to discussions of the results and
wrote the paper. K.W. and T.T. provided the hexagonal boron nitride crystals used in
device fabrication.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to A.Y.

Competing financial interests
The authors declare no competing financial interests.

NATURE PHYSICS | VOL 12 | FEBRUARY 2016 | www.nature.com/naturephysics

© 2016 Macmillan Publishers Limited. All rights reserved

133

http://dx.doi.org/10.1038/nphys3534
http://arxiv.org/abs/1506.06734
http://arxiv.org/abs/1506.06734
http://dx.doi.org/10.1038/nphys3534
http://www.nature.com/reprints
www.nature.com/naturephysics

	Spatially resolved edge currents and guided-wave electronic states in graphene
	Main
	Acknowledgements
	References


